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Abstract 
In this paper we present an approach that trains Gaussian classifiers using labeled and unlabeled 

data. Training with unlabeled data introduces efficiency in terms of time and energy spent for 

labeling the data. We present experiments on different data sets to illustrate the effect of unlabeled 

data on the performance of the classifiers. We will try to show that under specific conditions 

unlabeled data contains valuable information for the target function. The algorithm we utilize, first 

trains the classifier with limited number of unlabeled data and then with the obtained classifier 

labels unlabeled data and re-trains the classifier with newly labeled data and proceeds the iteration. 

 

1. Introduction 

Automatic classification of large amounts of data has become one of major daily task. For 

example classification of textual content is the key technology used in Internet search engines. 

Classification is done, mostly, by some sort of classifiers trained using data that is labeled by 

experts in the field. However, in most of the cases, especially when the amount of data is large, 

manual classification is very costly and timely. A good solution could be to utilize unlabeled data 

in training classifiers. In [ 1]  Nigam et al combined expectation maximization and Naïve Bayes 

classifiers to classify text documents using limited amount of labeled and a large pool of 

unlabelled data. In their experiment they showed that an improvement of up to 30% could be 

obtained in classification accuracy.   

 

Learning with both labeled and unlabeled data is known as semi-supervised learning.  If the 

underlying probabilistic model assumption matches the data generating distribution, the reduction 

in variance leads to an improved classification accuracy [ 6]; this situation has been analyzed 

before by [ 3], [ 4]. However, in [ 6], it has been shown that when the assumed probabilistic 

model does not match the true data generating distribution, using unlabeled data can be 

detrimental to the classification accuracy; indeed this  behavior observed empirically before by    



[ 3], [ 1] and generally ignored or misinterpreted. This result emphasizes the importance of using 

correct modeling assumption when learning with unlabeled data. 

 

In many classification problems, simple structures (e.g., the Naive-Bayes classifier [ 7], [ 8]) 

obtained by using just labeled data have been used successfully, such structures fail when trained 

with both labeled and unlabeled data [ 9]. Bayesian networks are probabilistic classifiers in which 

the joint distribution of the features and class variables is specified using a graphical model [ 10]. 

This kind of  graphical representation has several advantages including the existence of 

algorithms for inferring the class label, the ability to intuitively represent fusion of different 

modalities with the graph structure [ 11], [ 12], the ability to perform classification and learning 

without complete data, and, most importantly, the ability to learn with both labeled and unlabeled 

data.  

 

The rest of the paper is organized as follows: First we are going to discuss the value of unlabeled 

data, presenting results from the literature. Then, we are going to explain the method used to 

combine labeled and unlabeled data to train classifiers. Experimental results will follow that 

section and finally we are going to present the conclusion and future work. 

 

2. Value of Unlabeled Data 

Unlabeled data alone aren’t sufficient to yield better-than-random classification in most cases 

because there is no information about the class label. However, unlabeled data do contain 

information about the joint distribution over features other than the class label. Because of this, 

they can be used together with a sample of labeled data to considerably increase classification 

accuracy in certain problems. To illustrate this, consider a simple classification problem in which 

instances are generated using a Gaussian mixture model. In this example, data are generated from 

two Gaussian distributions, one per class, whose parameters are unknown. Figure 1 illustrates the 

Bayes-optimal decision boundary (x > d), which classifies instances into the two classes shown 

by the shaded and unshaded areas. Note that Bayes rule provides us facilities to calculate d 

provided that we know the Gaussian mixture distribution parameters (i.e., the mean and variance 

of each Gaussian, and the mixing parameter between them). Consider when an infinite amount of 

unlabeled data is available, along with a finite number of labeled samples. It is well known that 

unlabeled data alone, when generated from a mixture of two Gaussians, are sufficient to recover 

the original mixture components [ 13]. Obviously, it is impossible to assign class labels to each 

Gaussians without any labeled data. Consequently, the remaining learning problem is to assign 



class labels to the Gaussians. For example, in Figure 1, the means, variances, and mixture 

parameter can be learned with unlabeled data alone. Labeled data must be used to determine 

which Gaussian belongs to which class. This problem is known to converge exponentially quickly 

in the number of labeled samples [ 14]. In an informal manner, we can say, as long as there are 

enough labeled examples to determine the class of each component, the parameter estimation can 

be done with unlabeled data alone. 

 

We should note that, this result depends on the critical assumption that the data indeed have been 

generated using the same parametric model as used in classification, something that almost 

certainly is untrue in real-world domains. This raises the important empirical question as to what 

extent unlabeled data can be useful in practice in spite of the violated assumptions.  

 

Figure 1 Classification by a mixture of Gaussians. If unlimited amounts of unlabeled data are available, the 
mixture components can be fully recovered, and labeled data are used to assign labels to the individual 

components, converging exponentially quickly to the Bayes-optimal classifier. 

 

Now let’s return to our basic problem, and present the value of unlabeled data in a more formal 

manner. Our goal is to classify an incoming vector of observables X. Each instantiation of X is a 

sample. There is a class variable C whose values are the classes. Our aim is to build classifiers 

that receive a sample x and output a class. Let’s assume a 0-1 loss and, consequently, our 

objective is to minimize the probability of error (classification error). If we knew exactly the joint 



distribution p(C,X), the optimal rule would be to choose the class value with the maximum a 

posteriori probability, p(C|x) . This classification rule achieves the minimum possible 

classification error, called the Bayes error. Consider the following scenario: A sample (c, x) is 

generated from p(C,X). The value c is either known and the sample is a labeled one or the value c 

is hidden and the sample is an unlabeled one. The probability that any sample is labeled, denoted 

by λ, is fixed, known, and independent of the samples. Hence, the same underlying distribution 

p(C, X) generates both labeled and unlabeled data. Maximum likelihood is used to estimate  

from a set of N

θ̂

l labeled samples and Nu unlabeled samples. We consider distributions that 

decompose )|,( θXCp  as )|(),|( θθ CpCXp , where both ),|( θCXp and )|( θCp depend 

explicitly on θ . This is known as a generative model. The log-likelihood function of a generative 

model for a data set with labeled and unlabeled data is:  

 
 

)(θlL  and )(θuL are the likelihoods of the labeled and unlabeled data, respectively. If we look 

carefully to above equations, statistical intuition suggests that it is reasonable to expect an 

average improvement in classification performance for any increase in the number of samples 

(labeled or unlabeled).  

 

3. Classifier Training and Classification Method 

The aim of this work is to combine a Naïve Bayes Classifier together with Expectation 

Maximization (EM) and observe if any performance improvement is obtained on different 

datasets. At time of this writing the implementation was not complete. Therefore, more detail 

about the detailed implementation and results will be presented in the next revision of this paper. 

However, in the rest of the paper the author wishes to present results obtained in similar works, 



and want to state that the results and analysis presented here are expected to be similar to the ones 

author expect to obtain after the implementation and experiments final.  

 

The work presented here basis its theory and some key ideas to works done by [ 1],[ 2] and [ 6]. 

In [ 1] and [ 2] Nigam et al applied (EM) to Naïve Bayes Classifier. Applying EM to naive Bayes 

is quite straightforward. First, the naive Bayes parameters, , are estimated from just the labeled 

documents. Then, the classifier is used to assign probabilistically-weighted class labels to each  

unlabeled data by calculating expectations of the missing class labels, 

θ̂

),|( θXCp . Next, new 

classifier parameters, , are estimated using all the documents both the originally and newly 

labeled. These last two steps are iterated until  does not change.  

θ̂

θ̂

 

4. Experimental Results 

As stated in the previous section the implementation for this work is not completed yet. However, 

author is going to present some results from Nigam et al. The results presented are expected to be 

similar to the ones that is going to be obtained after the implementation and experiments are 

completed.  

 

In Nigams work, they used 3 different data sets of textual content. The first one is from 20 Usenet 

Newsgroups. Figure 2 shows that with increasing number of unlabeled documents classification 

accuracy improves considerably. The second experiment is carried out on web pages of 4 

University CS departments. This dataset is called WebKb dataset. The classification performance 

on this data set with unlabeled data is illustrated in Figure 3. The third dataset used is Reuters 

dataset. In this data set as documents might have more then one class a positive-negative type 

binary classifier is used. That is classifier decides whether a document belongs to a specific class 

or not. The result of the experiment is given in Table 1. It can clearly be seen in all of the 

experimental results that using unlabeled data increases classification performance, at least for 

text classification problem. For other types of problem performance improvement has also been 

reported as explained in the introduction part.  

 

The aim of the author of this paper is to perform experiments on different types of datasets to 

observe the value of unlabeled data. 



5. Conclusion 

Although experiments are not complete from the results of the other authors we can say that using 

unlabeled data to train classifier in most of the cases improves the performance of the classifiers. 

This hypothesis is violated when the underlying model assumption is not correct. 

 

 

Figure 2 Accuracy of classifier with more added unlabeled data on Usenet Newsgroups. There are 400 hundred 
labeled documents in each case 



 
Figure 3 Comparison of accuracy of classifier with more added unlabeled data on WebKb dataset.  

 

 

 
Table 1 Classification accuracy of classifier with fully labeled data (N.B. column) and with 40 labeled and 7000 

unlabeled data (EM 21 colums)
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