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ABSTRACT 
This paper proposes a biologically inspired model for mo- 
tor skill imitation. The model is composed of modules that  
are high-level abstractions of the spinal cord, the primary 
and pre-motor cortex, the cerebellum, and the temporal  cor- 
tex. Each module is modeled at a counectionist level. Pri- 
mary motor behaviors, such as rhythmic movements of arm 
and legs for open-loop walking, are predefined in the spinal 
cord. Learning of new combination of movements is done by 
the DRAMA [8] neural architecture, which allows learning 
of time series and of spatio-temporal  invariances in multi- 
modal inputs. The model is implemented in a mechanical 
simulation of two humanoid avatars, the imita tor  and the 
imitatee 1. We present three types of sequence learning: 1) 
repetitive pat terns of arm and leg movements; 2) oscillatory 
movements of shoulder and elbows; 3) precise movements of 
the extremities for grasping and reaching. 

1. INTRODUCTION 
A bet ter  understanding of the neurological substrate  of learn- 
ing by imitation is relevant to both neurobiologists and roboti- 
cists. Roboticists would benefit from the possibility of im- 
plementing a control mechanism that  enables the robot to 
learn new skills (which would otherwise require complex pro- 
gramming) by the sole ability of observing another agent 's  
performance([4], [12], [21], [22], [26], [32]). Teaching by 
demonstration and in part icular robot  learning by imita- 
tion has been used in diverse experiments for teaching a 
robot new.motor  skills (e.g. [13], [16], [10], [23], [36]); see 
[2; 36] for reviews. In our previous work, we used imitat ion 
as an indirect means to teach the robot  new cognitive skills 
such as learning of a language. There, the robot ' s  ability to 
imitate the teacher is used to lead the robot  to make spe- 

l In this paper, we refer to the imita tor  when speaking of 
the agent that imitates and of the imitatee when speaking 
of the agent being imitated. 
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cific perceptual  experiences upon which the robot grounds 
its understanding of a proto-language [5; 7]. 

Our present work aims at  developing a complete architecture 
for learning by imitat ion in a humanoid agent. Our architec- 
ture is biologically inspired in its function, as its composite 
modules have functionalities similar to those of specific brain 
regions, and in its structure,  as the modules are composed 
of artificial neural architectures. The model is loosely based 
on neurological findings in primates and incorporates an ab- 
stract  model of the spinal cord, the primary and premotor  
cortices, the cerebellum, and the temporal  cortex. 

Most related to our work are studies which develop biologi- 
cally inspired models of motor  control (e.g. [3; 11; 18]) and 
learning (e.g. [15; 20; 37]), and in part icular  robotic mod- 
els with specific application for learning by demonstration. 
The lat ter  include models of visuo-motor coordination for di- 
recting head movements [14], for directing hand movements 
for object manipulat ion [23], and for generating trajectories 
in space [35; 24]. The work repor ted in this paper  brings 
three new contributions to robotics research on imitation. 
First ,  it proposes a complete model of learning by imita- 
tion from visual segmentation to motor  control. Second, 
the model allows imitat ion using all degrees of freedom of 
a complete humanoid body ra ther  than a restricted set of 
joints. Finally, the model is biased by biologically motivated 
constraints. These are the use of a connectionist represen- 
tation and the building of a hierarchical neural mechanism 
for motor control, including a set of evolutionary primitive 
skill substrate.  

Our model is validated in a mechanical simulation of two hu- 
manoid avatars, the imitator and the imitatee. We present 
experiments in which the imi ta tor  avatar  learns different se- 
quences of limb movements, initially demonstrated by the 
imitatee avatar. We present three types of sequence learn- 
ing: 1) learning of repetit ive pat terns  of arm and leg move- 
ments; 2) learning of oscillatory movements of shoulder and 
elbows, using video da ta  of a human demonstration; and 3) 
learning of precise movements of the extremities: grasping 
and reaching. 

Our work in humanoid motor  control and imitat ion is bi- 
ased by neuroscience l i terature on motor  primitives [9; 30]. 
These constitute motor  programs that  generate complete 
movements (such as reaching), and are sequenced and su- 
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perimposed to generate a broad repertoire of motor control. 
Our previous work [27; 29; 28] has experimented with dif- 
ferent types of motor primitives applied to humanoid simu- 
lations, including Cartesian and joint space force fields and 
sequenced Cartesian space impedance end-point controllers. 
In all cases, the primitives coded for relatively high-level be- 
haviors, that is, individual moves of a dance (the Macarena 
in our case), such as extending the arm out, putt ing a hand 
behind the heck, etc. 

In this work, we take an evolutionary perspective and define 
primitives to be innate and evolutionarily old motor control 
mechanisms: central pattern generators (CPGs) [38]. Com- 
pared to our previous work, these are lower level, in terms 
of the behaviors they individually code for, but also pro- 
vide a more general parametric substrate, for motor control. 
Furthermore, they are directly rooted in biological motor 
control. 

Primitives are important tools for motor control and learn- 
ing in primates. Motor control is hierarchical [34; 40] and 
learning of new skills is the result of a mechanism which 
builds on top of primitive motor patterns. The understand- 
ing of these mechanisms is interesting to robotics for de- 
signing controllers showing similar efficiency, robustness and 
adaptability as that of animals. Moreover, it would enable 
modularity and reuse of controllers for different robotic plat- 
forms. The experiments reported in this paper are a first 
step towards the design of such a controller. We present 
a hierarchical neural mechanism for visuo-motor control in 
robots, which includes predefined neural pat tern generators 
coding for primitive motor skills upon which new skills are 
built. 

The rest of the paper is organized as follows. In Section 2, we 
briefly describe the architecture (a complete description is 
given in [6]). Section 3 describes the mechanical simulation 
of two humanoid avatars and reports on the results of the 
experiments. We conclude this paper in Section 4 with a 
short summary of the work presented followed by a brief 
outlook on our continuing work. 

2. THE ARCHITECTURE 
Our architecture is inspired by. neurological models of visuo- 
motor processing. Figure 1 shows a schematic of the mod- 
ules in the architecture. The architecture is divided into 
three partsl visual recognition, motor control and learning 
and is composed of seven modules. Visual recognition is per- 
formed by the visual and attentional modules. The temporal 
cortex module (TC) performs recognition of the direction of 
movement of each imitatee's limbs relative to an intrinsic 
frame of reference. It takes as input the Cartesian coordi- 
nates of each joint of the imitatee's limbs in an extrinsic 
frame of reference. Its output activates a series of cells cod- 
ing for the six possible join angle distributions 2 . The larger 
the angle, the greater the output excitation of the cell. The 
attentional mechanism generates inhibition, preventing in- 
formation to flow from the primary motor cortex to the pre- 
motor cortex and further to the cerebellum. The inhibition 

2Note that if there are fewer than three degrees of freedom 
in a joint, then fewer than six nodes will be activated for 
representing the possible orientations of that joint, as shown 
for the elbow in Figure2. 

stops, thus allowing learning of new movements, whenever 
a significant change of position (relative to the position at 
the previous time step) in one of the limbs is observed. 

Motor control is directed by the spinal cord module and the 
primary motor cortex (M1) module, both of which have di- 
rect connections to motor neurons. Motor neurons activate 
the avatars' muscles (see Section 3.1). M1 can also activate 
spinal cord neurons. Learning of new motor sequences is 
clone in the premotor cortex (PM) and the cerebellum mod- 
ule. The neural connectivity inside the visual cortex, spinal 
cord, and M1 is predefined, while that inside the PM, and 
the cerebellum builds up during learning. Learning builds 
the connectivity between M1, PM and the cerebellum and 
within PM and the cerebellum. The drive module controls 
the passage between observing and reproducing the motor 
sequences. It is implemented as a set of if-then rifles and 
has no direct biological inspiration. 
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Figure 2 shows a schematic of the neural structure of each 
module and their interconnections. Similarly to human mo- 
tor control [19; 40],. our model of motor control is hierar- 
chical. On the lowest level is the spinal cord, composed of 
primary neural circuits made of motor  neurons (afferent to 
the muscles spindles and responsible for the muscle activa- 
tion or inhibition) and in terneurons 3. The spinal circuits are 

3Inter- and motor- neurons are common terminology for de- 
scribing the spinal cord neurons with no direct and direct 
input to the muscles, respectively. 
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built-in and encode extending and retracting arm primitives, 
as well as rhythmic movements of legs and arms involved in 
locomotion, i.e., central pat tern generators [38]. The pri- 
mary motor cortex (M1) contains a motor  map of the body 
[31]. It is divided into two layers of three-neuron networks, 
each activating distinct (extensor-flexor) muscle pairs. The 
first layer of neurons gets excited by the output of the vi- 
sual system (TC module) for the recognition of specific limb 
movements in the imitatee's behaviors. The second layer of 
nodes gets activated by the outputs of the premotor area - 
for activating a motor command ordered by the drive mod- 
ule through the cerebellum and the premotor cortex. The 
premotor cortex in humans plays an important role in co- 
ordinating and planning complex sequences of movements 
[34]. In our model, the PM module is the location of the 
first stage of the learning of movement sequences. It learns 
combinations of excitation of the neurons in the first layer 
of the M1, which encode the recognition of limb movements 
in the imitatee. 

Carebeflurn 

LeII Elbow Left ~ l d e r  i rc 

~: : - " ) ) P i  

M1 

I st layer 

2rid layer 

Spinal Cord 

F i g u r e  2: The  neural  s tructure  and connec t iv i ty  of each 
module .  

In addition to the spinal and motor cortex areas, another 
level of motor control is provided by the cerebellum. In pri- 
mates, the cerebellum has been shown to participate in mo- 
tor learning [17] and in particular in learning the timing of 
motor sequences [39]. The cerebellum module in our model 
is used to learn temporal combinations of movements en- 
coded in PM. Learning of the connectivity between cerebel- 
lum, PM, and M1 modules follow the rules of the DRAMA 
architecture. DRAMA (Dynamical Recurrent Associative 
Memory Architecture) is a fully-recurrent neural network ar- 
chitecture which allows learning of time series and of spatio- 
temporal invariances in multi-modal inputs. A complete de- 
scription of the network can be found in [8]. In DRAMA, 
learning is bidirectional. Thus, activation of nodes in the 
cerebellum after learning reactivates the learned sequences 
of node activation in the PM, which further activates nodes 
in the M1 and finally the motor neurons. Below are the 
DRAMA equations for the unit activation function and the 
training rules: 

U n i t  a c t i v a t i o n  f u n c t i o n  

(~) 
F is the identity function for input values less than I and sat- 
urates to i for input values greater than 1 ( F ( x )  = x if x < 1 
and F ( x )  -- I otherwise) and G is the retrieving funct]-on 
whose equation is given in 2. wji  is the weight of the con- 
nection leading from unit  j to unit  i. 

G(r j i ,  wj i ,  y j ( t  - 1)) = A(rji)  • B(wjl) (2) 

A(rji) = 1 - e(ly,(t - l) - ~'~,1, ,(~'~)) 

B(~j , )  = o ( ~ , ,  ~(,o~j)) 

®(x,  H )  is a threshold function that outputs 1 when x > =  H 
and 0 otherwise. ~ is an error margin on the .time parame- 
ter. It is equal to 0.1. vii in the simulations, allowing a 10% 
imprecision in the record of the time delay of units coacti- 
vation. The term 5(wij) is a threshold on the weight. It 
is maxyj>o(Wji)  0(~o,i ) O(wli) = 2 in the experiments of Section 

2. maxuj>0(wjl) is the maximal value of confidence factor 
of all the connections between activated units j and unit i, 
which satisfy the temporal condition encoded in A(rji) .  

T r a i n i n g  ru les  

w,~(t) = ~ o , , ( t -  1 ) + a  (3) 

~i(0 (4)  ~,( t )  = - ~  + i 
a 

3.  E X P E R I M E N T S  

3.1  T h e  a v a t a r  e n v i r o n m e n t  
We use Cosimir[33], a three dimensional simulation of two 
humanoid avatars (see Figure 3). One avatar is the teacher 
(imitatee), the other is the imitator. Both avatars have the 
same dynamics. Each has 65 degrees of freedom (DOF): 
hip-, shoulder-, head-, wrist-, and ankle joints have 3 DOF; 
elbow-, finger- and knee joints have 1 DOF. Fingers have 
three joints, except the thumbs which have only two. 

We developed a basic dynamic simulation for the avatar, im- 
plementing two muscles (flexor and extensor) for each DOF 
of the joints. Each muscle is represented as a spring and a 
damper[25]. The external force applied to each joint is grav- 
itation. Balance is handled by supporting the hips; ground 
contact is not modeled. There is no collision avoidance mod- 
ule. Finally, the internal torques which keep the limbs con- 
nected are not explicitly calculated. 

The equation of the forces acting on a joint with angle 0 is 
given by: 

d0 
m-  7 / =  (k~- E - k1" F ) .  0 + (kpl - kp.) .  ~ - m .g .  si,~(0) 

where m is the mass of the limb, g = 9.81ira~s] is the gravi- 
tation constant, E, F are the amplitudes of the motor neu- 
ron signals for the extensor and flexor muscles, cr = 5 is a 
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factor of conversion of muscles strength resulting from the 
motor neuron excitation, k~. = 0.3, k/ = 0.3 are the spring 
constants of the muscles, kpf = 30 and kp~ = 30 are the 
damping constants of the muscles. 

The video data used in the second sequence example in Sec- 
tion 3 were captured using a real time tracking system [41]. 
The system is limited at the moment to tracking movements 
of the upper body in the plane only. For this reason, move- 
ments of Sequence 1 and Sequence 3 in Section 3 could not 
be recorded from a human demonstration and were gener- 
ated in simulation using the imitatee's avatar. 

3.2 Results 
We present three examples of sequence learning implemented 
with the two avatars. Sequence 1 is a series of movements 
involving the shoulders, elbows, hips and knees. Sequence 2 
consists of oscillatory movements of the two arms. For this 
sequence, we used video data of a human demonstration as 
input. Sequence 3 is a series of movements of the right arm, 
hand and fingers: reaching, followed by grasping (contrac- 
tion of all fingers), a wrist rotation and arm retraction with 
bending of the elbow. Our choice of these sequences was 
motivated by our wish to demonstrate different aspects of 
the work, namely 1) that learning of repetitive patterns of 
movements is possible (Sequence 1); 2) that the algorithm 
can use real data as visual input (Sequence 2); and 3) that 
the algorithm allows learning of all limb movements, includ- 
ing precision movements of the extremities (Sequence 3). 

Figures 3, 4, and 5 show the intermediate positions of three 
sequences of movements. Animations of each of the three 
simulations and the video of the human motion recording 
can be seen at the following Web site: 
http://www-robotics.usc.edu/,,~billard/imitation.html. Fig- 
ure 7 shows superimposed activity of the motor neurons of 
the imitatee (dashed line) and the imitator (plain line) dur- 
ing the imitatee's demonstration and the imitator 's repro- 
duction of the movements in Sequences 1 and 3. Fig. 6 
shows (top) superimposed plots of the hand and elbow po- 
sitions during the human demonstration of arm movements 
and (bottom) the oscillatory activity of the avatar's motor 
neurons during the replication. 

In all three examples, the imitator 's reproduction of the se- 
quence is complete (the reader can refer to the video and 
animations on the above mentioned web site for observing 
the complete reproduction of the sequence 2). The sequen- 
tim order of muscle excitation is respected and all steps in 
the sequences are reproduced. However, the exact timing 
(the duration of excitation of each muscle) and the ampli- 
tude of the excitation is not perfectly reproduced. This is 
due in our model to the error margin e in Equation 1 which 
permits up to 10% (in these simulations) imprecision on the 
measured time delay of units '  coactivation. In order for a 
motor neuron to reach the maximum of its amplitude and 
hence to activate the muscle, it must receive an external 
excitati6n during a sufficiently long time delay. When the 
duration of activation is too short (due to an imprecise re- 
production of the timing of excitation/inhibition of the ex- 
citatory M1 neurons), the motor neuron excitation is very 
weak (as in sequence 1). This problem can easily be over- 
come by reducing the error margin. However, this decreases 

Figure 3: S n a p s h o t s  of  i n t e r m e d i a t e  p o s i t i o n s  in t h e  t a u g h t  

s e q u e n c e  1: T h e  f i g u r e s  show,  on  t h e  lef t ,  t h e  i m i t a t e e ' s  

d e m o n s t r a t i o n  a n d ,  on  t h e  r i g h t ,  t h e  i m i t a t o r ' s  r e p r o d u c t i o n .  

the robustness of the learning in the presence of noisy input 
and this presents a tradeoff between the two issues. In our 
previous work on learning of time series with an autonomous 
robot[8], we proposed an algorithm to adapt the parameters 
e and 0 in equation 1 during the learning. This algorithm 
_win be implemented in our future experiments with noisy 
data. 

Figure 8 shows the building of the connectivity between the 
PM and M1 during learning of the three sequences (start- 
ing with sequence 1 followed by sequences 2 and 3). Ini- 
tially, some nodes in M1 and PM are already connected. 
These connections encode the the activation of the spinal 
oscillatory movements for open-loop walking, the reaching 
movements (in the two frontal directions) and grasping us- 
ing each hand. During learning, new connections are cre- 
ated between the PM and M1 to represent new coordinated 
activation of muscles, resulting from excitation of specific 
M1 neurons.  E.g., Sequence 1 creates connections between 
the PM and M1 to represent the coactivation of muscles of 
shoulders, elbows, legs and knees in each of the five steps 
of the sequence (see Figure 3). Similarly (not shown here), 
connections within the cerebellum and with the PM are cre- 
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Figure 4: S n a p s h o t s  o f  i n t e r m e d i a t e  p o s i t i o n s  in  t h e  t a u g h t  
s e q u e n c e  2 ( O s c u l a t i o n s  o f  s h o u l d e r  and  e lbow)  o f  t h e  h u m a n  
d e m o n s t r a t i o n  ( t o p )  a n d  o f  t h e  a v a t a r  r e p l i c a t i o n  ( b o t t o m ) .  

ated to represent the sequential activation of coordinated 
muscle activation, learned in the PM, that is the time delay 
between the steps in the sequence. 

3.3 Limitations 
The architecture we propose gives a very high-level and ab- 
stract representation of the functionality and not the de- 
tailed structure of the modeled brain areas. An impor- 
tant number of biological features are not represented in 
our model. Motor control is clone without sensory feedback. 
The mechanical simulation of the avatar is only a first ap- 
proximation of the human biomechanics and is incomplete. 
Our model did not address a number of problems in relation 
to visuo-motor control: 1) the neural processes involved in 
visual recognition of human shapes, decomposition of limb 
movements and frame of reference transformation; and 2) 
learning of fine motor ttming in the presence of noise and in 
coordination with sensory feedback. Our current and con- 
tinuing work will address some of these issues, taking inspi- 
ration in other models of motor learning, e.g. [1; 20; 37]. 

F i g u r e  5: S n a p s h o t s  o f  i n t e r m e d i a t e  p o s i t i o n s  in t h e  t a u g h t  

s equence  3 ( l :  r e a c h i n g  a p o s i t i o n  at  a b o u t  30 degrees  on  
t h e  r igh t ,  2: c los ing  the  f ingers  for  g r a sp ,  3: wr i s t  r o t a t i o n ,  

4: o p e n i n g  of  g r a s p ,  r e t r a c t i n g  o f  t he  a r m  and  f l e x i o n  o f  t h e  
e lbow) .  

While our modeling of a humanoid avatar's imitation abili- 
ties is far from approaching the immense complexity of sim- 
ilar processes in primates, this work might bring some in- 
sight to research on imitation: it is the first neural architec- 
ture that accounts for the imitation of grasping and reach- 
ing movements and which shows that the same architecture 
could be used for producing imitation of movements of all 
other joints. As such, it represents a first step towards the 
development of a complete connectionist model of learning 
by imitation and towards its implementation on robots. 

4. CONCLUSION 
This paper presented a biologically inspired cormectionist 
architecture for learning motor skills by imitation. The ar- 
chitecture is composed of modules that are high-level rep- 
resentations of some cortical areas, namely the visual cor- 
tex, the premotor and primary motor cortexes, and the 
cerebellum. It also models the spinal cord as a collection 
of evolutionary primitives, predefined networks of motor- 
and inter-neurons, i.e., central pat tern generators. Learn- 
ing in the motor cortex and cerebellum results from spatio- 
temporal associations of multi-modal inputs and is provided 
by DRAMA, a eonnectionist architecture for learning time 
series. 
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F i g u r e  6 :  T o p :  S u p e r p o s i t i o n s  o f  t h e  h a n d  ( s t a r  p o i n t s )  

a n d  e l b o w  ( d o t s )  a n d  s h o u l d e r  p o s i t i o n s  d u r i n g  t h e  d e m o n -  

s t r a t i o n .  T h e  m i d d l e  l i n e  l i n k s  t h e  t w o  s h o u l d e r s  t o g e t h e r .  

B o t t o m :  A c t i v i t y  o f  m o t o r  n e u r o n s  o f  i m i t a t o r  d u r i n g  r e p e -  

t i t i o n  o f  s e q u e n c e  2. L - S h - x / y / z  i s  t h e  m o t o r  n e u r o n  f o r  l e f t  

s h o u l d e r  e x t e n s o r  f o r  d i r e c t i o n  x~ y a n d  z r e s p e c t i v e l y .  

The architecture was validated in a mechanical simulation 
of a pair of high DOF imitator-imitatee humanoid avatars 
for learning three types of movement sequences. These ex- 
periments showed that the architecture can learn 1) combi- 
nations of movement involving all joints, including the fin- 
ger joints, 2) complex oscillatory patterns, and 3) sequences 
with variable timing, as is the case with the human demon- 
stration. 

Our further work will gradually improve the biological plau- 
sibility of each of the architecture 's  modules. We are cur- 
rently improving the mechanical simulation of the avatars in 
view of its upcoming implementation in a humanoid robot. 
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F i g u r e  7: A c t i v i t y  o f  t h e  m o t o r  n e u r o n s  in  i m i t a t o r  ( p l a i n  

l i n e s )  a n d  i m i t a t e e  ( d a s h e d  l i n e s )  i n  s e q u e n c e s  1 a n d  3.  R - k n  

is  t h e  m o t o r  n e u r o n  o f  t h e  f l e x o r  o f  t h e  r i g h t  k n e e .  L - S h - x  

is  t h e  m o t o r  n e u r o n  o f  t h e  e x t e n s o r  o f  t h e  l e f t  s h o u l d e r  i n  

t h e  d i r e c t i o n  x .  F 1 / 2 - 1 / 3  c o r r e s p o n d  t o  t h e  f l e x o r s  o f  t h e  

t w o  f i r s t  f i n g e r s  a n d  t h e i r  c o r r e s p o n d i n g  j o i n t s .  T h e  t h u m b ,  

f i n g e r  1, h a s  o n l y  t w o  j o i n t s .  
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