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Abstract

The k-median problem is one the powerful problems for clustering, despite its hard-to-resolve

NP-hard property. In thek-median problem, we are given n nodes and some distance function, we

are to selectk of them to be cluster centers. The remaining nodes will then assigned to their nearest

medians. The objective function is to minimize sum of distances. In fuzzy clustering, a node may be

partially be included in more than two clusters. In some cases, it may be valuable to adopt existing

k-median algorithms to fuzzy clustering problems.

In this paper, we define afuzzyk-median problem for use in clustering problems. The problem fits

most to the cases where some Bayesian model is expected. We show that the integer programming

formulation of fuzzy k-median is simpler than originalk-median problem. We also provide an

approximation algorithm to the fuzzyk-median problem.

I. I NTRODUCTION

Clustering is a widely used technique in unsupervised learning field of Machine Learning. Cluster-

ing is used especially for data analysis, data categorization, and fetching representatives for clusters

of large data. Clusters may be thought as the process of producing unlabeled categorized data.

A. Terminology

Clustering can be defined as grouping similar objects together. Thesimilarity can be defined in

various ways. The most common definition of similarity is the distance function. The distance function

may be the Euclidian distance or p-norm on metric space, or it can be the cosine-distance as in text

categorization.

Metric System: A metric distance function is a function that obeys two rules: symmetry and

triangle inequality. Some people add the reflexivity condition to the metric regulations, but generally,

reflexivity condition can be relaxed by mapping data to some other metric system, and this condition
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may not be considered as a must. p-norm is a metric function, but cosine-distance is not, since cosine-

distance does not obey triangle inequality. On the other hand, cosine-distance obeys a relaxed version

of triangle inequality, and cosine-distance is called anearly-metricfunction.

Although, it is desirable to have a metric distance function; in some problems, the distance function

does not satisfy the metric conditions. It may be the case that the distance function is not symmetric.

It is possible to have a distance function that is not a real-valued function. Even it may be the case

that it is not required the distance function to be defined over all the points.

Complexity: Generally clustering algorithms are not so simple, and most of them are NP-hard,

i.e. they does not have polynomial time solutions unless P=NP. This phonemena created a research

challenge on clustering algorithms. Some common algorithms of unsupervised learning and clustering

are discussed in [4], [7] and [5]. In [6], Gonzales et al. proposed generic solutions to some domain

of clustering problems.

Approximation. Clustering problems are generally NP-hard. Thus, it is a must to come up with

approximations to the problem rather than the optimal solutions. If we have anα-approximation

algorithm for a particular problem, that algorithm is said to guarantee that the cost of the result of

the algorithm does not exceedα times the cost of the optimal solution of the problem.

Large DataSets: Clustering on large datasets has been given a special value of interest. Since

most clustering problems are NP-hard, the input size becomes more important in the evaluation

of an algorithm. Bradley et al. [1] discussed possible adoptations of clustering algorithms to large

datasets. [9] presents a data clustering algorithm for large datasets, addressing I/O cost minimization.

[8] proposed a sampling basedO(1)-approximation algorithm with running time independent of data

size.

Outliers: In case of there is few noise or very distant data in the training set, the algorithm may

be required to discard a portion of data as noise. The data to be discarded are calledoutliers.

Soft Clustering: There are different notions of clustering, one of the interesting differenting notions

is soft and hard clustering techniques. Inhard clustering, each node should be assigned to exactly

one median, whereas insoft clustering, it is more desirable to let a node to be assigned to several

clusters partially. The soft clustering is also calledfuzzyclustering, since the classification is not

exact. Chiang et al. [3] discussed fuzzy classifiers and their relation with decision trees.

B. Some Clustering Algorithms andk-median

There are several clustering problems available.k-median is one of the most popular and powerful

clustering problems. The definition ofk-median is as follows: Given a data setN of nodes, a distance

function d : N2 → R, and an integerk; find a k element subset ofN asmedianssuch that sum of
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distances from each node to its nearest median is minimal. The nodes that are closer to a median

form a cluster. For any node, the node is said to beassignedto its nearest median.

k-median is a specialized version ofUncapacitated Facility Location Problem. In Uncapacitated

Facility Location Problem, we also have a cost of declaring a node as a median (orfacility). The

optimization function is the cost function ofk-median plus costs of opening facilities at the median

nodes.

k-center problem is similar to thek-median problem. In the case ofk-center, the objective function

is to minimize the maximum of the distances of nodes to the assigned medians (or in that casecenters)

in the clusters.

k-means problem is another problem that is similar to thek-median problem. In the case ofk-

means, the objective function is the same ask-median but the nodes (orpoints) are not restricted to

be elements ofN .

C. Outline

In this paper, we will focus on the definition of fuzzy clustering fork-median algorithm. In Section

II, we give the formal definition ofk median. In Section III, we will define a fuzzyk-median algorithm.

In Section IV we will present an approximation algorithm for fuzzyk-median algorithm. In the last

Section we will summarize our work.

II. k-MEDIAN

As defined earlier,k-median is an optimization problem. Like many optimization problems,k-

median can be expressed as an integer programming [2].

A. Terminology

Let N be the set of input data.

Let dj be the demand ofj ∈ N . This demand may be considered as the number of points at

nodej. In some problem definitions,dj is not taken into account in the formulation, which can be

formulated as lettingdj = 1 for all j.

Let cij be the cost of assigningj ∈ N to the mediani ∈ N .

Let xij be the final assignment ofj ∈ N to the mediani ∈ N . It is a 0 − 1 variable, and when

xij = 1, it means that nodej is assigned toi.

Let yi be a 0-1 variable indicating whether nodei is selected as a median.

B. Integer Programming Formulation

Using these definitions, the equation can be formulated as:
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minimize
∑

i,j∈N

djcijxij (1)

subject to

∑
i∈N

xij = 1 ∀j ∈ N (2)

xij ≤ yi ∀i, j ∈ N (3)∑
i∈N

yi = k (4)

xij ∈ {0, 1} ∀i, j ∈ N (5)

yi ∈ {0, 1} ∀i ∈ N (6)

The constraints (2) ensure that each node is assigned to some other. The constraints (3) ensure that

the assignment is made to a median. The constraints (4) ensure that there arek medians.

C. Related Work

Charikar et al. [2] presents an approximation algorithm based on this integer programming. They

relax thexij andyi to be in [0, 1] and thus converting this integer programming problem to a linear

programming problem. Then, based on the optimal solution of the LP, they round the solutions to

satisfy the constraints (5) and (6). We will follow some similar way when we provide a solution to

the fuzzyk-median problem. Their solution achieves a62
3 -approximation algorithm.

III. FUZZY k-MEDIAN

The fuzzy k-median problem is similar to the k-median problem, in the sense that there arek

medians. But in that case, the nodes can be assigned to more than one medians. The assignment will

be based on some probability as we have in Bayesian theory.

Let P (mi|j) be the probability of a nodej to be in clustermi. Here,mi is represented by its

median, sayi. As in Bayesian theory, we can write the following:

P (mi|j) =
P (j|mi)P (mi)

P (j)
(7)

Let n =
∑

j∈N dj , the size of total demand. Now we can assume:

P (j) =
dj

n
(8)

For the sake of simplicity, let

P (mi) = wi (9)



5

wi corresponds to the weight of mediani. Thus it is an output variable.

The following assumption will improve the validity of our model:

P (j|mi) = f(cij) wheref is o(1/cij) (10)

Here (10) assumes that the probability function solely depands on the distance metric, and it

decreases faster thancij increases. Note that,P (j|mi) is an input, neighter the function nor its values

do not change by the output of the algorithm.

The objective function is minimize
∑

i,j∈N P (mi|j)d2
jcij . As you might have noticed, we have

replaced thexij part with the probabilistic behaviour.

We should also note thatP (mi|j) is a probability function satisfying:

∑
i∈N

P (mi|j) = 1 ∀j ∈ N. (11)

So, we will be ensured that total assignment of a node is 1.

Finally, define

qij = P (j|mi)cij (12)

qi =
∑
j∈N

qijdj (13)

Based on the assumptions, the minimization function becomes:

∑
i,j∈N

P (mi|j)d2
jcij =

∑
i,j∈N

P (j|mi)P (mi)
P (j)

d2
jcij (14)

=
∑

i,j∈N

P (j|mi)wi
dj

n

d2
jcij (15)

Sincen does not depand oni or j, we can ignore it, and the objective function becomes:∑
i,j∈N

P (j|mi)wi

dj
d2

jcij =
∑

i,j∈N

P (j|mi)widjcij (16)

=
∑

i,j∈N

wiqijdj (17)

=
∑
i∈N

wi

∑
j∈N

qijdj (18)

=
∑
i∈N

wiqi (19)

(20)

Now we can formulate our problem:
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minimize
∑
i∈N

wiqi (21)

subject to

∑
i∈N

yi = k (22)

wi ≤ yi ∀i ∈ N (23)

yi ∈ {0, 1} ∀i ∈ N (24)

wi ∈ [0, 1] ∀i ∈ N (25)

This model is much simpler than the original integer programming model ofk-median. In the

original problem, there wereO(N2) constraints, but in our model, this number of constraints have been

dropped toO(N). On the other hand, the output of a fuzzyk-median will also be an approximation

of the originalk-median problem.

IV. A N ALGORITHM FOR FUZZY k-MEDIAN

Now, we will propose an approximation algorithm for fuzzyk-median.

As in [2], we will relax the integer programming constraints to linear programming constraints.

this leads the following modification:

yi ∈ {0, 1}∀i ∈ N → yi ∈ [0, k]∀i ∈ N (26)

Let Cj be the marginal cost of adding a new client to nodej:

Cj =
∑
i∈N

wiqij (27)

Note that optimal cost of linear programmingCLP =
∑

j∈N djCj . The algorithm will solve this

LP, and then round the solution to a feasible solution for the integer programming model of fuzzy

k-median.

To round the fractional solution, the algorithm uses the one presented by Charikar et al. in [2].

Finally the computedwi’s are returned.
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V. CONCLUSION

We have defined the fuzzyk-median problem for use in clustering problems. The problem fits

most to the cases where some Bayesian model is expected. Although the fuzzyk-means problem is

available for these kind of problems, there may be cases where the solution set should be a subset of

the original. We have shown that the formulation of fuzzyk-median is simpler than originalk-median

problem. We have also provided an approximation algorithm to approximate fuzzyk-median problem.
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