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Neural cryptography is based on a competition between attractive and repulsive stochastic forces.
A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using
numerical simulations and an analytic approach, the probability of a successful attack is calculated
for different model parameters. Scaling laws are derived which show that feedback improves the
security of the system. In addition, a network with feedback generates a pseudorandom bit sequence
which can be used to encrypt and decrypt a secret message.
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I. INTRODUCTION

Neural networks learn from examples. When a system
of interacting neurons adjusts its couplings to a set of ex-
ternally produced examples, this network is able to esti-
mate the rule which produced the examples. The proper-
ties of such networks have successfully been investigated
using models and methods of statistical physics [1, 2].

Recently this research program has been extended to
study the properties of interacting networks [3, 4]. Two
networks which learn the examples produced by their
partner are able to synchronize. This means that af-
ter a training period the two networks achieve identical
time dependent couplings (synaptic weights). Synchro-
nization by mutual learning is a phenomenon which has
been applied to cryptography [5, 6].

To send a secret message over a public channel one
needs a secret key, either for encryption, decryption, or
both. In 1976, Diffie and Hellmann have shown how
to generate a secret key over a public channel with-
out exchanging any secret message before. This method
is based on the fact that—up to now—no algorithm is
known which finds the discrete logarithm of large num-
bers by feasible computer power [7].

Recently it has been shown how to use synchronization
of neural networks to generate secret keys over public
channels [5]. This algorithm, called neural cryptography,
is not based on number theory but it contains a physi-
cal mechanism: The competition between stochastic at-
tractive and repulsive forces. When this competition is
carefully balanced, two partners A and B are able to syn-
chronize whereas an attacking network E has only a very
low probability to find the common state of the commu-
nicating partners.

The security of neural cryptography is still being de-
bated and investigated [8–12]. In this paper we introduce
a mechanism which is based on the generation of inputs
by feedback. This feedback mechanism increases the re-
pulsive forces between the participating networks, and
the amount of the feedback, the strength of this force, is
controlled by an additional parameter of our model.
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FIG. 1: A tree parity machine with K = 3 and N = 4.

A measure of the security of the system is the prob-
ability PE that an attacking network is successful. We
calculate PE obtained from the best known attack [8] for
different model parameters and search for scaling proper-
ties of the synchronization time as well as for the security
measure. It turns out that feedback improves the secu-
rity significantly, but it also increases the effort to find
the common key. When this effort is kept constant, feed-
back only yields a small improvement of security.

II. REPULSIVE AND ATTRACTIVE
STOCHASTIC FORCES

The mathematical model used in this paper is called a
tree parity machine (TPM), sketched in Fig. 1. It consists
of K different hidden units, each of them being a percep-
tron with an N -dimensional weight vector wk. When a
hidden unit k receives an N -dimensional input vector xk

it produces the output bit

σk = sgn(wk · xk) . (1)

The K hidden units σk define a common output bit τ of
the total network by

τ =
K∏

k=1

σk . (2)
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In this paper we consider binary input values xk,j ∈
{−1,+1} and discrete weights wk,j ∈ {−L,−L+1, ..., L−
1, L}, where the index j denotes the N components and
k the K hidden units.

Each of the two communicating partners A and B
has its own network with an identical TPM architec-
ture. Each partner selects random initial weight vectors
wA

k (t = 0) and wB
k (t = 0).

Both of the networks are trained by their mutual out-
put bits τA and τB . At each training step, the two net-
works receive common input vectors xk and the corre-
sponding output bit τ of its partner. We use the following
learning rule.

(1) If the output bits are different, τA �= τB , nothing
is changed.

(2) If τA = τB ≡ τ only the hidden units are trained
which have an output bit identical to the common
output, σ

A/B
k = τA/B .

(3) To adjust the weights we consider three different
learning rules.

(i) Anti-Hebbian learning

w+
k = wk − τxkΘ(σkτ)Θ(τAτB) . (3)

(ii) Hebbian learning

w+
k = wk + τxkΘ(σkτ)Θ(τAτB) . (4)

(iii) Random walk

w+
k = wk + xkΘ(σkτ)Θ(τAτB) . (5)

If any component wk,j moves out of the interval
−L, . . . , L, it is replaced by sgn(wk,j)L.

Note that for the last rule, the dynamics of each com-
ponent is identical to a random walk with reflecting
boundaries. The only difference to usual random walks
is that the dynamics is controlled by the 2K global sig-
nals σ

A/B
k which, in turn, are determined by the ensem-

ble of random walks. Two corresponding components of
the weights of A and B receive an identical input xk,j ,
hence they move into the same direction if the control
signal allows both of them the move. As soon as one
of the two corresponding components hits the boundary
their mutual distance decreases. This mechanism finally
leads to complete synchronization, wA

k (t) = wB
k (t) for all

t ≥ tsync.
On average, a common step leads to an attractive

force between the corresponding weight vectors. If, how-
ever, only the weight vector of one of the two partners
is changed the distance between corresponding vectors
increases, on average. This may be considered as a re-
pulsive force between the corresponding hidden units.

A learning step in at least one of the K hidden units
occurs if the two output bits are identical, τA = τB . In
this case, there are three possibilities for a given pair of
hidden units:

(1) an attractive move for σA
k = σB

k = τA/B ;

(2) a repulsive move for σA
k �= σB

k ;

(3) and no move at all for σA
k = σB

k �= τA/B .

We want to calculate the probabilities for repulsive and
attractive steps [8, 13]. The distance between two hidden
units can be defined by their mutual overlap

ρk =
wA

k · wB
k√

wA
k · wA

k

√
wB

k · wB
k

. (6)

The probability εk that a common randomly chosen
input xk leads to a different output bit σA

k �= σB
k of the

hidden unit is given by [2]

εk =
1
π

arccos ρk . (7)

The quantity εk is a measure of the distance between
the weight vectors of the corresponding hidden units.
Since different hidden units are independent, the values
εk determine also the conditional probability Pr for a
repulsive step between two hidden units given identical
output bits of the two TPMs. In the case of identical
distances, εk = ε, one finds for K = 3

Pr = P (σA
k �= σB

k |τA = τB)

=
2(1 − ε)ε2

(1 − ε)3 + 3(1 − ε)ε2
. (8)

On the other side, an attacker E may use the same al-
gorithm as the two partners A and B. Obviously, it will
move its weights only if the output bits of the two part-
ners are identical. In this case, a repulsive step between
E and A occurs with probability Pr = ε where now ε is
the distance between the hidden units of E and A.

Note that for both the partners and the attacker one
has the important property that the networks remain
identical after synchronization. When one has achieved
ε = 0 at some time step, the distance remains zero for-
ever, according to the previous equations for Pr. How-
ever, although the attacker uses the same algorithm as
the two partners, there is an important difference: E can
only listen but it cannot influence A or B. This fact leads
to the difference in the probabilities of repulsive steps;
the attacker has always more repulsive steps than the
two partners. For small distances ε � 1, the probability
Pr increases linear with the distance for the attacker but
quadratic for the two partners. This difference between
learning and listening leads to a tiny advantage of the
partners over an attacker. The subtle competition be-
tween repulsive and attractive steps makes cryptography
feasible.

On the other side, there is always a nonzero probabil-
ity PE that an attacker will synchronize, too [11]. For
neural cryptography, PE should be as small as possible.
Therefore it is useful to investigate synchronization for
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different models and to calculate their properties as a
function of the model parameters.

Here we investigate a mechanism which decreases PE ,
namely we include feedback in the neural networks. The
input vectors xk are no longer common random numbers,
but they are produced by the bits of the correspond-
ing hidden units. Therefore the hidden units of the two
partners no longer receive an identical input, but two
corresponding input vectors separate with the number
of training steps. To allow synchronization, one has to
reset the two inputs to common values after some time
interval.

For nonzero distance ε > 0, this feedback mechanism
creates a sort of noise and increases the number of re-
pulsive steps. After synchronization ε = 0, feedback will
produce only identical input vectors and the networks
move with zero distance forever [14].

Before we discuss synchronization and several attack-
ing scenarios, we consider the properties of the bit se-
quence generated by a TPM with feedback.

III. BIT GENERATOR

We consider a single TPM network with K hidden
units, as in the preceding section. We start with K ran-
dom input vectors xk. But now, for each hidden unit k
and for each time step t, the input vector is shifted and
the output bit σk(t) is added to its first component [16].
Simultaneously, the weight vector wk is trained accord-
ing to the anti-Hebbian rule, Eq. (3). Consequently, the
bit sequence τ(t) generated by the TPM is given by the
equation

τ(t) =
K∏

k=1

sgn

⎛
⎝

N∑
j=1

wk,j(t)σk(t − j)

⎞
⎠ . (9)

Similar bit generators were introduced in Ref. [17] and
the statistical properties of their generated sequences
were investigated [18]. Here we study the correspond-
ing properties for our TPM with discrete weights.

The TPM network has 2KN possible input and (2L +
1)KN weight vectors. Therefore our deterministic finite
state machine can only generate a periodic bit sequence
whose length l is limited by (4L + 2)KN .

Our numerical simulations show that the average
length 〈l〉 of the period indeed increases exponentially
fast with the size KN of the network, but it is much
smaller than the upper bound. For K = 3 and L > N
we find 〈l〉 ∝ (2.69)3N , independent of the number L of
weight values.

The network takes some time before it generates the
periodic part of the sequence. We find that this transient
time also scales exponentially with the system size KN .
This means that, for sufficiently large values of N , say
N ≥ 100, any simulation of the bit sequence remains in
the transient part and will never enter the cycle.
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FIG. 2: Probability Psync as a function of the fraction aw

of initially known weights, calculated from 1000 simulations
with K = 3 and N = 100.
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FIG. 3: The average overlap between student and generator
as a function of the number of steps for K = 3, L = 5, and
N = 100.

The bit sequence generated by a TPM with K > 2
cannot be distinguished from a random bit sequence. For
K = L = 3 we have numerically calculated its entropy
and found the value ln 2 as expected from a truly random
bit sequence. In addition, we have performed several
tests on randomness as described by Knuth [19]. We did
not find any correlations between consecutive bits; the
bit sequence passed all tests on randomness within strict
confidence levels.

Although the bit sequence passed many known tests on
random numbers we know that it is generated by a neural
network. Does this knowledge help to estimate correla-
tions of the sequence and to predict it? In fact, for a
sequence generated by a perceptron (TPM with K = 1),
another perceptron trained on the sequence could achieve
an overlap to the generator [3].

Consider a bit sequence generated by a TPM with
the anti-Hebbian rule. Another TPM (the “student”) is
trained on this sequence using the same rule. In addition,
if the output bit disagrees with the corresponding bit of
the sequence, we use the geometric method of Ref. [8] to
perform a training step.
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Figures 2 and 3 show that for K = 3 hidden units,
it is not possible to obtain an overlap to the generating
TPM by learning the sequence. Only if the initial over-
lap between the generator and the student is very large
there is a nonzero probability Psync that the student will
synchronize with the generator. If it does not synchro-
nize, the overlap between student and generator decays
to zero.

Summarizing, a TPM network generates a pseudoran-
dom bit sequences which cannot be predicted from part
of the sequence. As a consequence, for cryptographic ap-
plications, the TPM can be used to encrypt and decrypt
a secret message after it has generated a secret key.

IV. SYNCHRONIZATION

As shown in the preceding section, a TPM cannot learn
the bit sequence generated by another TPM since the
two input vectors are completely separated by the feed-
back mechanism. This also holds for synchronization
by mutual learning: With feedback, two networks can-
not be attracted to an identical time dependent state.
Hence, to achieve synchronization, we have to introduce
an additional mechanism which occasionally resets the
two inputs to a common vector. This reset occurs when-
ever the system has produced R different output bits,
τA(t) �= τB(t). For R = 0 we obtain synchronization
without feedback, which has been studied previously, and
for large values of R the system does not synchronize.
Accordingly, we have added a new parameter in our al-
gorithm which increases the synchronization time as well
as the difficulty to attack the system. In the following
two sections, we investigate synchronization and security
of the TPM with feedback quantitatively.

We consider two TPMs A and B which start with dif-
ferent random weights and common random inputs. The
feedback mechanism is defined as follows.

(i) After each step t the input is shifted, xk,j(t + 1) =
xk,j−1(t) for j > 1.

(ii) If the output bits agree, τA(t) = τB(t), the out-
put of each hidden unit is used as a new input bit,
xk,1(t + 1) = σk(t), otherwise all K pairs of in-
put bits xk,1(t) are set to common public random
values.

(iii) After R steps with different output, τA(t) �= τB(t),
all input vectors are reset to public common ran-
dom vectors, xA

k,j(t + 1) = xB
k,j(t + 1).

Feedback creates correlations between the weights and
the inputs. Therefore the system becomes sensitive to
the learning rule. We find that only for the anti-Hebbian
rule, Eq. (3), the components of the weights have a broad
distribution. The entropy per component is larger than
99% of the maximal value ln(2L+1). For the Hebbian or
random walk rule, the entropy is much smaller, because
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FIG. 4: Average synchronization time tsync and its standard
deviation as a function of L, found from 10 000 simulation
runs with K = 3 and N = 10000. The line 52L2 is a result of
linear regression for R = 0.
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FIG. 5: The synchronization time tsync and its standard de-
viation as a function of L, averaged over 10 000 runs of the
iterative equations for K = 3.

the values of the weights are pushed to the boundary
values ±L. Therefore the network with the anti-Hebbian
rule offers less information to an attack than the two
other rules.

In Fig. 4 we have numerically calculated the average
synchronization time as a function of the number L of
components for the anti-Hebbian rule. Obviously, there
is a large deviation from the scaling law tsync ∝ L2 as
observed for R = 0. Our simulations for larger values
of N , which are not included here, show that there exist
strong finite size effects which do not allow to derive a
reliable scaling law from the numerical data.

Fortunately, the limit N → ∞ can be performed ana-
lytically. The simulation of the KN weights is replaced
by a simulation of an (2L + 1)× (2L + 1) overlap matrix
fk

a,b for each hidden unit k which measures the fraction
of weights which are in state a for the TPM A and in
state b for B [13, 20].

We have extended this theory to the case of feedback.
A new variable λk(t) is introduced which is defined as the
fraction of input components xk,j which are different be-



5

0 10 20 30 40 50 60

L
2

10
-3

10
-2

10
-1

10
0

P
E

R =     0
R =   20
R =   40
R =   60
R =   80
R = 100

FIG. 6: The success probability PE as a function of L, aver-
aged over 10 000 simulations with K = 3 and N = 1000.
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FIG. 7: The coefficient u as a function of the feedback pa-
rameter R, calculated from the results shown in Fig. 6.

tween the corresponding hidden units of A and B. This
variable changes with time, and it influences the equa-
tion of motion for the overlap matrix fk

a,b(t). Details are
described in the Appendix.

Figure 5 shows the results of this semianalytic theory.
Now, in the limit of N → ∞, the average synchronization
time can be fitted to increase with a power of L, roughly
proportional to L2. The data indicate that only the pref-
actor but not the exponent depends on the strength R
of the feedback; the prefactor seems to increase linearly
with R.

Hence, if the network is large enough, feedback has
only a small effect on synchronization. In the following
section we investigate the effect of feedback on the se-
curity of the network: How does the probability that an
attacker is successful depend on the feedback parameter
R?

V. ENSEMBLE OF ATTACKERS

Up to now, the most successful attack on neural cryp-
tography is the geometric attack [8, 11]. The attacker
E uses the same TPM with an identical training step as
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FIG. 8: The success probability PE as a function of L, found
from 10 000 runs of the iterative equations for K = 3.
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FIG. 9: The coefficient y as a function of the feedback pa-
rameter R, calculated from the results shown in Fig. 8.

the two partners. That means, only for τA = τB the
attacker performs a training step. When its output bit
τE agrees with the two partners, the attacker trains the
hidden units which agree with the common output. For
τE �= τA/B , however, the attacker first inverts the out-
put bit σk for the hidden unit with the smallest absolute
value of the internal field and then performs the usual
training step.

For the geometric attack the probability PE that an
attacker synchronizes with A and B is nonzero. Conse-
quently, if the attacker uses an ensemble of sufficiently
many networks there is a good chance that at least one
of them will find the secret key.

We have simulated an ensemble of attackers using the
geometric attack for the two TPMs with feedback and
anti-Hebbian learning rule. Of course, each attacking
network uses the same feedback algorithm as the two
partner networks. Figure 6 shows the results of our
numerical simulations. The success probability PE de-
creases with the feedback parameter R. For the model
parameters shown in Fig. 6 we find that PE can be fitted
to an exponential decrease with L2,

PE ∝ e−uL2
. (10)
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FIG. 10: The success probability PE as a function of the av-
erage synchronization time tsync, calculated from the results
shown in Figs. 5 and 8.

The coefficient u increases linearly with R, as shown
in Fig. 7. The scaling [Eq. (10)], however, is a finite size
effect. For large system sizes N , the success probability
decreases exponentially with L instead of L2,

PE ∝ e−yL . (11)

This can be seen from the limit N → ∞ which can be
performed with the analytic approach of the preceding
section. Now the dynamics of the system is described by
a tensor fk

a,b,e for the three networks A, B, and E and
corresponding variables λA

k , λB
k , λE

k . Details are given in
the Appendix.

Figure 8 indicates the exponential scaling behavior
[Eq. (11)] for several values of R. The coefficient y in-
creases linearly with R, as shown in Fig. 9.

These results show that feedback improves the security
of neural cryptography. The synchronization time, on the
other side, increases, too. Does the security of the system
improve for constant effort of the two partners?

This question is answered in Fig. 10 which shows the
probability PE as a function of the average synchroniza-
tion time, again for several values of the feedback pa-
rameter R. On the logarithmic scale shown for PE , the
security does not depend much on the feedback. For con-
stant effort to find the secret key, feedback yields a small
improvement of security, only.

VI. CONCLUSIONS

Neural cryptography is based on a delicate competi-
tion between repulsive and attractive stochastic forces. A
feedback mechanism has been introduced which amplifies
the repulsive part of these forces. We find that feedback
increases the synchronization time of two networks and
decreases the probability of a successful attack.

The numerical simulations up to N = 105 do not allow
to derive reliable scaling laws, neither for the synchro-
nization time nor for the success probability. But the

limit N → ∞ which can be performed analytically indi-
cates that the scaling laws with respect to the number
L of component values are not changed by the feedback,
only the respective coefficients are modified. The average
synchronization time increases with L2 while the prob-
ability PE of a successful attack decreases exponentially
with L, for huge system sizes N .

Accordingly, the security of neural cryptography is im-
proved by including feedback in the training algorithm.
But simultaneously the effort to find the common key
rises. We find that for a fixed synchronization time, feed-
back yields a small improvement of security, only.

After synchronization, the system is generating a pseu-
dorandom bit sequence which passed all tests on ran-
dom numbers applied so far. Even if another network is
trained on this bit sequence it is not able to extract some
information on the statistical properties of the sequence.
Consequently, the neural cryptography cannot only gen-
erate a secret key, but the same system can be used to
encrypt and decrypt a secret message, as well.

APPENDIX: SEMIANALYTICAL CALCULATION
FOR SYNCHRONIZATION WITH FEEDBACK

In this appendix we describe our extension of the semi-
analytic calculation [13, 20] to the case of feedback.

The effect of the feedback mechanism depends on the
fraction Λ of newly generated input elements xk,j per step
and hidden unit. In the numerical simulations presented
in this paper Λ is equal to N−1. In this case the effect of
the feedback mechanism vanishes in the limit N → ∞.
But it is also possible to generate several input elements
xk,j per hidden unit and step. For that purpose one can
multiply the output bit σk with ΛN random numbers
z ∈ {−1,+1}. As we want to compare the results of the
semianalytical approach with simulations for N = 1000,
we set Λ = 10−3 in the following calculations.

In the case of two TPMs the development of the input
noise λk is given by

λ+
k = (1 − Λ)λk + Λ Θ(−σA

k σB
k )Θ(τAτB) . (A.1)

At the beginning and after R steps with τA �= τB all
variables λk are set to zero (according to the algorithm
described in Sec. IV).

The input noise generated by the feedback mechanism
affects the output of the hidden units. An input element
with xB

k,j = −xB
k,j causes the same output σB

k as a change
of sign in wB

k,j together with equal inputs for both A and
B. Therefore the probability εk,eff that two hidden units
with overlap ρk and input error λk disagree on the output
bit is given by

εk,eff =
1
π

arccos(1 − 2λk)ρk . (A.2)

The distance εk,eff between the hidden units of A and
B is used to choose the output bits σA

k and σB
k with the

correct probabilities in each step [13, 20].
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The feedback mechanism influences the equation of
motion for the overlap matrix fk

a,b, too. Here we use
additional variables Δm

k = Θ(σm
k τm)Θ(τAτB) to deter-

mine if the weights of hidden unit k in the TPM of
m ∈ {A,B,E} change (Δm

k = 1) or not (Δm
k = 0).

Therefore we are able to describe the update of elements
fk

a,b away from the boundary (−L < a, b < L) in only
one equation:

fk+
a,b =

1 − λk

2
(fk

a+ΔA
k

,b+ΔB
k

+ fk
a−ΔA

k
,b−ΔB

k
)

+
1
2
λk(fk

a+ΔA
k

,b−ΔB
k

+ fk
a−ΔA

k
,b+ΔB

k
). (A.3)

The second term in Eq. (A.3) which is proportional
to λk shows the repulsive effect of the feedback mecha-
nism. Similar equations can be derived for elements on
the boundary.

In the limit N → ∞ the number of steps required to
achieve full synchronization diverges [9]. Because of that
one has to define a criterion which determines synchro-
nization in order to analyze the scaling of tsync using
semianalytic calculations. As in Ref. [13] we choose the
synchronization criterion ρ̄AB = 1

3

∑K
k=1 ρAB

k ≥ 0.9.
In order to analyze the geometric attack in the limit

N → ∞ one needs to extend the semianalytical calcula-
tion to three TPMs. In this case the development of the
input noise is given by the following equations:

λA+
k = Λ Θ(−σA

k σB
k )Θ(−σA

k σE
k )Θ(τAτB)

+ (1 − Λ)λA
k , (A.4)

λB+
k = Λ Θ(−σB

k σA
k )Θ(−σB

k σE
k )Θ(τAτB)

+ (1 − Λ)λB
k , (A.5)

λE+
k = Λ Θ(−σE

k σA
k )Θ(−σE

k σB
k )Θ(τAτB)

+ (1 − Λ)λE
k . (A.6)

Analogical to Eq. (A.2) the distance εmn
k,eff between two

hidden units can be calculated from the overlap ρmn
k and

the variables λm
k and λn

k :

εmn
k,eff =

1
π

arccos(1 − 2λm
k − 2λn

k )ρmn
k . (A.7)

But for the geometric attack the attacker E needs to
know the local fields hE

k . The joint probability distribu-
tion of hA

k , hB
k and hE

k is given by [13]

P (hA
k , hB

k , hE
k ) =

e−(1/2)(hA
k ,hB

k ,hE
k )C−1

k
(hA

k ,hB
k ,hE

k )T

√
(2π)3 det Ck

.

(A.8)
The covariance matrix in this equation describes the cor-
relations between the three neural networks:

Ck =

⎛
⎝

QA
k RAB

k,eff RAE
k,eff

RAB
k,eff QB

k RBE
k,eff

RAE
k,eff RBE

k,eff QE
k

⎞
⎠ . (A.9)

From the tensor fk
a,b,e and the variables λm

k one can easily
calculate the elements of Ck:

QA
k =

L∑
a,b,e=−L

a2fk
a,b,e , (A.10)

QB
k =

L∑
a,b,e=−L

b2fk
a,b,e , (A.11)

QE
k =

L∑
a,b,e=−L

e2fk
a,b,e , (A.12)

RAB
k,eff = (1 − 2λA

k − 2λB
k )

L∑
a,b,e=−L

abfk
a,b,e , (A.13)

RAE
k,eff = (1 − 2λA

k − 2λE
k )

L∑
a,b,e=−L

aefk
a,b,e ,(A.14)

RBE
k,eff = (1 − 2λB

k − 2λE
k )

L∑
a,b,e=−L

befk
a,b,e . (A.15)

We use a pseudorandom number generator to deter-
mine the values of hA

k , hB
k , and hE

k in each step. The
application of the rejection method [21] ensures that the
local fields have the right joint probability distribution
P (hA

k , hB
k , hE

k ). Then the output bits σm
k of the hidden

units are given by σm
k = sgn(hm

k ). If τA = τB �= τE

the hidden unit k with the smallest absolute local field
|hE

k | is searched and its output σE
k is inverted (geomet-

ric attack). Afterwards the usual training of the neural
networks takes place.

The equation of motion for tensor elements fk
a,b,e away

from the boundary (−L < a, b, e < L) is given by

fk+
a,b,e =

1 − λA
k − λB

k − λE
k

2
fk

a+ΔA
k

,b+ΔB
k

,e+ΔE
k

+
1 − λA

k − λB
k − λE

k

2
fk

a−ΔA
k

,b−ΔB
k

,e−ΔE
k

+
1
2
λA

k fk
a−ΔA

k
,b+ΔB

k
,e+ΔE

k

+
1
2
λA

k fk
a+ΔA

k
,b−ΔB

k
,e−ΔE

k

+
1
2
λB

k fk
a+ΔA

k
,b−ΔB

k
,e+ΔE

k

+
1
2
λB

k fk
a−ΔA

k
,b+ΔB

k
,e−ΔE

k

+
1
2
λE

k fk
a+ΔA

k
,b+ΔB

k
,e−ΔE

k

+
1
2
λE

k fk
a−ΔA

k
,b−ΔB

k
,e+ΔE

k
. (A.16)

Similar equations can be derived for elements on the
boundary. An attacker is considered successful if one of
the conditions ρ̄AE ≥ 0.9 or ρ̄BE ≥ 0.9 is achieved earlier
than the synchronization criterion ρ̄AB ≥ 0.9.
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