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ABSTRACT 

In this paper Gaussian kernel approach will be explored for microarray gene expression data 

using support vector clustering (SVC). SVC uses the idea of support vector machines. The data 

points are mapped to a high dimensional feature space with a kernel function, and a minimal 

enclosing sphere in looked for. Cluster boundaries in data space are complex shapes and are 

formed from the sphere boundary points in the feature space. The performance of the algorithm 

and the biological implications will be demonstrated as a future work. 
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INTRODUCTION 
The genes in a living organism function collaboratively. However traditional methods in 

molecular biology generally work on a single gene in one experiment, hence the throughput is 

very limited and determination of the whole picture is hard. In the last several years, DNA 

microarray technology brought up the idea of monitoring the whole genome in a single chip to 

have a better global view simultaneously.  

 

The DNA microarray technology has two variants in terms of the property of arrayed DNA 

sequence with known identity:  In the first one probe cDNA (500~5,000 bases long) is 

immobilized to a solid surface such as glass using robot spotting and exposed to a set of targets 

either separately or in a mixture [1]. In the second one, an array of oligonucleotide (20~80-mer 

oligos) or peptide nucleic acid (PNA) probes is synthesized either in situ (on-chip) or by 

conventional synthesis followed by on-chip immobilization. The array is exposed to labeled 

sample DNA, hybridized, and the identity or abundance complementary sequences are 

determined.  

 

This microarray technology accelerates the rate at which gene expression pattern information is 

accumulated. Hence there is an increasing need to reveal the patterns hidden in the data. 

However, the nature of studies of multiconditional gene expression patterns widely varies. 

Accordingly, we are interested in analysis tools that may be useful in all such contexts. Clustering 

techniques are applicable as they would cluster sets of genes that "behave similarly" under the set 

of given conditions. 

 

The term cluster analysis aims for grouping objects of similar kind into respective categories in a 

way that the degree of association between two objects is maximal if they belong to the same 

group and minimal otherwise.  
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In this paper, the support vector clustering method will be applied on DNA microarray data, 

which is performed to determine the expression profile of p53 protein (codon 249) mutant and 

wild type HepG2 cells after the induction of the double stranded DNA break by Adriamycin 

treatment.  

 

In the next section, support vector clustering algorithm is explained. The experiments and results 

and the discussion about them will be mentioned in the later versions of the paper. 

METHOD 

Support Vector Machines (SVM) 

Support Vector Machines rely on separating the data when not linearly separable by transforming 

them to a higher dimensional feature space with an appropriate nonlinear mapping, in which, data 

from two categories can always be separated by a hyperplane.  

 

An important property of SVM is that the construction of the classifier only needs to evaluate an 

inner product between two vectors of the kernel function. An explicit mapping into the high 

dimensional feature space is not necessary. This avoids the complex calculations in the feature 

space. 

 

The separation process results in a classification function that depends only on a small number of 

input vectors [2]. 

The Support Vector Clustering Algorithm  

In the Support Vector Clustering (SVC) algorithm data points are mapped from data space to a 

high dimensional feature space using a Gaussian kernel. In the feature space, the smallest sphere 

that encloses the image of the data is looked for. This sphere is mapped back to data space, where 

it forms a set of contours, which enclose the data points. These contours are interpreted as cluster 

boundaries. Points enclosed by each separate contour are associated with the same cluster.  

 

The clustering level can be controlled by changes in the width parameter of the Gaussian kernel.  

As this parameter is increased, the number of disconnected contours in data space increases too, 

leading to an increasing number of clusters. 

 

The SVC algorithm can also deal with outliers by employing a soft margin constant that allows 

the sphere in feature space not to enclose all points. Large values of this parameter, can also deal 

with overlapping clusters [3]. The algorithm has two major steps as described below: 

 

Cluster Boundary Detection 
Let {xi}, in the subspace of χ, be a data set of N points, with χ, in the subspace of IR

d
, the data 

space. Using a nonlinear transformation Φ from χ to some high dimensional feature-space, the 

smallest enclosing sphere of radius R is looked for described by the constraints: 

||Φ(xj) − a||
2
 ≤ R

2
 for all j , 

where || · || is the Euclidean norm and a is the center of the sphere. Soft constraints are 

incorporated by adding slack variables ξj: 

||Φ(xj) − a||
2
 ≤ R

2
 + ξj      (1) 

with ξj ≥ 0. To solve this problem we introduce the Lagrangian  

L = R
2
 −∑j(R

2
 + ξj − ||Φ(xj) − a||

2
)βj −∑j ξjµj + C∑jξj ,  (2) 
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where βj ≥ 0 and µj ≥ 0 are Lagrange multipliers, C is a constant, and C∑jξj is a penalty term. 

Setting the derivative of L to zero with respect to R, a and ξj, respectively, leads to 

∑jβj = 1       (3) 

a =∑jβjΦ(xj)       (4) 

βj = C − µj .       (5) 

The KKT complementarity conditions of Fletcher [4] result in 

ξjµj = 0,       (6) 

(R
2
 + ξj − ||Φ(xj) − a||

2
)βj = 0.     (7) 

It follows from Eq. (7) that the image of a point xi with ξi > 0 and βi > 0 lies outside the feature-

space sphere. Eq. (6) states that such a point has µi = 0, hence from Eq. (5) that βi = C is 

concluded. This will be called a bounded support vector or BSV. A point xi with ξi = 0 is mapped 

to the inside or to the surface of the feature space sphere. If its 0 < βj < C then Eq. (7) implies that 

its image Φ(xi) lies on the surface of the feature space sphere. Such a point will be referred to as a 

support vector or SV. SVs lie on cluster boundaries, BSVs lie outside the boundaries, and all 

other points lie inside them. When C ≥ 1 no BSVs exist because of the constraint (3). 

Using these relations we may eliminate the variables R, a and µj , turning the Lagrangian into the 

Wolfe dual form that is a function of the variables βj: 

W =∑jΦ(xj)
2
βj −∑i,jβiβjΦ(xi) · Φ(xj).    (8) 

Since the variables µj don’t appear in the Lagrangian they may be replaced with the constraints: 

0 ≤ βj ≤ C, j = 1, . . . , N.     (9) 

We follow the SV method and represent the dot products Φ(xi) · Φ(xj) by an appropriate 

Mercer kernel K(xi, xj ).  

The Lagrangian W is written as: 

W =∑jK(xj , xj)βj −∑i,jβiβjK(xi, xj).     (10) 

At each point x the distance of its image in feature space from the center of the sphere is defined 

as: 

R
2
(x) = ||Φ(x) − a||

2
 .       (11) 

In view of (4) and the definition of the kernel the following is got: 

R
2
(x) = K(x, x) − 2∑jβjK(xj , x) +∑i,jβiβjK(xi, xj) .  (12) 

The radius of the sphere is: 

R = {R(xi) | xi  is a support vector } .     (13) 

The contours that enclose the points in data space are defined by the set 

{x | R(x) = R} .       (14) 

They are interpreted by us as forming cluster boundaries. In view of equation (14), SVs lie on 

cluster boundaries, BSVs are outside, and all other points lie inside the clusters. 

 

Cluster Assignment 
The cluster boundary detection algorithm does not find points that belong to different clusters. To 

do so, a geometric approach is used: given a pair of data points that belong to different clusters, 

any path that connects them must exit from the sphere in feature space. Therefore, such a path 

contains a segment of points y such that R(y) > R. This leads to the definition of the adjacency 

matrix Aij between a pair of points xi and xj whose images lie in or on the sphere in feature space: 

 

Aij =   1, if, R(y) ≤ R, for all y on the line segment connecting xi and xj, R(y) ≤ R 

0, otherwise 

 

Clusters are defined as the connected components of the graph induced by A. Checking the line 

segment is implemented by sampling a number of points. BSVs are unclassified by this procedure 

since their feature space images lie outside the enclosing sphere. One may decide either to leave 

them unclassified, or to assign them to the cluster that they are closest to. 
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EXPERIMENTS 
A Matlab implementation was unsuccessful in giving results, arising virtual memory problems 

due to the high dimensionality of the data. The code will be imported to C language to make 

memory and speed optimizations. 

RESULTS 
The results will be mentioned after the completion of the experiments. 

DISCUSSION 

The discussion will be mentioned after the completion of the experiments. 

REFERENCES 
[1] R. Ekins and F.W. Chu (1999): Microarrays: their origins and applications. — Trends in 

Biotechnology, Vol.17, pp.217-218. 

 

[2] Vapnik, V.N. (1998): Statistical Learning Theory. — Wiley, New York. 
 
[3] A. Ben-Hur, D. Horn, H. T. Siegelmann, V. Vapnik. (2001) Support Vector Clustering: — 
Journal of Machine Learning Research Vol.2: pp.125-137. 
 
[4] R. Fletcher. (1987): Practical Methods of Optimization. — Wiley-Interscience, Chichester. 
 


