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A Learning-Theory
Approach to Sensor
Networks

R
ecent advances in microelectro-
mechanical systems, computing,
and communication technology
have sparked the emergence of mas-
sively distributed, wireless sensor

networks with potentially thousands of nodes.
Each node can sense the environment, process the
collected data, and communicate with its peers
or to an external observer. A steady increase in
these networks’ capabilities and decrease in the
cost of producing them have made possible appli-
cations that seemed too expensive or unrealistic.1

On the other hand, these changes create great
theoretical challenges in distributed signal pro-
cessing, control, and other areas.

My colleagues and I in the Department of Elec-
trical Engineering and Computer Sciences at the

University of California, Berke-
ley, propose a unified approach
to various sensor network
applications, using supervised
learning. Supervised learning

refers to learning from examples, in the form of
input-output pairs, by which a system that isn’t
programmed in advance can estimate an un-
known function and predict its values for
inputs outside the training set. In particular, we
examined random wireless sensor networks, in
which nodes are randomly distributed in the
region of deployment. When operating normally,
nodes communicate and collaborate only with
other nearby nodes (within communication
range). However, a base station—with a more
powerful computer on board—can query a node

or group of nodes when necessary and perform
data fusion. We mainly considered the sensor net-
work platform developed at UC Berkeley (http://
webs.cs.berkeley.edu), but our approach applies
to a broader framework.

The problem of learning from data becomes
crucial in a world flooded with too much infor-
mation. Examples of this abound in biology, par-
ticle physics, astronomy, engineering, and other
disciplines. Instrumenting the physical world with
wireless sensors will generate massive amounts
of data (examples) that can be processed (learned
from) efficiently and usefully. This is where learn-
ing theory comes into play.

Learning techniques have been applied in many
diverse scenarios. We considered some basic con-
cepts of learning theory and how they might
address the needs of random wireless sensor net-
works. Our research is still in progress, so our
ideas and results are preliminary; however, we
offer a beneficial perspective for the sensor net-
work community to consider.

Basic notions of learning theory
The work of Tomaso Poggio,2 Steve Smale,2,3

and Felipe Cucker3 was important to our under-
standing of learning theory. Vladimir Vapnik’s
fundamental work4 is also an excellent resource
on statistical learning.

In supervised learning, input-output pairs rep-
resent a sample of the object (such as a function)
to be learned. To illustrate how systems are
trained with these, consider the classic example of
learning a physical law by curve fitting to data.

Supervised learning might be a viable approach to sensor network
applications. Preliminary research shows that a well-known algorithm
from learning theory effectively applies to environmental monitoring,
tracking of moving objects and plumes, and localization.
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Suppose that the physical law to be
learned is an unknown function f : � → �

(� denotes the set of real numbers) of
a special form. Assume, for instance,
that f is a polynomial of degree N, with
coefficients w0, …, wN. Let (x1, y1), …,
(xm, ym) (m > N) be samples of f, where
we obtain yi by “measuring” f at xi. If
the measurements were exact, we would
have yi = f(xi), but in reality we expect
them to be affected by noise. Learning f
amounts to finding the vector of coeffi-
cients w = (w0, …, wN) such that 

is the best fit for the data. We can do this
efficiently by the Gaussian method of least
squares, which computes w to minimize

.

Often (such as in the context of random
wireless sensor networks), the xi are ran-
dom rather than chosen.

In general, we are given a set of data
(x1, y1), …, (xm, ym), where the xi’s are
in some input space X, usually a closed
subset of some �k, and the yi’s belong to
an output space Y, which we assume to
be �. For data generated by a sensor net-
work, xi is the position of the ith sensor
node and yi is its measurement or some
function of it. I’ll explain this in more
detail later.

On the space X × Y consisting of all
input-output pairs (x, y), with x ∈ X and
y ∈ Y, we assume a probability measure
ρ exists that governs the sampling.5 That
is, pairs (xi, yi) are randomly picked
according to ρ. The measure ρ defines a
function fρ : X → Y, called the regression
function of ρ. For each input x, fρ(x) is
the average (with respect to ρ) value of
the output y in {(x, y) : y ∈ Y}. The goal
is then to learn (that is, find a good

approximation of) fρ from random sam-
ples (x1, y1), …, (xm, ym).

In other words, we’d like to find a
function f : X → Y that minimizes the
error

where ρX is the marginal measure on X
induced by ρ.5

The central question of learning theory
is how well f generalizes—that is, “how
well it estimates the outputs for previ-
ously unseen inputs.”2

The key algorithm
We use an algorithm—the key algo-

rithm from the works mentioned ear-
lier2,3—that fits the training data set 
(x1, y1), …, (xm, ym) ∈ X × Y with a func-
tion f : X → Y, where X is a closed sub-
set of some �k and  Y = �. 

A function K:X×X → � is symmetric
if K(x, x′) = K(x′, x), for all x, x′ ∈ X. It’s
positive definite if, in addition, for any
finite subset {p1, …, pn} of X, the n × n
matrix with entries K(pi, pj) is positive
definite. This means that for all real
numbers c1, …, cn, 

. 

If K is symmetric, positive definite, and
continuous, we call it a Mercer kernel.
Examples are

(1)

and

,

where || · || denotes the 2-norm and a, α,
σ > 0.

The algorithm is as follows:

1. Start with data (x1, y1), …, (xm, ym).
2. Choose a Mercer kernel such as the

one in Equation 1.
3. Choose a positive real number γ and

let c = (c1, …, cm) be the unique solu-
tion to the equation

(mγ I + K)c = y,                      (2)

where I is the m × m identity matrix,
K is the square positive-definite
matrix with entries K(xi, xj), 1 ≤ i, j
≤ m, and y is the column vector with
components y1, …, ym.

4. Define f : X → Y by

.

Because the matrix mγ I + K is positive
definite, and therefore nonsingular, Equa-
tion 2 is well posed.

So what does the approximating func-
tion f look like? If the kernel is Gaussian
(see Equation 1), f is a weighted sum of
Gaussian blobs, each centered at one of
the xi’s.

The weights ci minimize the error on
the training set. The parameter σ from
Equation 1 controls the degree of smooth-
ing, noise tolerance, and generalization.
For instance, as σ approaches 0, f be-
comes just a “look-up table” that gives
the exact value of y when x = xi but does
not generalize to other values of the
input. The parameter γ ensures that
Equation 2 is well posed: the larger the
mγ, the better the condition number of
Equation 2. On the other hand, if γ were
zero, f(xi) would equal yi exactly. It turns
out that a best γ exists that solves this
trade-off problem.6

This algorithm has been used in many 
problems. It performs well in a variety
of applications involving regression as
well as binary classification. Systems like
Equation 2 have been studied since
Gauss’s time; algorithms to efficiently
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compute their solutions form one of the
most developed fields of numerical
analysis.2

To illustrate the algorithm, let’s apply it
to a training set of m points (xi, yi), where
the inputs xi are random, generated by the
uniform distribution on the square Q =
[−5, 5]2. The output yi is a Gaussian ran-
dom variable with mean f0(xi) and vari-
ance Σ2, where f0(x) = sin ||x||/||x||. We want
to estimate the (unknown) function f0

given noisy data. Figure 1 shows how the
graph of the estimate changes as m = 100,
200, and 500. Figure 2 illustrates how the
estimate changes as γ varies.

Sensor network applications
Most applications to sensor networks

can be formulated as learning about the

environment through examples. Usually,
we’re interested in a particular feature
of the environment that can be repre-
sented by a vector-valued function de-
fined on the region in which our sensor
network is deployed. Let X be that
region. If a sensor network is deployed
on the ground, we can take X to be a
closed subset of �2. If the region is sig-
nificantly curved (for example, moun-
tainous), we can take X to be a 2D sur-
face in �3. If the sensor network is
airborne or deployed in water, we can
take X ⊂ �3.

Data that the sensor network gener-
ates are of the desired form (x1, y1), …,
(xm, ym), where xi ∈ X is usually the (esti-
mated) location of the ith sensor node
and yi is an �-tuple of real numbers rep-

resenting measurements of the ith node.
Because the framework from the earlier
section requires the outputs to be scalar,
we decompose each yi into scalar com-
ponents yi = (yi

1, …, yi
�) and work with

data sets , for j = 1, …, �, sepa-
rately. So, without loss, we can assume
that our sensor network outputs are
scalar.

Recall that points (xi, yi) are picked
from X × Y according to some unknown
probability measure ρ, which represents
the noise in the measurements. What we’d
like to estimate (or learn) is the regression
function fρ of ρ, which in our context is
some feature of the environment repre-
sented by the outputs yi ≈ fρ(xi).

Applying the algorithm to sensor net-
works involves these problems:

( , )x yi i
j

i
m
=1
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Figure 1. Estimates of f0 for (a) m = 100, (b) m = 200, and (c) m = 500 nodes, when γ = 0.001, Σ2 = 0.01, and σ 2 = 2.

(a)

5

0

0.3
0.1

0

0

–5

5

–5

(b)

5

0.8
0.6
0.4
0.2

0
–0.2

0

–5

5

0

–5

(c)

5

0.8
0.6
0.4
0.2

0
–0.2

0

–5

5

0

–5

Figure 2. Estimates of f0 for (a) γ = 0.1, (b) γ = 0.01, and (c) γ = 0.001, when m = 100 nodes, Σ2 = 0.01, and σ 2 = 2.



• How much computation should be
distributed to individual nodes, and
how much of it should be centralized?

• Which kernel should we choose?
• Which values of γ and σ are best?

This article discusses only the first prob-
lem; the latter two are beyond its scope.
(See Cucker and Smale’s article6 about
finding the best γ.)

Centralized computation might re-
quire much long-range communication
with a base station, which consumes
much energy but might allow for more
intensive data processing by a more
powerful base station computer. On the
other hand, distributed—or localized—
computation at each node means less
long-range communication, but the
amount of computation possible will
probably be significantly limited. This is
the usual trade-off between communi-
cation and computation in sensor net-
works. However, because transmitting a
bit of information is still an order of
magnitude more expensive than com-
puting it, we opt for a more distributed
alternative, assuming that nodes can do
a nontrivial amount of computation
(such as solving reasonably large systems
of linear equations).

We can summarize our general
approach, which we can call distributed
sensorweb learning, as follows: Each
node S generates its data set by commu-
nicating with its neighbors and applies
the algorithm to the set to obtain its own
estimate fS.

We call a node a neighbor of a node S
if it can establish a bidirectional commu-
nication link with S. Denote by Di the
communication region (or neighborhood)
of node Si (i = 1, …, m)—that is, the sub-
set of X such that all nodes in Di are Si’s
neighbors. We’ll assume that Di is the disk
centered at xi (the position of Si) of radius
r (the communication range). The esti-
mate fi by Si of an unknown function f is
then valid only in Di. What happens if the

communication neighborhoods of two
nodes Si and Sj overlap? Which estimate
do we accept in the intersection Di ∩ Dj?
That is, if the need arises, how should the
base station merge the estimates fi and fj?
We have a preliminary solution that glues
the local estimates by taking a certain type
of average.

Denote by Ai and Bi the disks of radius
r/2 and 3r/4, respectively, centered at the
ith node Si. Let βi : i = 1, …, m be a col-

lection of real-valued functions defined
on the whole region of deployment X
and satisfying these properties:

• The βi’s are smooth 
• 0 ≤ βi ≤ 1, ∑iβi(x) = 1 at every point 

x ∈ X
• βi = 1 on Ai

• βi = 0 outside Bi

A collection such as this exists, as is well
known in differential geometry, and is
called a partition of unity. Each βi is
what’s often called a bump function
because its graph looks like a bump. Let
fi be the local estimate of an unknown
function f, obtained at the ith node using
the distributed algorithm; it’s defined only
on the set Di the communication region 
of the ith node. Extend fi to the function

defined on all of X by defining to
be equal to fi on Di and zero outside Di.
We glue the ’s into  global estimate f∗ by
setting

.

Observe that on Ai (that is, close to the
node Si), f∗ = fi, the corresponding local
estimate obtained by Si.

How well does f∗ approximate f ? On
each Di, probabilistic estimates of the
error | f − fi | are readily available from
learning theory.2 Let M be the largest of
these errors. It’s then easy to see that 
| f∗ − f | ≤ M.

It often makes most sense to assume
that the node positions xi are indepen-

dent, uniformly distributed random vari-
ables on X, but other distributions are
possible in particular situations.

The following examples suggest how
to formulate particular sensor network
applications from a supervised-learning
viewpoint.

Environmental monitoring
In this case, we want to estimate some

unknown scalar environmental function
fenv defined on X, such as temperature,
air pressure, humidity, or light.7 We can
assume that the output of the measure-
ment yi at the node Si is a normally dis-
tributed random variable with mean
fenv(xi). When we apply the distributed
algorithm, each node gets a local esti-
mate of fenv. We can find upper bounds
for the local error with a desired confi-
dence by using the results of Cucker and
Smale’s work;3 they’ll depend on the
number of neighbors each node has and
on other network parameters.

We might also want to estimate a vec-
tor field F, such as the gradient of tem-
perature, representing the heat flow in
the environment.8 We can do this by
reducing the task into estimating the

f fi i
i

m

* =
=
∑β

1

fi

fifi
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Distributed computation at each node 

means less long-range communication, but the

amount of computation possible will probably

be significantly limited.



field’s scalar components by each node.

Plume tracking
Suppose we want to track a plume of

hazardous gas moving slowly through
region X.9,10 Let A be the set represent-
ing the plume’s extent at a time instant t0.
Let fA be A’s indicator function—that is,
fA(x) = 1 if x ∈ A and fA(x) = 0 other-
wise. Estimating A amounts to estimat-
ing fA. Each node Si measures the con-
centration of the gas at its location and
outputs yi = 1 if the concentration is
larger than some threshold τ; otherwise
yi = 0.

Alternatively, Si can output its numer-
ical measurement and the network can
estimate the concentration function

C : X → �. An estimate of A is then the
set of all points x where C(x) > τ.

Tracking moving objects
Suppose an unknown set of objects O

(such as people, animals, or vehicles) is
moving through region X. We want to
estimate their positions and hence tra-
jectories at various time instances. Let 
δ > 0 be a desired estimation accuracy.
We can think of each object in O not as a
point-mass but as a smeared point, or a
disk of radius δ, and apply the algorithm.

We denote by Oδ the subset of X con-
sisting of points x such that the distance
from x to at least one object in O is less
than δ at a fixed time instance t0. Then,
learning the indicator function of Oδ

amounts to estimating the positions of
objects in O with accuracy δ. Once
again, the inputs xi are positions of sen-
sor nodes and the outputs yi are +1 (if
at least one element of O is within the
distance δ from Si) or 0 (otherwise).

Localization
We can approach node localization

similarly. Suppose a certain number of
nodes (for example, beacons) know
their positions with some accuracy.
Often the sensor network’s first task is to
localize (that is, estimate the positions
of) the remaining nodes.11,12 Let S be a
node with unknown position p ∈ X and
let δ > 0 be the desired accuracy. Then
S can communicate with the neighbors
who know their positions and gather
data (xi, yi). xi is the position of a known
neighbor and yi = 1 if the distance
between that neighbor and S is less than
δ and 0 otherwise. Learning from the
given data, S gets an estimate of the indi-
cator function of the disk centered at p
with radius δ. We can take the point
where the estimate reaches its global
maximum to be S’s position.

Simulation results
Following are some preliminary sim-

ulation results in Matlab. We used the
centralized version of the algorithm with
a Gaussian kernel (See Equation 1).

Figure 3 compares the graphs of the
true temperature function T(x) for x ∈
[−5, 5]2 (Figure 3a) and its estimate (Fig-
ure 3b). We took T(x) = exp(−||x||2) and
assumed the output yi is a Gaussian ran-
dom variable with mean T(xi) and vari-
ance 0.001. The number of nodes is m =
100, σ 2 = 0.5, and γ = 0.0001.

Figure 4 shows two estimates of the
set A = {(u, v) : |v| < 1} (which you can
consider as being occupied by a plume
of gas), using m = 200 and 400 nodes,
with σ 2 = 2 and γ = 0.001. Pictured are
the graphs of the estimates of A’s indi-
cator function.
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Figure 3. Temperature graphs: (a) The true temperature and (b) an estimate with m =
100 nodes.
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Figure 4. Estimates of the indicator function of the set A = {(u, v) : |v| < 1} using (a) m =
200 and (b) m = 400 nodes, when σ 2 = 2 and γ = 0.001. 



Figure 5 shows a localization estimate
with σ2 = 2, γ = 0.0001, and δ = 0.9. We
assumed the unknown position of node
S is (0, 0); S has m neighbors (m = 30
and 60), each aware of its own position.
The figure shows the graph of the func-
tion estimating the indicator function of
the disk of radius d centered at the ori-
gin. The point where it achieves its max-
imum (ideally, 1) can be taken as the esti-
mate of S’s position.

S
upervised learning theory offers
an effective approach to sensor
networks. We’ve  demonstrated
this through showing how a well-

known learning algorithm can be used
in the context of environmental moni-
toring, tracking, and localization. In the
future—especially in dense, large-scale
sensor networks—we foresee even greater
possibilities of such applications, which
we plan to investigate in future work. 
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