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ABSTRACT

This paper proposes a biologically inspired model for mo-
tor skill imitation. The model is composed of modules that
are high-level abstractions of the spinal cord, the primary
and pre-motor cortex, the cerebellum, and the temporal cor-
tex. Each module is modeled at a connectionist level. Pri-
mary motor behaviors, such as rhythmic movements of arm
and legs for open-loop walking, are predefined in the spinal
cord. Learning of new combination of movements is done by
the DRAMA (8] neural architecture, which allows learning
of time series and of spatio-temporal invariances in multi-
modal inputs. The model is implemented in a mechanical
simulation of two humanoid avatars, the imitator and the
imitatee'. We present three types of sequence learning: 1)
repetitive patterns of arm and leg movements; 2) oscillatory
movements of shoulder and elbows; 3) precise movements of
the extremities for grasping and reaching.

1. INTRODUCTION

A better understanding of the neurological substrate of learn-
ing by imitation is relevant to both neurobiologists and roboti-
cists. Roboticists would benefit from the possibility of im-
plementing a control mechanism that enables the robot to
learn new skills (which would otherwise require complex pro-
gramming) by the sole ability of observing another agent’s
performance({4], [12], [21], [22], [26], [32]). Teaching by
demonstration and in particular robot learning by imita-
tion has been used in diverse experiments for teaching a
robot new motor skills (e.g. [13], [16], [10], [23], [36]); see
[2; 36] for reviews. In our previous work, we used imitation
as an indirect means to teach the robot new cognitive skills
such as learning of a language. There, the robot’s ability to
imitate the teacher is used to lead the robot to make spe-

'In this paper, we refer to the imitator when speaking of
the agent that imitates and of the imitatee when speaking
of the agent being imitated.
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cific perceptual experiences upon which the robot grounds
its understanding of a proto-language [5; 7).

Our present work aims at developing a complete architecture
for learning by imitation in a humanoid agent. Our architec-
ture is biologically inspired in its function, as its composite
modules have functionalities similar to those of specific brain
regions, and in its structure, as the modules are composed
of artificial neural architectures. The model is loosely based
on neurological findings in primates and incorporates an ab-
stract model of the spinal cord, the primary and premotor
cortices, the cerebellum, and the temporal cortex.

Most related to our work are studies which develop biologi-
cally inspired models of motor control (e.g. {3; 11; 18]) and
learning (e.g. [15; 20; 37]), and in particular robotic mod-
els with specific application for learning by demonstration.
The latter include models of visuo-motor coordination for di-
recting head movements [14], for directing hand movements
for object manipulation [23], and for generating trajectories
in space [35; 24]. The work reported in this paper brings
three new contributions to robotics research on imitation.
First, it proposes a complete model of learning by imita-
tion from visual segmentation to motor control. Second,
the model allows imitation using all degrees of freedom of
a complete humanoid body rather than a restricted set of
joints. Finally, the model is biased by biologically motivated
constraints. These are the use of a connectionist represen-
tation and the building of a hierarchical neural mechanism
for motor control, including a set of evolutionary primitive
skill substrate.

Our model is validated in a mechanical simulation of two hu-
manoid avatars, the imitator and the imitatee. We present
experiments in which the imitator avatar learns different se-
quences of limb movements, initially demonstrated by the
Imitatee avatar. We present three types of sequence learn-
ing: 1) learning of repetitive patterns of arm and leg move-
ments; 2) learning of oscillatory movements of shoulder and
elbows, using video data of a human demonstration; and 3)
learning of precise movements of the extremities: grasping
and reaching.

Our work in humanoid motor control and imitation is bi-
ased by neuroscience literature on motor primitives {9; 30].
These constitute motor programs that generate complete
movements {such as reaching), and are sequenced and su-



perimposed to generate a broad repertoire of motor control.
Our previous work [27; 29; 28] has experimented with dif-
ferent types of motor primitives applied to humanoid simu-
lations, including Cartesian and joint space force fields and
sequenced Cartesian space impedance end-point controllers.
In all cases, the primitives coded for relatively high-level be-
haviors, that is, individual moves of a dance (the Macarena
in our case), such as extending the arm out, putting a hand

behind the heck, etc.

In this work, we take an evolutionary perspective and define
primitives to be innate and evolutionarily old motor control
mechanisms: central pattern generators (CPGs) [38]. Com-
pared to our previous work, these are lower level, in terms
of the behaviors they individually code for, but also pro-
vide a more general parametric substrate for motor control.
Furthermore, they are directly rooted in biological motor
control.

Primitives are important tools for motor control and learn-
ing in primates. Motor control is hierarchical [34; 40] and
learning of new skills is the result of a mechanism which
builds on top of primitive motor patterns. The understand-
ing of these mechanisms is interesting to robotics for de-
signing controllers showing similar efficiency, robustness and
adaptability as that of animals. Moreover, it would enable
modularity and reuse of controllers for different robotic plat-
forms. The experiments reported in this paper are a first
step towards the design of such a controller. We present
a hierarchical neural mechanism for visuo-motor control in
robots, which includes predefined neural pattern generators
coding for primitive motor skills upon which new skills are
built.

The rest of the paper is organized as follows. In Section 2, we
briefly describe the architecture (a complete description is
given in [6]). Section 3 describes the mechanical simulation
of two humanoid avatars and reports on the results of the
experiments. We conclude this paper in Section 4 with a
short summary of the work presented followed by a brief
outlook on our continuing work.

2. THE ARCHITECTURE

Our architecture is inspired by. neurological models of visuo-
motor processing. Figure 1 shows a schematic of the mod-
ules in the architecture. The architecture is divided into
three parts, visual recognition, motor control and learning
and is composed of seven modules. Visual recognition is per-
formed by the visual and attentional modules. The temporal
cortex module (T'C) performs recognition of the direction of
movement of each imitatee’s limbs relative to an intrinsic
frame of reference. It takes as input the Cartesian coordi-
nates of each joint of the imitatee’s limbs in an extrinsic
frame of reference. Its output activates a series of cells cod-
ing for the six possible join angle distributions®. The larger
the angle, the greater the output excitation of the cell. The
attentional mechanism generates inhibition, preventing in-
formation to flow from the primary motor cortex to the pre-
motor cortex and further to the cerebellum. The inhibition

?Note that if there are fewer than three degrees of freedom
in a joint, then fewer than six nodes will be activated for
representing the possible orientations of that joint, as shown
for the elbow in Figure2.
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stops, thus allowing learning of new movements, whenever
a significant change of position (relative to the position at
the previous time step) in one of the limbs is observed.

Motor control is directed by the spinal cord module and the
primary motor cortex (M1) module, both of which have di-
rect connections to motor neurons. Motor neurons activate
the avatars’ muscles (see Section 3.1). M1 can also activate
spinal cord neurons. Learning of new motor sequences is
done in the premotor cortex (PM) and the cerebellum mod-
ule. The neural connectivity inside the visual cortex, spinal
cord, and M1 is predefined, while that inside the PM, and
the cerebellum builds up during learning. Learning builds
the connectivity between M1, PM and the cerebellum and
within PM and the cerebellum. The drive module controls
the passage between observing and reproducing the motor
sequences. It is implemented as a set of if-then rules and
has no direct biological inspiration.

Learning of temporal
sequences of movement in PM

Learning System
Drive mechanism

Control of
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Start reproduction of learned
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Figure 1: The architecture is divided into three parts, visual
recognition, motor control, and learning, and is composed of

seven modules.

Figure 2 shows a schematic of the neural structure of each
module and their interconnections. Similarly to human mo-
tor control [19; 40],: our model of motor control is hierar-
chical. On the lowest level is the spinal cord, composed of
primary neural circuits made of motor neurons (afferent to
the muscles spindles and responsible for the muscle activa-
tion or inhibition) and interneurons®. The spinal circuits are

®Inter- and motor- neurons are common terminology for de-
scribing the spinal cord neurons with no direct and direct
input to the muscles, respectively.



built-in and encode extending and retracting arm primitives,
as well as rhythmic movements of legs and arms involved in
locomotion, i.e., central pattern generators [38]. The pri-
mary motor cortex (M1) contains a motor map of the body
{31]. It is divided into two layers of three-neuron networks,
each activating distinct (extensor-flexor) muscle pairs. The
first layer of neurons gets excited by the output of the vi-
sual system (TC module) for the recognition of specific limb
movements in the imitatee’s behaviors. The second layer of
nodes gets activated by the outputs of the premotor area —
for activating a motor command ordered by the drive mod-
ule through the cerebellum and the premotor cortex. The
premotor cortex in humans plays an important role in co-
ordinating and planning complex sequences of movements
[34]. In our model, the PM module is the location of the
first stage of the learning of movement sequences. It learns
combinations of excitation of the neurons in the first layer
of the M1, which encode the recognition of limb movements

in the imitatee.

PM

M

1st layer

2nd layer

Spinal Cord

Figure 2: The neural structure and connectivity of each
module.

In addition to the spinal and motor cortex areas, another
level of motor control is provided by the cerebellum. In pri-
mates, the cerebellum has been shown to participate in mo-
tor learning {17] and in particular in learning the timing of
motor sequences [39]. The cerebellum module in our model
is used to learn temporal combinations of movements en-
coded in PM. Learning of the connectivity between cerebel-
lum, PM, and M1 modules follow the rules of the DRAMA
architecture. DRAMA (Dynamical Recurrent Associative
Memory Architecture) is a fully-recurrent neural network ar-
chitecture which allows learning of time series and of spatio-
temporal invariances in multi-modal inputs. A complete de-
scription of the network can be found in [8]. In DRAMA,
learning is bidirectional. Thus, activation of nodes in the
cerebellum after learning reactivates the learned sequences
of node activation in the PM, which further activates nodes
in the M1 and finally the motor neurons. Below are the
DRAMA equations for the unit activation function and the
training rules:
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Unit activation function
yi(t) = F(i() + mii - gi(t = 1) + ) Glmji, wji, (¢~ 1))
J#e
(1)

F'is the identity function for input values less than 1 and sat-
urates to 1 for input values greater than 1 (F(z) =z if x < 1
and F(z) = 1 otherwise) and G is the retrieving function
whose equation is given 1n 2. wj; is the weight of the con-
nection leading from unit j to unit 3.

G(rji, wji, y;(t — 1)) = A(754) - Bwji) (2)

A(mi) = 1= O(ly;(t — 1) — 73], €(7i5))
B(wji) = 0(wji, 6(wij))

O(z, H) is a threshold function that outputs 1 when z >= H
and 0 otherwise. € is an error margin on the time parame-
ter. It is equal to 0.1-7;; in the simulations, allowing a 10%
imprecision in the record of the time delay of units coacti-
vation. The term §(w;;) is a threshold on the weight. It
maxy.>o(wj;)
8(wij)
2. maxy;>o(wj:) is the maximal value of confidence factor
of all the connections between activated units 7 and unit ¢,
which satisfy the temporal condition encoded in A(Tj;).

is f(wij) = 2 in the experiments of Section

Training rules

®3)

wji(t) = wji(t— 1) +a

wji i ()
ri(t—1) =L + %ITtT

7ii(t) = I (4)

3. EXPERIMENTS

3.1 The avatar environment

We use Cosimir[33], a three dimensional simulation of two
humanoid avatars (see Figure 3). One avatar is the teacher
(imitatee}, the other is the imitator. Both avatars have the
same dynamics. Each has 65 degrees of freedom (DOF):
hip-, shoulder-, head-, wrist-, and ankle joints have 3 DOF;
elbow-, finger- and knee joints have 1 DOF. Fingers have
three joints, except the thumbs which have only two.

We developed a basic dynamic simulation for the avatar, im-
plementing two muscles (flexor and extensor) for each DOF
of the joints. Each muscle is represented as a spring and a
damper{25]. The external force applied to each joint is grav-
itation. Balance is handled by supporting the hips; ground
contact is not modeled. There is no collision avoidance mod-
ule. Finally, the internal torques which keep the limbs con-
nected are not explicitly calculated.

The equation of the forces acting on a joint with angle 8 is
given by:

b

mdt—

(ke-E~ks-F)-0+ (kps —kpe)-8 —m - g- sin(8)

where m is the mass of the limb, g = 9.81[m/s] is the gravi-
tation constant, E, F are the amplitudes of the motor neu-
ron signals for the extensor and flexor muscles, o = 5 is a



factor of conversion of muscles strength resulting from the
motor neuron excitation. k. = 0.3, ky = 0.3 are the spring
constants of the muscles. kps = 30 and kp. = 30 are the
damping constants of the muscles.

The video data used in the second sequence example in Sec-
tion 3 were captured using a real time tracking system [41].
The system is limited at the moment to tracking movements
of the upper body in the plane only. For this reason, move-
ments of Sequence 1 and Sequence 3 in Section 3 could not
be recorded from a human demonstration and were gener-
ated in simulation using the imitatee’s avatar.

3.2 Results

We present three examples of sequence learning implemented
with the two avatars. Sequence 1 is a series of movements
involving the shoulders, elbows, hips and knees. Sequence 2
consists of oscillatory movements of the two arms. For this
sequence, we used video data of a human demonstration as
input. Sequence 3 is a series of movements of the right arm,
hand and fingers: reaching, followed by grasping (contrac-
tion of all fingers), a wrist rotation and arm retraction with
bending of the elbow. Our choice of these sequences was
motivated by our wish to demonstrate different aspects of
the work, namely 1) that learning of repetitive patterns of
movements is possible (Sequence 1); 2) that the algorithm
can use real data as visual input (Sequence 2); and 3) that
the algorithm allows learning of all limb movements, includ-
ing precision movements of the extremities (Sequence 3).

Figures 3, 4, and 5 show the intermediate positions of three
sequences of movements. Animations of each of the three
simulations and the video of the human motion recording
can be seen at the following Web site:
http://www-robotics.usc.edu/~billard /imitation.html. Fig-
ure 7 shows superimposed activity of the motor neurons of
the imitatee (dashed line) and the imitator (plain line) dur-
ing the imitatee’s demonstration and the imitator’s repro-
duction of the movements in Sequences 1 and 3. Fig. 6
shows (top) superimposed plots of the hand and elbow po-
sitions during the human demonstration of arm movements
and (bottom) the oscillatory activity of the avatar’s motor
neurons during the replication.

In all three examples, the imitator’s reproduction of the se-
quence is complete (the reader can refer to the video and
animations on the above mentioned web site for observing
the complete reproduction of the sequence 2). The sequen-
tial order of muscle excitation is respected and all steps in
the sequences are reproduced. However, the exact timing
(the duration of excitation of each muscle) and the ampli-
tude of the excitation is not perfectly reproduced. This is
due in our model to the error margin ¢ in Equation 1 which
permits up to 10% (in these simulations) imprecision on the
measured time delay of units’ coactivation. In order for a
motor neuron to reach the maximum of its amplitude and
hence to activate the muscle, it must receive an external
excitation during a sufficiently long time delay. When the
duration of activation is too short (due to an imprecise re-
production of the timing of excitation/inhibition of the ex-
citatory M1 neurons), the motor neuron excitation is very
weak (as in sequence 1). This problem can easily be over-
come by reducing the error margin. However, this decreases

376

e
S

Ve —
Tt o e

e

Miammmmuutmﬂnm&ﬁ

e

Dp N ‘&M’ 2

Figure 3: Snapshots of intermediate positions in the taught
sequence 1: The figures show, on the left, the imitatee’s

demonstration and, on the right, the imitator’s reproduction.

the robustness of the learning in the presence of noisy input
and this presents a tradeoff between the two issues. In our
previous work on learning of time series with an autonomous
robot[8], we proposed an algorithm to adapt the parameters
€ and § in equation 1 during the learning. This algorithm
will be implemented in our future experiments with noisy
data.

Figure 8 shows the building of the connectivity between the
PM and M1 during learning of the three sequences (start-
ing with sequence 1 followed by sequences 2 and 3). Ini-
tially, some nodes in M1 and PM are already connected.
These connections encode the the activation of the spinal
oscillatory movements for open-loop walking, the reaching
movements (in the two frontal directions) and grasping us-
ing each hand. During learning, new connections are cre-
ated between the PM and M1 to represent new coordinated
activation of muscles, resulting from excitation of specific
M1 neurons.” E.g., Sequence 1 creates connections between
the PM and M1 to represent the coactivation of muscles of
shoulders, elbows, legs and knees in each of the five steps
of the sequence (see Figure 3). Similarly (not shown here),
connections within the cerebellum and with the PM are cre-
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Figure 4: Snapshots of intermediate positions in the taught
sequence 2 (Osculations of shoulder and elbow) of the human
demonstration (top) and of the avatar replication (bottom).

ated to represent the sequential activation of coordinated
muscle activation, learned in the PM, that is the time delay
between the steps in the sequence.

3.3 Limitations

The architecture we propose gives a very high-level and ab-
stract representation of the functionality and not the de-
tailed structure of the modeled brain areas. An impor-
tant number of biological features are not represented in
our model. Motor control is done without sensory feedback.
The mechanical simulation of the avatar is only a first ap-
proximation of the human biomechanics and is incomplete.
Our model did not address a number of problems in relation
to visuo-motor control: 1) the neural processes involved in
visual recognition of human shapes, decomposition of limb
movements and frame of reference transformation; and 2)
learning of fine motor tuning in the presence of noise and in
coordination with sensory feedback. Our current and con-
tinuing work will address some of these issues, taking inspi-
ration in other models of motor learning, e.g. [1; 20; 37].
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Figure 5: Snapshots of intermediate positions in the taught
sequence 3 (1: reaching a position at about 30 degrees on
the right, 2: closing the fingers for grasp, 3: wrist rotation,
4: opening of grasp, retracting of the arm and flexion of the
elbow).

While our modeling of a humanoid avatar’s imitation abili-
ties is far from approaching the immense complexity of sim-
ilar processes in primates, this work might bring some in-
sight to research on imitation: it is the first neural architec-
ture that accounts for the imitation of grasping and reach-
ing movements and which shows that the same architecture
could be used for producing imitation of movements of all
other joints. As such, it represents a first step towards the
development of a complete connectionist model of learning
by imitation and towards its implementation on robots.

4. CONCLUSION

This paper presented a biologically inspired connectionist
architecture for learning motor skills by imitation. The ar-
chitecture is composed of modules that are high-level rep-
resentations of some cortical areas, namely the visual cor-
tex, the premotor and primary motor cortexes, and the
cerebellum. It also models the spinal cord as a collection
of evolutionary primitives, predefined networks of motor-
and inter-neurons, i.e., central pattern generators. Learn-
ing in the motor cortex and cerebellum results from spatio-
temporal associations of multi-modal inputs and is provided
by DRAMA, a connectionist architecture for learning time
S€rles.



Left and right hand displacements during the demonstration of sequence 2

Activity of motor neurons during rehearsal
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Figure 6: Top: Superpositions of the hand (star points)
and elbow (dots) and shoulder positions during the demon-
stration. The middle line links the two shoulders together.
Bottom: Activity of motor neurons of imitator during repe-
tition of sequence 2. L-Sh-x/y/z is the motor neuron for left

shoulder extensor for direction x, y and z respectively.

The architecture was validated in a mechanical simulation
of a pair of high DOF imitator-imitatee humanoid avatars
for learning three types of movement sequences. These ex-
periments showed that the architecture can learn 1) combi-
nations of movement involving all joints, including the fin-
ger joints, 2) complex oscillatory patterns, and 3) sequences
with variable timing, as is the case with the human demon-
stration.

Our further work will gradually improve the biological plau-
sibility of each of the architecture’s modules. We are cur-
rently improving the mechanical simulation of the avatars in
view of its upcoming implementation in a humanoid robot.
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Activity of motor neurons in imitator and imitatee
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Figure 7: Activity of the motor neurons in imitator (plain
lines) and imitatee (dashed lines) in sequences 1 and 3. R-kn
is the motor neuron of the flexor of the right knee. L-Sh-x
is the motor neuron of the extensor of the left shoulder in
the direction x. F1/2-1/3 correspond to the flexors of the
two first fingers and their corresponding joints. The thumb,
finger 1, has only two joints.
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