
 

A Genetic Algorithms Approach to Feature Subset Selection for 

Pattern Classification Using Neural Networks 
 

Hasan Doğu TAŞKIRAN 

Computer Science Department, Bilkent University 

Ankara, Turkey 

 

E-mail: taskiran@cs.bilkent.edu.tr 

Phone: +90 533 513 14 26 

 

 

Abstract 

 

In this paper, we present a genetic algorithms based approach to the selection of a subset of features, which 

are used to classify the patterns using neural networks. It is important to remember that adding a new feature 

unnecessarily increases the complexity and the cost of training and classification, so we need to be able to 

differentiate between those features that contribute new information and not. Many current feature reduction 

techniques such as PCA and LDA involve linear transformations of the original pattern vectors to new vectors 

of lower dimensions. So a multi-objective genetic algorithm has been employed to reduce the cost and 

increase the accuracy of classification. We also show the application of our work on a handwritten digit 

recognition system. Comprehensive experiments show that the proposed approach is actually effective.  

 

Keywords: Feature Subset Selection, Genetic Algorithms, Neural Networks, Pattern Classification 

 

1. Introduction 

 

In practical pattern recognition problems, a 

classification function learned through an inductive 

learning algorithm assigns a given input pattern to 

one of the existing classes of the system. Usually, 

the representation of each input pattern consists of 

features since they can distinguish one class of 

patterns from another in a more concise and 

meaningful way than offered by the raw 

representation. In many applications, it is not unusual 

to find problems involving hundreds features. 

However, it has been observed that, beyond a certain 

point, the inclusion of additional features leads to a 



worse rather than better performance. Moreover, the 

choice of features to represent the patterns affects 

several aspects of the pattern recognition problem 

such as accuracy, required learning time and 

necessary number of samples. 

 

In pattern recognition problems, supervised learning 

is a very common technique used to classify the 

patterns in the given dataset. Many of the 

classification problems can be solved using artificial 

neural networks (ANNs), which have been shown 

good classifiers. Given the features, ANNs classify 

a pattern into one of the predefined classes. For an 

ANN to be able to classify the patterns the ANN 

should be trained with some number of patterns and 

should be taught their correct classes. 

 

However, for a given pattern classification problem, 

the network may become unbelievably complex if 

the number of the features used to classify the 

pattern increases very much. This paper is mainly 

concerned with reducing the number of features 

used for classification by ANNs while not allowing 

the accuracy of the classifier to decrease. This 

means that we need to decrease the cost of training 

classification while increasing the accuracy. 

 

The problem of feature subset selection has been the 

study of a diverse spectrum of fields. In neural 

network pattern classification, feature selection can 

be effected using node pruning techniques. After 

training for a number of epochs, nodes are removed 

from the network in such a manner that the increase 

in squared error is minimized. When an input node 

is pruned, the feature associated with that node is no 

longer considered by the classifier. 

 

2. Neural Networks 

 

In real-world problems such as medical diagnosis, 

handwritten letter or digit recognition, stock exchange 

analyses etc. these numbers may really become very 

huge and very hard to deal with these ANNs. It is 

because it increases the size of the ANN and so the 

time needed to train the network.  

 

For example, in the case of handwritten digit 

recognition, an image database may be used to train a 

classifier. Let’s say that we are provided with some 

number of 20 x 20 images of each digit to train an 

ANN to classify the given images into the bags for 

the digits 0-9. If we use the pixels as features in the 

given images, we now have f = 400 features to be 

analyzed for classification. This means that we will 

have to have an ANN with 400 input neurons and 10 

output neurons for the digits 0-9 that this pattern may 

belong to. The output neurons will show the 

probability of the input pattern being the digit that 

neuron represents. If you also define some number of 

hidden layers, then there are so many connections 

between the neurons to deal with. Let’s say that we 

have just one hidden layer with 20 neurons then the 

number of connections in a fully connected network 

becomes (400 x 20) + (20 x 10) = 8200. This means 

that we somehow need to update the weights of those 

connections according to the given training patterns. 

 



Experiments show that for an ANN to classify the 

patterns with high accuracy, it should be that n/f > 

10 where n is the number of patterns used to train 

the network, and f is the number of features that are 

used for classification. For our example for the 

handwritten digit recognition system, if f = 400 then 

we should have more than or equal to 4000 training 

samples to be able to make a classification with an 

acceptable error rate. 

 

3. Feature Subset Selection 

 

The term feature subset selection is applied to the 

task of selecting those features that are most useful 

to a particular classification problem from all those 

available. The main purpose of feature subset 

selection is to reduce the number of features used in 

classification while maintaining acceptable 

classification accuracy. Less discriminatory features 

are eliminated, leaving a subset of the original 

features which retains sufficient information to 

discriminate well among classes. 

 

For classical pattern recognition techniques, the 

patterns are generally represented as a vector of 

feature values. The selection of features can have a 

considerable impact on the effectiveness of the 

resulting classification algorithm. Consider a feature 

set, F = {f0; f1; …; fN}. If f0 and f1 are dependent, 

that is they always move together, then one of these 

could be discarded and the classifier has no less 

information to work with. This has the benefit that 

computational complexity is reduced as there is 

smaller number of inputs. Often, a secondary 

benefit found is that the accuracy of the classifier 

increases. This implies that the removed features were 

not adding any useful information but they were also 

actively hindering the recognition process. 

 

The problem of feature selection can be seen as a case 

of feature weighting, where the numerical weights for 

each of the features have been replaced by binary 

values. A value of 1 could mean the inclusion of the 

corresponding feature into the subset, while a value of 

0 could mean its absence.  

 

4. Genetic Algorithms 

 

Genetic Algorithms (GAs) are a family of 

computational models inspired by evolution. 

Computational studies of Darwinian evolution and 

natural selection have led to numerous models for 

computer optimization. GAs comprise a subset of 

these evolution-based optimization techniques 

focusing on the application of selection, mutation, and 

recombination to a population of competing problem 

solutions. GAs are parallel iterative optimizers, and 

have been successfully applied to a broad spectrum of 

optimization problems, including many pattern 

recognition and classification tasks. 

 

Being a directed search rather than an exhaustive 

search, population members cluster near good 

solutions; however, the GA's stochastic component 

does not rule out wildly different solutions, which 

may turn out to be better. This has the benefit that, 

given enough time and a well bounded problem, the 

algorithm can and a global optimum. This makes 



them well suited to feature selection problems {they 

can and near optimum solutions using little or no a 

priori knowledge. 

 

 

Figure 1-Simple Genetic Algorithm Flow 

 

There are three major design decisions to consider 

when implementing a GA to solve a particular 

problem. A representation for candidate solutions 

must be chosen and encoded on the GA 

chromosome, an objective (fitness) function must 

be specified to evaluate the quality of each 

candidate solution, and finally the GA run 

parameters must be specified, including which 

genetic operators to use, such as crossover, 

mutation, selection, and their possibilities of 

occurrence.  

 

The process of fitness-dependent selection and 

application of genetic operators to generate 

successive generations of individuals is repeated 

many times until a satisfactory solution is found. In 

practice, the performance of genetic algorithm 

depends on a number of factors including: the 

choice of genetic representation and operators, the 

fitness function, the details of the fitness-dependent 

selection procedure, and the various user-determined 

parameters such as population size, probability of 

application of different genetic operators, etc.  

 

5. Methodology 

 

In this section we present our application of genetic 

algorithms to the process of feature subset selection 

where they will be used to train an ANNs. We will 

also show our results on a handwritten digit 

recognition problem. 

 

As the problem of feature selection can be seen as a 

case of feature weighting, we will represent our 

feature subsets as binary strings where a value of 1 

will represent the inclusion of a particular feature in 

the training process and a value of 1 will represent its 

absence.  

 

Since we are representing a chromosome through a 

binary string, our genetic algorithm will operate on a 

pool of binary strings. The mutation and crossover 

operators operate in the following way: Mutation 

operates on a single string and generally changes a bit 

at random. Thus, a string 10010 may, as a 

consequence of random mutation gets changed to 

10110. Crossover on two parent strings produces two 

offsprings. With a randomly chosen crossover 

position 2, the two strings 01101 and 11000 yield the 

offspring 01000 and 11100 as a result of crossover. 

 



With given training dataset we will create an ANN 

to be able to evaluate the fitness of the resulting 

binary set which represents the feature subset to our 

problem. For each binary string we train a new 

network with the selected features as input nodes. 

So the network will have the same number of input 

nodes as the number of 1s in the binary string. 

 

After training the network we then test it with some 

number of test inputs. As a result of the training we 

obtain an error value e(x) for classification where x 

represents the binary string and 0 ≤ e(x) ≤ 1 and 

also we have to consider the cost of the training 

needed to obtain this error value. 

 

If we assume that the cost of using full feature set as 

1 and the cost of training the network is linear in the 

number of its number of input neurons then we can 

find the cost, s(x), of the binary string by dividing 

the number of 1s in the string to the number of 

features in the full feature set. So s(x) becomes 0 ≤ 

s(x) ≤ 1 also. An analysis of the s(x) and e(x) values 

then gives us the feature subset fitness function as 

 

( ) 







−

−−=
)(2

)()(2)(
xe

xsxexf . 

 
This is a multi-objective optimization function 

which both tries to reduce the error and the cost of 

the network. This may seem an ad-hoc function at 

first but it does discourage trivial solutions, i.e. a 

zero cost solution with low accuracy, from being 

selected as the fittest over reasonable solutions which 

give high accuracy at a moderate and acceptable cost. 

 

6. Experiments and Results 

 

We implemented our methodology using the Matlab 

Neural Network Toolbox and Genetic algorithm 

toolbox. Although it takes very much time to evaluate 

fitness values for each binary string, it was 

respectively easy to implement those issues in 

Matlab. 

 

The database we used in our experiments was the UCI 

database for handwritten digits. This database 

includes 200 samples for each digit. So there are 

totally 2000 digits. We have randomly chosen 100 

digits from each digit for the training set and used the 

remaining 100 digits for testing our networks to 

obtain the necessary e(x) values. The digits are 

represented as 15 x 16 images each. We decided to 

use the pixels as our features and so we have 240 

features to evaluate. So we will have a huge network 

if we use to decide to use the full feature set. And we 

will need to have more than 2400 training samples to 

obtain good results. 

 

As we decided to reduce features we will not need so 

much. So we create a pool of feature subsets 

represented as 240-bit bit-strings where 1s represent 

the inclusion of the associated pixel value or the 

absence of it if it is 0 while training our network. 



 

 For each generation of GA we decided to have a pool 

of 50 bit-strings to operate on. For each binary string 

in the pool we create a new Feed-Forward back-

propagation ANN with one hidden layer composed of 

10 neurons. We decided on 10 because experiments 

show that adding more neurons inside the hidden 

layer does not increase the accuracy as expected for 

this particular problem. We used logarithmic sigmoid 

functions a gradient descent with momentum and 

adaptive learning rate back-propagation training 

function, namely ‘traingdx’. This is the slowest 

training function for the ANNs in the Matlab Neural 

Network Toolbox; however it gives comprising 

results for pattern recognition problems. 

 

 We ran our genetic algorithms code for 100 

generations and we have chosen to move on the two 

best binary-strings from our evaluation to the next 

generation. Best Fitness Values from our Generations 

are shown in Table 1. Also the mutation type is 

uniform where we could use a Gaussian based 

Generation f(x) Generation f(x) 
1 -1.690 51 -1.802 
2 -1.697 52 -1.799 
3 -1.713 53 -1.803 
4 -1.709 54 -1.800 
5 -1.705 55 -1.804 
6 -1.719 56 -1.802 
7 -1.735 57 -1.805 
8 -1.731 58 -1.798 
9 -1.747 59 -1.811 
10 -1.731 60 -1.797 
11 -1.752 61 -1.803 
12 -1.750 62 -1.799 
13 -1.759 63 -1.803 
14 -1.755 64 -1.803 
15 -1.757 65 -1.804 
16 -1.762 66 -1.808 
17 -1.759 67 -1.809 
18 -1.775 68 -1.797 
19 -1.770 69 -1.814 
20 -1.771 70 -1.807 
21 -1.771 71 -1.805 
22 -1.775 72 -1.803 
23 -1.779 73 -1.812 
24 -1.781 74 -1.806 
25 -1.776 75 -1.808 
26 -1.793 76 -1.813 
27 -1.796 77 -1.814 
28 -1.796 78 -1.802 
29 -1.788 79 -1.815 
30 -1.802 80 -1.807 
31 -1.789 81 -1.805 
32 -1.793 82 -1.808 
33 -1.786 83 -1.817 
34 -1.799 84 -1.810 
35 -1.807 85 -1.805 
36 -1.791 86 -1.807 
37 -1.792 87 -1.804 
38 -1.794 88 -1.808 
39 -1.790 89 -1.805 
40 -1.792 90 -1.807 
41 -1.794 91 -1.810 
42 -1.810 92 -1.812 
43 -1.795 93 -1.807 
44 -1.802 94 -1.811 
45 -1.795 95 -1.810 
46 -1.802 96 -1.805 
47 -1.796 97 -1.808 
48 -1.796 98 -1.819 
49 -1.809 99 -1.814 
50 -1.794 100 -1.816 

Table 2- Classification Errors Obtained from the Datasets 

Errors Training 
Dataset 

Test 
Dataset 

Full Feature Set 
(240, s(x) = 1.00) 3 / 1000 101 / 1000 

Optimal Subset 
(53, s(x) = 0.221) 6 / 1000 96 / 1000 

Table 3 - Accuracies of the Classifiers for the Datasets 

Accuracy Training 
Dataset 

Test 
Dataset 

Full Feature Set 
(240, s(x) = 1.00) 99.7% 89.9% 

Optimal Subset 
(53, s(x) = 0.221) 99.4% 90.4% 

Table 1 - Best Fitness Values from the Generations of GA 



mutation strategy but we wanted to keep the things 

simpler. We also used a rank based strategy for 

selection of the bit-strings for crossover. The 

parameters for the Genetic Algorithm for our task 

are: 

 

• Population Size: 50 
• Number of Generations: 100 
• Probability of Crossover: 0.6 
• Probability of Mutation: 0.001 
• Elite Count: 2 
• Type of Mutation: Uniform 
• Type of Selection: Rank-based 
• Stall Generations Limit: 10 
• Stall Time Limit: Infinite 

 

As the results in Tables 2 and 3 show that we 

obtained 53 features selected by our GA approach. 

This means we reduced the cost to s(x) = 53 / 240 = 

0.221 from 1. That means we obtained an 

improvement on the training and classification by a 

factor of 4.525. 

 

7. Conclusion 

 

The results presented in this paper indicate that 

genetic algorithms offer an attractive approach to 

solving the features subset selection problem (under 

a different cost and performance constraints) in 

inductive learning of pattern classifiers in general, 

and neural network pattern classifiers in particular. 

This methodology finds application areas in cost 

sensitive design of classifiers for tasks such as 

medical diagnosis and computer vision. Other 

applications of interest include automated data 

mining and knowledge discovery from datasets with 

an abundance of irrelevant or redundant features. In 

such cases, identifying a relevant subset that 

adequately captures the regularities in the data can be 

particularly useful. The GA-based approach to feature 

subset selection does not rely on monotonicity 

assumptions that are used in traditional approaches to 

feature subset selection which often limits their 

applicability to real-world classification and 

knowledge acquisition tasks. 

 

In this paper we presented a Genetic Algorithms 

approach to feature subset selection, where these 

features will be used to train and classify patterns 

using Artificial Neural Networks. 

 

We have demonstrated that the proposed 

methodology succeed in reducing the complexity of 

the feature set used by the classifier and also that such 

a classifier even using less features achieved 

recognition rates at the same level than reached by the 

original classifier. 

 

An analysis is still needed to improve the results 

obtained using GAs. Performance improvement and 

trials for the other datasets may be included in this 

perspective. Another analysis could be based on the 

fitness evaluation function where there may be used 

other fitness functions to be used in this approach to 

be able to find better results. 

 

 



References 

 

[1] Y. Le Cun, Comparison of learning algorithms 

for handwritten digit recognition, in 

International Conference on Artificial Neural 

Networks, Paris (F. Fogelman and P. Gallinari, 

eds.), pp. 53{60),1995. 

 

[2] Oliveira L.S., Sabourin R., Bortolozzi F., and 

Suen C.Y. A Methodology for Feature Selection 

using Multi-Objective Genetic Algorithms for 

Handwritten Digit String Recognition, 

International Journal of Pattern Recognition and 

Artificial Intelligence (IJPRAI), 17(6):903-930, 

2003.  

[3] Oliveira L.S., Benahmed N., Sabourin R., 

Bortolozzi F. and Suen C.Y., Feature Subset 

Selection Using Genetic Algorithms for 

Handwritten Digit Recognition, 14th Brazilian 

Symposium on Computer Graphics and Image 

Processing (SIBGRAPI 2001), pages 362-369, 

Florianópolis, Brazil, IEEE CS Press, October 

15-18, 2001. 

 

[4] Jihoon Yang, Vasant Honavar, Feature Subset 

Selection Using a Genetic Algorithm, Genetic 

Programming 1997: Proceedings of the Second 

Annual Conference,13-16,1997. 

 

[5] Brill, F., Brown, D., and Martin, W. Fast 

genetic selection of features for neural network 

classifiers. IEEE Transactions on Neural 

Networks, 3(2):324-328., 1992. 

 

[6] Jarmulak, J., and Craw, S. Genetic algorithms for 

feature selection and weighting. In Proceedings of 

the IJCAI'99 workshop on Automating the 

Construction of Case Based Reasoners. 

Cambridge, England, 1999. 

 

[7] Kira, K. and Rendell, L.. A practical approach to 

feature selection. In Proceedings of the Ninth 

International Conference on Machine Learning, 

pages 249-256, 1992. 

 

[8] Almuallim, H. and Dietterich, T. Learning 

boolean concepts in the presence of many 

irrelevant features. Artificial Intelligence, 69(1-

2):279-305, 1992 

 

[9] John, G., Kohavi, R. & Pfleger, K. Irrelevant 

features and the subset selection problem, in W. 

W. Cohen & H. Hirsh (eds), Machine Learning: 

Proceedings of the 11th International Conference, 

Morgan Kaufmann, San Francisco, CA., pp. 121-

129, 1994. 

 

[10] Narendra, P. and Fukunaga, K. A branch and 

bound algorithm for feature subset selection. 

IEEE Transactions on Computers, 26:917-922, 

1977.  

[11] Y. Le Cun, B. Boser, J. Denker, D. 

Henderson, R. Howard, W. Hubbard, and L. 

Jackel, Handwritten digit recognition with a back-

propagation network, in Advances in Neural 

Information Processing Systems (D. Touretzky, 

ed.), vol. 2, (Denver 1989), pp. 396{404, Morgan 

Kaufmann, San Mateo,1990. 


