
ar
X

iv
:c

on
d-

m
at

/0
20

84
53

 v
1

 2
3

A
ug

 2
00

2

NEURAL CRYPTOGRAPHY

Wolfgang Kinzel

Institute for Theoretical Physics
University, Am Hubland

97074 Würzburg, Germany

Ido Kanter

Minerva Center and Department of Physics
Bar-Ilan University

52100 Ramat-Gan, Israel

ABSTRACT

Two neural networks which are trained on their mutual
output bits show a novel phenomenon: The networks syn-
chronize to a state with identical time dependent weights.
It is shown how synchronization by mutual learning can be
applied to cryptography: secret key exchange over a public
channel.

1. INTRODUCTION

Neural networks learn from examples. This concept has ex-
tensively been investigated using models and methods of
statistical mechanics [1, 2]. A ”teacher” network is pre-
senting input/output pairs of high dimensional data, and a
”student” network is being trained on these data. Training
means, that synaptic weights adopt by simple rules to the
input/output pairs. After the training phase the student is
able to generalize: It can classify – with some probability –
an input pattern which did not belong to the training set.

Training is a dynamic process. The examples are gener-
ated step by step by a static network - the teacher. The stu-
dent tries to move towards the teacher. It turns out, that for
a large class of models the dynamics of learning and gener-
alization can be described by ordinary differential equations
for a few order parameters [3].

Recently this scenario has been extended to the case of
a dynamic teacher: Both of the communicating networks
receive an identical input vector, generate an output bit and
are trained on the corresponding bit of their partner. The
analytic solution shows a novel phenomenon: synchroniza-
tion by mutual learning [4]. The synaptic weights of the two
networks relax to a common identical weight vector which
still depends on time. The biological consequences of this
phenomenon are not explored, yet, but an interesting appli-
cation in cryptography has been found: secure generation of
a secret key over a public channel [6].

In the field of cryptography, one is interested in methods
to transmit secret messages between two partners A and B.
An opponent E who is able to listen to the communication
should not be able to recover the secret message.

Before 1976, all cryptographic methods had to rely on
secret keys for encryption which were transmitted between
A and B over a secret channel not accessible to any oppo-
nent. Such a common secret key can be used, for example,
as a seed for a random bit generator by which the bit se-
quence of the message is added (modulo 2).

In 1976, however, Diffie and Hellmann found that a com-
mon secret key could be created over a public channel ac-
cessible to any opponent. This method is based on number
theory: Given limited computer power, it is not possible to
calculate the discrete logarithm of sufficiently large num-
bers [7].

Here we show how neural networks can produce a com-
mon secret key by exchanging bits over a public channel
and by learning from each other [6, 8, 9].

2. TRAINING THE TREE PARITY MACHINE

Both of the communicating partners A and B are using a
multilayer network with K hidden units: A tree parity ma-
chine, as shown in figure 1. In this paper we use K=3, only.
Each network consists of three units (perceptrons, i=1,2,3):

σA
i = sign(wA

i · xi); σB
i = sign(wB

i · xi)

Thew are N-dimensional vectors of synaptic weights and
thex are N-dimensional input vectors. Here we discuss dis-
crete weights and inputs, only:

w
A/B
i,j ∈ {−L,−L + 1, ..., L − 1, L}; xi,j ∈ {−1, +1}

The three hidden bitsσ are combined to an output bitτ of
each network:

τA = σA
1

σA
2

σA
3

; τB = σB
1

σB
2

σB
3

The two output bitsτ are used for the mutual training
process. At each training step the two machines A and B
receive identical input vectorsx1,x2,x3. The training al-
gorithm is the following: Only if the two output bits are
identical,τA = τB , the weights can be changed. In this

τ

x

Π

w

σ

Figure 1: Parity machine with three hidden units.

case, only the hidden unitσi which is identical toτ changes
its weights using the Hebbian rule

w
A
i (t + 1) = w

A
i (t) + xi

and the same for the network B. If this training step pushes
any componentwi,j out of the interval−L, ..., L the com-
ponent is replaced by±L, correspondingly.

Consider for example the caseτA = τB = 1. There
are four possible configurations of the hidden units in each
network:
(+1, +1, +1), (+1,−1,−1), (−1, +1,−1), (−1,−1, +1)
In the first case, all three weight vectorsw1,w2,w3 are
changed, in all other three cases only one weight vector
is changed. The partner as well as any opponent does not
know which one of the weight vectors is updated.

Note that the two multilayer networks may be consid-
ered as a system of random walks with reflecting bound-
aries. Each of the6N componentswi,j of the weight vectors
moves on2L+1 lattice points.wi,j makes a stepxi,j = ±1
if the corresponding global signalsτ andσ allow this. If it
hits a boundary it is reflected. Since any two weightswA

i,j

andwB
i,j receive an identical inputxi,j , every common step

where one component is reflected decreases the distance be-
tween the two weights. As we will see in the following sec-
tion, this finally results in identical weight vectors.

3. GENERATION OF SECRET KEYS

Mutual learning of tree parity machines, as explained be-
fore, leads to synchronization of the time dependent synap-
tic vectorswA

i andw
B
i . This is the result of numerical sim-

ulations as well as analytic solutions of the model[6, 8, 9].
Both partners start with random weight vectors (3 N random
numbers each) and train their weight vectors according to
the algorithm explained above. At each training step they
receive three common random input vectorsxi.

It turns out that after a relatively short number of train-
ing steps all pairs of the weight vectors are identical,w

A
i =

w
B
i . The two multilayer networks have identical synaptic

weights. Since, according to the learning rule, after syn-
chronization at least one pair of weight vectors is changed
for each training step, the synaptic weights are always mov-

ing. In fact, it is hard to distinguish this motion form a ran-
dom walk in weight space[5]. Therefore the two multilayer
networks perform a kind of synchronized random walk in
the discrete space of(2L + 1)3N points.

Figure 2 shows the distribution of synchronization time
for N = 100 andL = 3. It is peaked aroundtsync ≃ 400.
After 400 training steps each of the 300 components of the
network A has locked into its identical counterpart of the
network B. One finds that the average synchronization time
is almost independent on the sizeN of the networks, at least
up toN = 10000. Asymptotically one expects an increase
like log N .

0 1000
t_sync

0

200

400

600

800

P
(t

_s
yn

c)

Figure 2: Distribution of synchronization time forN =
100, L = 3.

Synchronization of neural networks can immediately be
translated to key generation in cryptography: The common
identical weights of the two partners A and B can be used
as a key for encryption, either immediately as one-time pad,
as a seed for random bit generators or as a key in other en-
cryption algorithms (DES,AES)[7].

Compared to algorithms based on number theory, the
neural algorithm has several advantages: First, it is very
simple. The training algorithm is essentially a linear fil-
ter which can easily implemented in hardware. Second, the
number of calculations to generate the key is low. To gen-
erate a key of lengthN one needs of the order ofN com-
putational steps. Third, for every communication, or even
for every block of the message, a new key can be generated.
No secret information has to be stored for a longer time.

But useful keys have to be secure. An attacker E who
is recording the communication between A and B should
not be able to calculate the secret key. Attacker will be dis-
cussed in the following.

4. ATTACKS

A secure key exchange protocol should have the following
property: Any attacker who knows all of the details of the
protocol and all of the information exchanged between A
and B should not have the computational power to calculate
the secret key.

We assume that the attacker E knows the algorithm, the
sequence of input vectors and the sequence of output bits.
In principle, E could start from all of the(2L + 1)3N initial
weight vectors and calculate the ones which are consistent
with the input/output sequence. It has been shown, that all
of these initial states move towards the same final weight
vector, the key is unique [10]. However, this task is compu-
tationally infeasible.

Hence one has to find an algorithm which tries to adapt
to the known input/output. Note that the training rule for
A and B has the property: If a pair of units is synchron it
remains so forever. The synchronous state is an attractor
of the learning dynamics. Any algorithm for the attacker E
should have this property, too.

An immediate guess for a possible attack is the follow-
ing: E uses the same algorithm as one of the partners, say B.
If τA = τB the weight vectors of E are changed for which
the unitσE

i is identical toτA.
In fact, numerical simulations as well as analytic cal-

culations show that an attacker E will synchronize with A
and B after some learning timetlearn[6, 8, 9]. However,
the learning time is much longer than the synchronization
time. Figure 3 shows the distribution of the ratio between
synchronization and learning times. On average, learning
is about 1000 times slower than synchronization. But even
the tail of the distribution never exceeded the factor 10 (for
1000 runs). Therefore, if the training process is stopped
shortly after synchronization, the attacker has no chance to
calculate the key. The key is secure for this algorithm of
attack.

Why does this work at all? What is the difference be-
tween the partner B and the attacker E, who both have the
same information? The reason is that B can influence the
network A whereas E can only listen. Synchronization as
well as learning is a competition of attraction and repulsion
controlled by the output bits. One can show, for the parity
machine the probability for repulsion is much larger for E
than for A and B, at least close to synchronization. This is
not true for the committee nor the simple perceptron[7, 9].

However, one cannot exclude that E finds attacks which
perform better than the simple attack described above. In
fact, recently several attacks were found which seem to crack
the key exchange[11]. The most successful one has two ad-
ditional ingredients: First, an ensemble of attackers is used.
Second, E makes additional training steps when A and B are
quiet,τA 6= τB .

0 0.02 0.04 0.06 0.08r
0

100

P(r)
N=101

Figure 3: Distribution of the ratio of synchronization time
between networks A and B to the learning time of an at-
tacker E.

An ensemble is helpful if the distribution of learning
times is broad. Then there may be a chance that some of,
say 10000, attackers will synchronize before A and B. If
one reads all of the 10000 encrypted messages one will de-
tect the key from those messages which have a meaning.
The additional training step goes as follows: IfτE 6= τA

search for the unit with smallest internal fieldwE
i · xi, flip

the correspondingσE
i and proceed with training as above.

This step enforces learning by changing only the informa-
tion which is close to the decision boundary.

This algorithm succeeds to find the key for the value
L = 3. There is a nonzero fractionP (L) of attackers which
synchronize with the two partners A and B [11]. However, a
detailed numerical calculation of the scaling of key genera-
tion showed that this fractionP (L) decreases exponentially
fast with the numberL of weight values[12]. The synchro-
nization time, on the other hand, increases only likeL2, as
expected form the random walk analogy. Therefore, in the
limit of sufficiently large values ofL neural cryptography is
secure.

In addition, it has been shown that key generation by
mutual learning can be made even more secure by combin-
ing it with synchronization of chaotic maps[13].

5. SUMMARY

Interacting neural networks are able to synchronize. Start-
ing from random initial weights and learning from each other,
two multilayer networks relax to a state with time dependent
identical synaptic weights.

This scenario has been applied to cryptography. Two
partners A and B can generate a secret key over a public
channel by training their parity machines on the output bits
of their partner. A and B did not exchange any information

over a secret channel before their communication. Although
an attacker can record the communication and knows the
algorithm she is not able to calculate the secret common
key which A and B use for encryption.

This holds for all attackers studied so far. Of course, one
cannot prove that no algorithms exist for a successful attack.
Future has to show whether neural cryptography remains
secure for more advanced attacks.

To our knowledge, neural cryptography is the first al-
gorithm for key generation over public channels which is
not based on number theory. It has several advantages over
known protocols: It is fast and simple, for each messages
a new key can be used and no information is stored perma-
nently. Therefore neural cryptography may lead to novel
applications in the future.

6. REFERENCES

[1] J. Hertz, A. Krogh, and R. G. Palmer:Introduction to
the Theory of Neural Computation, (Addison Wesley,
Redwood City, 1991)

[2] A. Engel, and C. Van den Broeck:Statistical Mechan-
ics of Learning, (Cambridge University Press, 2001)

[3] M. Biehl and N. Caticha: Statistical Mechanics of On-
line Learning and Generalization,The Handbook of
Brain Theory and Neural Networks, ed. by M. A. Ar-
bib (MIT Press, Berlin 2001)

[4] R. Metzler and W. Kinzel and I. Kanter,Interacting
neural networks, Phys. Rev. E62, 2555 (2000)

[5] R. Metzler, W. Kinzel, L. Ein-Dor and I. Kanter,Gen-
eration of antipredictibable time series by neural net-
works, Phys Rev. E 63, 056126 (2001)

[6] I. Kanter, W. Kinzel and E. Kanter,Secure exchange
of information by synchronization of neural networks,
Europhys. Lett.57, 141-147 (2002)

[7] D. R. Stinson,Cryptography: Theory and Practice
(CRC Press 1995)

[8] M. Rosen-Zvi, I. Kanter and W. Kinzel,Cryptography
based on neural networks: analytical results, cond-
mat/0202350 (2002)

[9] M. Rosen-Zvi, E. Klein, I. Kanter and W. Kinzel,Mu-
tual learning in a tree parity machine and its applica-
tion to cryptography, Phys. Rev. E (2002)

[10] R. Urbanczik, private communication

[11] A. Klimov, A. Mityagin and A. Shamir,Analysis of
neural cryptography, to be published

[12] R. Mislovaty, Y. Perchenok, I. Kanter and W. Kinzel,
A secure key exchange protocol, to be published

[13] I. Kanter, unpublished

http://suriya.library.cornell.edu/abs/cond-mat/0202350

