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Abstract. In this paper, experiments on various classifiers and combining these 
classifiers are done, reported and analyzed. Combining the classifiers means having 
the single classifiers support each other in making a decision, instead of having only 
a single classifier’s decision as the final decision. The base experiment involves, both, 
applying different single classifiers on a dataset and applying the combination of 
those classifiers on the same dataset. Also, the same experiment is conducted after 
applying feature reduction, Bagging and Boosting methods separately. The dataset 
used in our experiments has not been used in any publication yet. The performance of 
the classifiers in terms of accuracies is compared in all experiments. In the 
experiments, classifier combinations perform slightly better than the single classifiers 
in terms of overall accuracy. It is also seen that bad classifiers and features may 
contain valuable information for performance improvement in terms of accuracy by 
combining rules.  

 
1 Introduction 
The main objective of designing many machine learning systems is to achieve the best classification. 
This aim led to the development of different classification schemes for any machine learning problem. 
It has been observed that in such design studies, usually, none of the single classifiers, such as Bayes-
normal, Parzen Windows, Decision Trees, Neural Networks and Support Vector Classifiers, is enough 
to distinguish the pattern classes optimally. The reason is that although one of the classifiers would 
give the best performance, the sets of patterns classified by the different classifiers would not 
necessarily overlap. Hence, different classifiers may be desired for different features.  
 
These observations motivated the interests in combining classifiers. The idea is not to rely on a single 
decision making scheme. Instead, many single classifiers are used for decision making by combining 
their individual opinions to derive a consensus decision. The aim is to determine an effective 
combination method that makes use of the benefits of each classifier but avoids the weaknesses. 
Various classifier combination schemes have been devised and it as been experimentally demonstrated 
that some of them consistently outperform a single best classifier.  
 
There are different ways of how the single classifiers are combined[3]. In this paper, three most 
popular classifier combining rules are tested and compared to single classifiers in terms of accuracy: 
Maximum combining classifier, Voting combining classifier and Product combining classifier.  
 
The features of the dataset used in this paper are very similar to ones used in remote sensing image 
pixel classification. So, the results obtained in this paper can guide to researchers on that area about 
which classifiers may perform better on remote sensing images and whether combination methods 
would work for remote sensing data. 
 
The paper is organized as follows. In section 2, related research is discussed. In Section 3, the dataset 
used in the experiments are explained. In Section 4, the single classifiers and the classifier 
combination rules are presented. In Section 5, the experimental results are given. In Section 6, the 
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results are analyzed. In Section 7, future work is explained. Finally, conclusions are drawn in Section 
8. 
 
2 Related Work 
Kittler et al.[2] makes an experimental comparison of various classifier combination schemes and 
concludes that sum rule-outperforms other classifier combinations. Similar studies have been done by 
Duin et al.[1],[11]. In [1], he performs similar experiments by using a different digit data set. The 
results of his research are discussed in section 6. In [11], he presents an intuitive discussion on the use 
of trained combiners. 
 
3 The Dataset 
the dataset used in this paper is an image segmentation dataset. The dataset comes from the UCI 
repository of machine learning databases. This dataset has not yet been used in any other publication. 
The task is to classify the center pixel of a 3x3 patch from an image as belonging to one of 7 
categories (brickface, sky, foliage, cement, window, path, grass). The inputs are typical image 
processing features of the patch. The features are very similar to the ones used in remote sensing 
image pixel classification. Hence, one can generalize the results of this experiment to remote sensing 
classification problems. Relevant information about the dataset is as follows:  
- Number of Instances: Training data: 210 Test data: 2100  
- Number of Attributes: 19 continuous features  
- Feature Information:  

1. region-centroid-col: the column of the center pixel of the region.  
2. region-centroid-row: the row of the center pixel of the region.  
3. region-pixel-count: the number of pixels in a region = 9.  
4. short-line-density-5: the results of a line extraction algorithm that counts how many lines of 

length 5 (any orientation) with low contrast, less than or equal to 5, go through the region.  
5. short-line-density-2: same as short-line-density-5 but counts lines of high contrast, greater 

than 5.  
6. vedge-mean: measure the contrast of horizontally adjacent pixels in the region. There are 6, 

the mean and standard deviation are given. This attribute is used as a vertical edge detector.  
7. vegde-sd: (see 6)  
8. hedge-mean: measures the contrast of vertically adjacent pixels. Used for horizontal line 

detection.  
9. hedge-sd: (see 8).  
10. intensity-mean: the average over the region of (R + G + B)/3  
11. rawred-mean: the average over the region of the R value.  
12. rawblue-mean: the average over the region of the B value.  
13. rawgreen-mean: the average over the region of the G value.  
14. exred-mean: measure the excess red: (2R - (G + B))  
15. exblue-mean: measure the excess blue: (2B - (G + R))  
16. exgreen-mean: measure the excess green: (2G - (R + B))  
17. 17. value-mean: 3-d nonlinear transformation of RGB. (Algorithm can be found in Foley and 

VanDam, Fundamentals of Interactive Computer Graphics)  
18. saturation-mean: (see 17)  
19. hue-mean: (see 17)  

- Class Distribution:  

• Classes: brickface, sky, foliage, cement, window, path, grass.  
• 30 instances per class for training data.  
• 300 instances per class for test data.  
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Fig. 1: Scatter plots of all classes, mapped on their first 2 principal components 

In Fig. 1, scatter plots of the first two principal components (PCA) of the dataset is shown. The PCA 
plots are focused on the data distributions as a whole. Although it is not possible to extract quantitative 
features from these plots, they show that the data sets have nearly distinct class distributions. 
 
4 The Classifiers1 
For this experiment, classifiers are taken from the Matlab toolbox PRTools[7]. However, it is 
important to make the outputs of the classifiers comparable. For this purpose, normalized posterior 
probabilities are used. A posterior probability is a number pij(x), in range between 0 and 1, computed 
for test sample x for each of the c classes, on which each of the m classifiers are trained. Each pij(x) is 
normalized so that 
c 
∑ pij(x) = 1, 1≤i≤m          (1) 
j 
 
4.1 Single Classifiers 
A single classifier selects the class which maximizes the normalized probability. The classifiers, used 
to find each normalized probability pij(x) for a given test sample x, are summarized below: 
 
Quadratic Bayes Normal Classifier (Bayes-Normal-2) This is the Bayes rule assuming Gaussian 
distribution, with a separate covariance matrix, for each class. Since the number of features is large for 
covariance matrix estimation, backward feature selection is applied before training the classifier. 
 
Linear Bayes Normal Classifier (BayesNormal-1) This is, again, the Bayes rule assuming Gaussian 
distribution, with the same covariance matrix, for each class. 
 
Nearest Mean Classifier This classifier assigns a sample to the class having the nearest mean. 
 
Nearest Neighbor Classifier This rule assigns a sample to the class associated with the nearest 
neighbor in the training set. 
 

                                                 
1 The classifiers’ implementations are not explained in detail, since our aim is only to experiment their performances in terms 
of accuracy.  
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K-Nearest Neighbor Classifier In this rule, a sample is assigned to the class such that the majority of 
the k nearest neighbors in the training set belongs to.  
 
Parzen Classifier Class densities are estimated using Gaussian kernels for each training sample. The 
kernel width is optimized for the training set using a leave-one-out error estimation. 
 
Decision Tree Classifier Our algorithm computes a binary decision tree on the multi-class dataset. 
Thresholds are set such that the impurity is minimized in each step [8]. Early pruning is used in order 
avoid overtraining [9].  
 
Neural Network Classifier This is a feed-forward neural network classifier with 1 hidden layer with 
20 units. 
 
Support Vector Classifier This is the standard SVC using a linear inner product kernel [10].  
 
4.2 Combining Rules 
Once the posterior probabilities {pij(x), i = 1,m; j = 1,c} for m classifiers and c classes is computed for 
test object x, they have to be combined into a new set qj(x) which can be used for the final 
classification. qj(x) is computed by: 
 
q j'(x) = rulei(pij(x))          (2) 
 
    q j'(x) 
q j(x) = ⎯⎯⎯⎯          (3) 
 ∑ pj(x) = 1           
 j 
 
The final classification is made by: 
 
ϕ(x) = argmaxj(q j(x))          (4) 
 
Three combining rules are used for rule in (2): 
 
Voting combining classifier The classiffication is done by counting the votes for each class over the 
input classifiers and selecting the majority class. If this rule is substituted in 2: 
 
q’j(x) = ∑ l(argmaxi(pij(x))=i),  I(y)=1 if y is true and I(y)=0 o.w.   (5)  
  i 
 
Maximum combining classifier The maximum combining classifier selects the selection of the single 
classifier giving the highest normalized probability. If this rule is substituted in 2: 
 
q’j(x) = pargmaxi(pij(x)),j(x)          (6)  
 
Product combining classifier In this rule, each single classifier gives a normalized probability value 
for each class. Then all normalized probabilities are multiplied per class. The class with the highest 
probability product wins. If this rule is substituted in 2: 
 
q’j(x) = ∏ pij(x)           (7) 
              i 
 
Note that each combining rule gives the same importance to each of the single classifiers in order to 
derive the final classification. 
 
5 The Experiments 
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The experiments are aimed to compare the performance of single classifiers and their combination 
(including all single classifiers in the combination) in terms of accuracy. The single classifiers and 
their combination schemes used in the experiment are discussed in section 3. In the experiments, the 
typical design cycle of a pattern recognition system is followed: Data collection, feature choice, 
classifier choice, classifier training, and classification. The experiments can be split into four parts: 

• Experiment over single classifiers and their combination 
• Experiment over single classifiers using feature reduction and their combination 
• Experiment over single classifiers using boosting and their combination 
• Experiment over single classifiers using bagging and their combination 

 
Each experiment is discussed below: 
5.1 Experiment over single classifiers and their combination 
To obtain baseline results, the single classifiers and their combinations are applied to the dataset. The 
results for each of the single classifiers and each of the three combination schemes are shown in Table 
1. The accuracies for each class and the overall accuracy are demonstrated in the table. The results are 
given in percentages of correctly classified samples. 

 
   Cl1    Cl2      Cl3        Cl4         Cl5         Cl6 Cl7  Overall 
BayesNormal_1 0.9867    0.8400    0.8567    0.9900    0.9967    1.0000    0.6467  0.7600 
BayesNormal_2 0.9633    0.9167    0.6267    0.9933    0.9900    0.9967    0.8567  0.9062 
decisionTree  0.8967    0.8500    0.8100    0.9867    0.9700    1.0000    0.7833   0.8995 
FLD        0.9733    0.4967    0.8933    0.9900    1.0000    0.9633    0.6900  0.8580 
KNN        0.8833    0.8200    0.7100    0.9833    0.9400    1.0000    0.8000  0.8766 
NearestMean         0.7100    0.7100    0.0867    0.8433    0.8967    0.9967    0.6767  0.7028 
NearestNeighbor   0.8833    0.8200    0.7100    0.9833    0.9400    1.0000    0.8000  0.8766 
NeuralNetwork     0.9567    0.9067    0.8400    0.9900    1.0000    1.0000    0.7767  0.9243 
Parzen        0.8933    0.7867    0.3500    0.9900    1.0000    1.0000    0.8333  0.8361 
SVC                        0.9833    0.7867    0.9267    0.9900    0.9967    1.0000    0.7133  0.9138 
Voting       0.9967    0.9033    0.8600    0.9967    1.0000    1.0000    0.8233  0.9400 
Maximum             0.9867    0.8367    0.8733    0.9900    0.9967    1.0000    0.6467  0.9043 
Product                 0.9333    0.8567    0.6633    0.9900    1.0000    1.0000    0.8567  0.9000 

Table 1: Accuracy rates for the experiment over single classifiers and their combination. 
 
5.2 Experiment over single classifiers using feature reduction and their combination 
It is generally observed that each feature in the dataset may not be useful for at least some of the 
discriminations. This is called the curse of dimensionality and some feature selection methods reduce 
dimensionality by selecting subsets of existing features in order to remain only the meaningful features.  
In this experiment, Sequential backward selection algorithm[12] is used in order to reduce the feature 
space. The single classifiers are trained in this reduced feature space and their combinations are taken 
accordingly. However, this experiment is not complete since we have results only for 6 out of 10 
single classifiers yet. Also, no combination results is ready. Since we have not enough results for this 
experiment, it will no be analysed in section 6. In Table 2, the results of 6 single classifiers trained on 
reduced feature space are shown for each class and in overall. The results are given in percentages of 
correctly classified samples. 
  
   Cl1    Cl2      Cl3        Cl4         Cl5         Cl6 Cl7  Overall 
BayesNormal_1 0.9833    0.8100    0.8933    0.9900    0.9967    1.0000    0.6500  0.9033 
BayesNormal_2 0.9633    0.9167    0.6267    0.9933    0.9900    0.9967    0.8567  0.9067 
decisionTree  0.8967    0.8500    0.8100    0.9867    0.9700    1.0000    0.7833  0.8995 
FLD        0.9733    0.4967    0.8933    0.9900    1.0000    0.9633    0.6900  0.8580 
KNN        0.8833    0.8200    0.7100    0.9833    0.9400    1.0000    0.8000  0.8766 
NearestMean         0.7100    0.7100    0.0867    0.8433    0.8967    0.9967    0.6767  0.7028 

Table 2: Accuracy rates for the experiment over single classifiers using feature reduction and their 
combination. 
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5.3 Experiment over single classifiers using boosting and their combination 
Boosting[5] is a general supervised method used to increase the accuracy of any classifier. It generates 
a classifier with a smaller error on the training data as it combines multiple hypotheses which 
individually have a large error. In this experiment, the single classifiers are used for boosting and the 
boosting results of each are used in combinations. In Table 4, the results of boosting of each classifier 
and their combinations are shown for each class and in overall. The results are given in percentages of 
correctly classified samples. 
 

   Cl1    Cl2      Cl3       Cl4    Cl5     Cl6       Cl7         Overall 
BayesNormal_1 0.9700  0.8233    0.7633 0.9900    1.0000    1.0000    0.6467  0.8847 
BayesNormal_2 0.9567  0.9033    0.6233    0.9900     0.9900    0.9967    0.8667  0.9038 
decisionTree  0.7200  0.3500    0.6400    0.7767     0.8567    0.7900    0.5700  0.6719 
FLD   0.9467  0.4667    0.8633    0.9900     1.0000    0.9033    0.6800  0.8357 
KNN   0.7600  0.8167    0.7100    0.9833     0.9000    1.0000    0.7300  0.8428 
NearestMean  0.7167  0.6600    0.0800    0.8433     0.8900    0.9967    0.6500  0.6909 
NeuralNetwork 0.9900  0.8167    0.8167    0.9900     0.9933    1.0000    0.7433  0.9071 
Parzen   0.7900  0.8500    0.5967    0.9800     0.9367    0.9933    0.7633  0.8442 
SVC   0.9933  0.7000    0.8400    0.9767     0.9967    1.0000    0.7233  0.8900 
Voting   1.0000  0.8600    0.8800    0.9900     1.0000    1.0000    0.7467  0.9252 
Maximum  0.9700  0.8200    0.7867    0.9900     1.0000    1.0000    0.6467  0.9009 
Product  0.8000  0.9100    0.8267    0.9900     0.9800    0.9967    0.7233  0.8895 

Table 3: Accuracy rates for the experiment over single classifiers using boosting and their combination. 
 
5.4 Experiment over single classifiers using bagging and their combination 
The bagging algorithm[6] tries to increase the accuracy of any classifier by performing bootstrapping 
iteratively. In this experiment, the single classifiers are used for bagging and the bagging results of 
each are used in combinations. In Table 4, the results of bagging of each classifier and their 
combinations are shown for each class and in overall. The results are given in percentages of correctly 
classified samples. 
 

   Cl1    Cl2      Cl3        Cl4         Cl5         Cl6 Cl7  Overall 
BayesNormal_1 0.9867    0.8000    0.8267    0.9900    1.0000    1.0000    0.6900  0.8990 
BayesNormal_2 0.9733    0.9533    0.6433    0.9933    0.9900    0.9967    0.8333  0.9188 
decisionTree  0.7133    0.4300    0.7567    0.9033    0.9400    0.9700    0.6300  0.7633 
FLD   0.9633    0.4533    0.8300    0.9900    1.0000    0.9433    0.6300  0.7027 
KNN   0.8600    0.7700    0.7267    0.9233    0.8900    1.0000    0.6300  0.8285 
NearestMean  0.6633    0.6467    0.1867    0.8833    0.9033    0.9967    0.6900  0.7100 
NeuralNetwork 0.9767    0.7467    0.9100    0.9900    1.0000    0.9967    0.8300  0.9214 
Parzen   0.8067    0.8900    0.7133    0.9700    0.9933    0.9867    0.7600  0.8742 
SVC    0.9333    0.6900    0.8067    0.9900    0.9933    0.9267    0.7467  0.8695 
Voting   0.9933    0.8567    0.8933    0.9933    1.0000    0.9967    0.7767  0.9300 
Maximum   0.9867    0.7967    0.8300    0.9900    1.0000    1.0000    0.6900  0.8990 
Product  0.8567    0.8967    0.8467    0.9900    1.0000    0.9933    0.7867  0.9100 

Table 4: Accuracy rates for the experiment over single classifiers using bagging and their combination. 
  
6 Analysis 
The main goal of these experiments is to compare the performances of single classifiers and their 
combinations (including all single classifiers in the combination) in terms of accuracy. The same 
comparison is done on bagged and bootstrapped single classifiers and their combinations, too. In 
addition, the single classifiers are trained on the data set whose feature space is reduced and these 
trained classifiers are combined. As well, it is analyzed which classifier combination method would 
perform best2.  
 

                                                 
2 Since both time and space complexity of classifiers is out of the scope of this paper, they are not analyzed. 
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The experiments demonstrate that single classifiers perform well on the dataset. Also, the results show 
that, in overall, combination rules, especially the Voting rule, give good results in all experiments. 
Duin et al. [1], also concludes that combining classifiers are very useful but, however, he observes that 
there is no overall winning combining rule.  
 
From the experiments, it is interesting to note that even if the use of the combination rules yield better 
results in overall than by using each of the classifiers individually, single classifiers give better results 
considering accuracies for each class separately.  
 
The Maximum and the Product rules seem to be noise sensitive as stated also in [1]. In all of the 
experiments, it can be investigated that a sudden decrease in the accuracy of some individual 
classifiers is most likely to decrease the accuracy of the Maximum and the Product rules. For example, 
if the results of class 3 are considered in all experiments, it is seen that a sudden decrease seen in the 
results for the NearestMean classifier more rapidly decrease the accuracies for class 3 in these two 
rules. 
 
If the experiment over single classifiers and their combination is analyzed, Voting rule outperforms 
the single classifiers and other combinations, in overall. The reason why the Maximum and Product 
rules even perform worse than some single classifiers is this property their sensitivity to noise property 
such that a low performance even in a single classifier decreases these rules’ performances rapidly. So, 
the Maximum or Product rules may not improve the performance compared to single classifiers, if the 
accuracy rates between the single classifiers differ a lot. In our experiments, since the number of single 
classifiers combined is 10, which is relatively large, the noise is very likely to be high. So, it is natural 
that the Maximum and Product rules do not improve the performance of some single classifiers. 
 
If the experiment over single classifiers using bagging and their combination is analyzed, it is seen that 
Voting rule still outperforms the single classifiers and other combinations, in overall. Also, the 
bagging and boosting strategies does not seem to work well in this dataset for both the single 
classifiers and their combinations. Duin et al.’s experiments also indicate that combining different 
classifiers trained on the same classifier (e.g. boosting and bagging) may improve the accuracy rate, 
but is generally far less useful. 
 
When the experimental results are analyzed, it can be realized that if the accuracies for all classes 
seem satisfactory, using combinations does not seem to improve the accuracy performance very much. 
But, in most cases using combinations may decrease the accuracy performance. However, if the 
percentages in some classes need to be improved, trying combinations may increase the individual 
classes’ performance rapidly. But, in this case, combinations may degrade some other classes’ 
performances giving sufficient results without any combination. Our experiments have many such 
other examples. For example, in the experiment over single classifiers and their combination, if one 
uses FLD, class 3 performance gives a performance of 0.4967, which is relatively bad. So, applying 
combination rules increase the accuracy rate for class 3 rapidly, while decreasing some classes’ 
accuracy rates. But, in all such cases in all experiments, the decrease rates in such classes’ accuracy 
performances seem to be very small compared to the increase rates in individual classes’ accuracy 
performances. 
 
7 Future Work 
The main aim for future work is to use the decision of each single classifier in combination. Because, a 
classifier, which gives bad results in overall, may classify a sample correctly even if most it cannot be 
classified correctly by most of the other single classifiers. However, each of the combination rules in 
this paper gives equal weights into each single classifier’s decision in order to derive the final decision, 
though one single classifier may be better in classifying the dataset than another. So, instead of 
behaving each individual classifier equally, an alternative approach that gives different weights into 
different classifiers’ decisions may be followed. For example, in the experiment over single classifiers 
and their combination, although the NeuralNetwork classifier gives the best individual overall result, 
its decision is given the same weight with the decision of the NearestMean classifier, which gives the 
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worst individual overall result. So, it may be wiser to give the NeuralNetwork classifier more weight 
than the NearestMean classifier in the final decision. 
 
In summary, we aim to use as many classifiers as possible. Then, the weight of each classifier in the 
final decision is assigned by its reliability and the reliability of each classifier is determined by its 
individual classification result. 
 
8 Conclusion 
In this paper, three classifier combination rules were investigated over a dataset which has not been 
used in any publication, yet. The features of the dataset are very similar to remote sensing datasets. 
Therefore, the experimental results presented here may serve alternatives to classification methods for 
classification of remote sensing data. 
 
The experiments demonstrated that classifier combination methods can be considered desirable 
alternatives to single methods. All three combination rules outperformed several single classifiers in 
terms of accuracies. Especially, the Voting Rule is shown to be the best choice if the number of single 
classifiers to be combined is big.  
 
In particular, combinations over single classifiers without performing any bagging, boosting and 
feature reduction gave the best results. 
 
As future work, a combination schema that tries to make use of as many classifiers as possible in order 
to arrive at a final decision is to be tried. In this schema, each classifier is given a different 
weight in the final decision according to its reliability. 
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