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Abstract

The k-median problem is one the powerful problems for clustering, despite its hard-to-resolve
NP-hard property. In thé-median problem, we are given n nodes and some distance function, we
are to select of them to be cluster centers. The remaining nodes will then assigned to their nearest
medians. The objective function is to minimize sum of distances. In fuzzy clustering, a node may be
partially be included in more than two clusters. In some cases, it may be valuable to adopt existing
k-median algorithms to fuzzy clustering problems.

In this paper, we definefazzyk-median problem for use in clustering problems. The problem fits
most to the cases where some Bayesian model is expected. We show that the integer programming
formulation of fuzzy k-median is simpler than originat-median problem. We also provide an

approximation algorithm to the fuzzy-median problem.

I. INTRODUCTION

Clustering is a widely used technique in unsupervised learning field of Machine Learning. Cluster-
ing is used especially for data analysis, data categorization, and fetching representatives for clusters

of large data. Clusters may be thought as the process of producing unlabeled categorized data.

A. Terminology

Clustering can be defined as grouping similar objects together.sithidarity can be defined in
various ways. The most common definition of similarity is the distance function. The distance function
may be the Euclidian distance or p-norm on metric space, or it can be the cosine-distance as in text
categorization.

Metric System: A metric distance function is a function that obeys two rules: symmetry and
triangle inequality. Some people add the reflexivity condition to the metric regulations, but generally,

reflexivity condition can be relaxed by mapping data to some other metric system, and this condition



may not be considered as a must. p-norm is a metric function, but cosine-distance is not, since cosine-
distance does not obey triangle inequality. On the other hand, cosine-distance obeys a relaxed version
of triangle inequality, and cosine-distance is calledearly-metricfunction.

Although, it is desirable to have a metric distance function; in some problems, the distance function
does not satisfy the metric conditions. It may be the case that the distance function is not symmetric.
It is possible to have a distance function that is not a real-valued function. Even it may be the case
that it is not required the distance function to be defined over all the points.

Complexity: Generally clustering algorithms are not so simple, and most of them are NP-hard,
i.e. they does not have polynomial time solutions unless P=NP. This phonemena created a research
challenge on clustering algorithms. Some common algorithms of unsupervised learning and clustering
are discussed in [4], [7] and [5]. In [6], Gonzales et al. proposed generic solutions to some domain
of clustering problems.

Approximation. Clustering problems are generally NP-hard. Thus, it is a must to come up with
approximations to the problem rather than the optimal solutions. If we have-approximation
algorithm for a particular problem, that algorithm is said to guarantee that the cost of the result of
the algorithm does not exceedtimes the cost of the optimal solution of the problem.

Large DataSets: Clustering on large datasets has been given a special value of interest. Since
most clustering problems are NP-hard, the input size becomes more important in the evaluation
of an algorithm. Bradley et al. [1] discussed possible adoptations of clustering algorithms to large
datasets. [9] presents a data clustering algorithm for large datasets, addressing I/O cost minimization.
[8] proposed a sampling basé(1)-approximation algorithm with running time independent of data
size.

Outliers: In case of there is few noise or very distant data in the training set, the algorithm may
be required to discard a portion of data as noise. The data to be discarded arectibzd

Soft Clustering: There are different notions of clustering, one of the interesting differenting notions
is soft and hard clustering techniques. lhard clustering, each node should be assigned to exactly
one median, whereas BDft clustering, it is more desirable to let a node to be assigned to several
clusters partially. The soft clustering is also calliedzy clustering, since the classification is not

exact. Chiang et al. [3] discussed fuzzy classifiers and their relation with decision trees.

B. Some Clustering Algorithms aridmedian

There are several clustering problems availableedian is one of the most popular and powerful
clustering problems. The definition éfmedian is as follows: Given a data S€tof nodes, a distance

functiond : N2 — R, and an integek; find a k element subset aV as medianssuch that sum of



distances from each node to its nearest median is minimal. The nodes that are closer to a median
form a cluster. For any node, the node is said tabsignedto its nearest median.

k-median is a specialized version Bhcapacitated Facility Location Problenin Uncapacitated
Facility Location Problem, we also have a cost of declaring a node as a medi&acidy). The
optimization function is the cost function émedian plus costs of opening facilities at the median
nodes.

k-center problem is similar to thiemedian problem. In the case kfcenter, the objective function
is to minimize the maximum of the distances of nodes to the assigned medians (or in thedrdase
in the clusters.

k-means problem is another problem that is similar to Ahmedian problem. In the case &f
means, the objective function is the samekavedian but the nodes (@ointy are not restricted to

be elements ofV.

C. Ouitline

In this paper, we will focus on the definition of fuzzy clustering ksmedian algorithm. In Section
II, we give the formal definition ok median. In Section Ill, we will define a fuzzymedian algorithm.
In Section IV we will present an approximation algorithm for fuzZzynedian algorithm. In the last

Section we will summarize our work.

Il. k-MEDIAN

As defined earlierk-median is an optimization problem. Like many optimization probleks,

median can be expressed as an integer programming [2].

A. Terminology

Let N be the set of input data.

Let d; be the demand of € N. This demand may be considered as the number of points at
nodej. In some problem definitionsi; is not taken into account in the formulation, which can be
formulated as letting/; = 1 for all ;.

Let ¢;; be the cost of assigninge N to the median € N.

Let x;; be the final assignment gf € N to the mediani € V. It is a0 — 1 variable, and when
x;; = 1, it means that nodg¢ is assigned ta.

Let y; be a 0-1 variable indicating whether noflés selected as a median.

B. Integer Programming Formulation

Using these definitions, the equation can be formulated as:



minimize Z djcijxij D)

i,jEN
subject to
Z Tij =1 VjeN (2)
ieN

rij <y Vi,jEN 3)
i =k 4)

ieN
Tiy; € {0, 1} Vi,j € N (5)
y; €{0,1} Vie N (6)

The constraints (2) ensure that each node is assigned to some other. The constraints (3) ensure that

the assignment is made to a median. The constraints (4) ensure that thérenadians.

C. Related Work

Charikar et al. [2] presents an approximation algorithm based on this integer programming. They
relax thez;; andy; to be in[0, 1] and thus converting this integer programming problem to a linear
programming problem. Then, based on the optimal solution of the LP, they round the solutions to
satisfy the constraints (5) and (6). We will follow some similar way when we provide a solution to

the fuzzyk-median problem. Their solution achieveﬁ%—x—approximation algorithm.

[1l. FUzzY k-MEDIAN

The fuzzy k-median problem is similar to the k-median problem, in the sense that theke are
medians. But in that case, the nodes can be assigned to more than one medians. The assignment will
be based on some probability as we have in Bayesian theory.

Let P(m;|j) be the probability of a nodg to be in clusterm;. Here,m; is represented by its

median, sayi. As in Bayesian theory, we can write the following:

P(j|lm;)P(m;)

P(my|j : (7)
(mil7) PG)
Let n = ;e n dj, the size of total demand. Now we can assume:
d;
PG = 2 8
(4) p (8)

For the sake of simplicity, let

P(m;) = w; )



w; corresponds to the weight of medianThus it is an output variable.

The following assumption will improve the validity of our model:
P(jlmi) = f(ci;) wheref is o(1/cij) (10)

Here (10) assumes that the probability function solely depands on the distance metric, and it
decreases faster thafy increases. Note thaE(j|m;) is an input, neighter the function nor its values
do not change by the output of the algorithm.

The objective function is minimizé_; ..y P(mi|j)d32.cij. As you might have noticed, we have
replaced ther;; part with the probabilistic behaviour.

We should also note tha®(m;|j) is a probability function satisfying:

> P(milj)=1 VjeN. (11)
iEN
So, we will be ensured that total assignment of a node is 1.

Finally, define

qi; = P(jlmi)cij (12)
G = > aijd; (13)
JEN

Based on the assumptions, the minimization function becomes:

wc@czj (14)

Z P(mi|j)d?0ij = Z

L,JEN i,jJEN P(j)
_ Z (]|sz)wz d?Cij (15)
i,jEN n

Sincen does not depand ohor j, we can ignore it, and the objective function becomes:

P(j|m;)w; .
> (’d.) dicij = Y. Plilmiwidje; (16)
i,jEN J i,jEN
= Z w;iq;;d; 17)
ijEN
= D wi) a;d; (18)
iEN  jEN
= Zwi%’ (19)
iEN
(20)

Now we can formulate our problem:



minimize _ wig; (21)

ieN
subject to
i =k (22)
ieN
y; €{0,1} Vie N (24)
w; €[0,1] VieN (25)

This model is much simpler than the original integer programming mode&l-wiedian. In the
original problem, there wer@(N?) constraints, but in our model, this number of constraints have been
dropped toO(N). On the other hand, the output of a fuzzymedian will also be an approximation

of the originalk-median problem.

IV. AN ALGORITHM FORFUZzzY k-MEDIAN

Now, we will propose an approximation algorithm for fuzizymedian.
As in [2], we will relax the integer programming constraints to linear programming constraints.

this leads the following modification:

y; €{0,1}Vi € N — y; € [0,k]Vie N (26)

Let C; be the marginal cost of adding a new client to ngde

Cj = wigi (27)
ieN

Note that optimal cost of linear programmiifg.p = >, d;C}j. The algorithm will solve this
LP, and then round the solution to a feasible solution for the integer programming model of fuzzy
k-median.

To round the fractional solution, the algorithm uses the one presented by Charikar et al. in [2].

Finally the computedu;’s are returned.



V. CONCLUSION

We have defined the fuzzig-median problem for use in clustering problems. The problem fits
most to the cases where some Bayesian model is expected. Although the:forzgns problem is
available for these kind of problems, there may be cases where the solution set should be a subset of
the original. We have shown that the formulation of fuzzgnedian is simpler than origina-median

problem. We have also provided an approximation algorithm to approximate fuzmdian problem.
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