Online Text Categorization using Genetic
Algorithms

I. E. Sahin
Bilkent University
Department of Computer Engineering
06800, Bilkent, Ankara, Turkey

iesahin@cs.bilkent.edu.tr

April 7, 2005

1 Introduction

The problem of text categorization is to associate texts with categories ac-
cording to their semantic properties. Text categorization (a.k.a. Text Clas-
sification) problem with current ML solutions to it are described in [1]. In
this work, my goal is to present a study of genetic algorithms in Text Cat-
egorization problem. GA are not one of the major techniques for TC and
in [1], author only informs about the existence of such work, without giving
any details about the research accumulated so far. For TC, there seems to
be little interest apart from general classification problem.

In this work, I will give an algorithm that learns through applying user
interaction as a fitness function for GA. Similar methods are applied to
different problems before, like identification of faces. [2] Nevertheless, the
algorithm presented in this paper can be used for batch processing through a
set of classified text and user interaction is not necessary for training in that
case. Algorithm exploits evolutionary nature of GA to provide a behavior
that enables user interaction.

Text Categorization has its applications in document indexing, auto-
mated metadata generation, word sense disambiguation, building catalogs
of Web resources and in general any application requiring document orga-
nization. It is a task to assign a document d; to a category c¢; (used with
class interchangeably) by approximating a function d:DxC— {T, F} by
maximizing the coincidence of d with the actual categorization, ¢, where
D = {dy,...,d,} is the set of documents, C' = {c1,...,¢y} is the set of
classes, and T and F are boolean values for true and false, respectively. In
this problem, categories are just labels without any other declarative or pro-
cedural semantics and no ezogenous information such as publication date,

document type, publication source etc. are assumed to be available. Cat-
egorization must depend solely on information extracted from document.
[1]

A classifier may assign a document to multiple classes or a single class,
depending on the constraints. A special case of single category classification
is called binary categorization where a document d; is assigned to a class
¢; or its complement ¢;. Most of the TC literature is devoted to binary
case, because of its simpler illustration, having direct applications such as
filtering (e.g. spam filtering) and ability to generalize for multi-label case.|1]
In this paper, I will also consider the binary case. Moreover, I assume that
categories are populated more or less evenly for basic algorithm. Though
there is an extension for uneven multi-category case, initial exposition of the
algorithm is based on even distribution of documents between a category
and its complement.

2 Algorithm

2.1 Decision and Basic Model

For the single category case, TC problem is to classify a document D as
belonging to a class C or not. Let Go = {g1, ..., 9n} be aset of chromosomes
for class C'. Each chromosome has a vote for D, either positive or negative
about D;’s belonging to C' . For n (number of chromosomes) being an odd
number, majority on G¢ is decisive for D; belonging to class C.

Each chromosome g; has a number of genes I' = {v1,..., v, } to make a
decision about D;. <; consists of a word w; unique for chromosome and a
valency v; that is either 1 or 0. For m (number of genes) being an odd num-
ber, majority of R = {ry,...,r,,} determines the vote of g;. r; is determined
with respect to a document D with the following rule:

e if D contains w; and v; =1, 7r; =1
e if D does not contain w; and v; =0, r;, =1

e otherwise (if D contains but mustn’t contain, or D doesn’t contain but
must contain), r; = 0.

After G¢ decided for classification, user interaction or previously classified
data gives a correct classification for D, which is identical to decision made
by G¢ or not. This result is used as a fitness function for g; to determine the
next phase of population in G¢. ¢; has power p; and this power is increased
or decreased by a factor f according to its position in voting.

1 _ pi+f i Ri=Rcp
! pi—f ifRi#Rcp

where p! and pﬁ“ denote power in current and next phases respectively, R;

is the vote of g; in classification process and R¢ p is the correct classifica-
tion for D, either positive or negative. There is no limit for f, but since
mating probability is determined by p;, it must be determined to reflect the
sensitivity to errors in classification. An alternative is to have different f for
correct and incorrect voting, namely f; and f_ to change p; asymmetrically,
however this is a minor variation. f can also be a function of p! so that the
change is nonlinear, but this is again a variation to be considered after initial
tests.

After p; is determined, mating between ¢; is determined. In each turn,
two randomly selected chromosome is mated. The probability to participate

in mating for g; is
bi

Z?:l Dj
So, in the long run, a chromosome that votes for incorrect classification will
not be able to mate.

2.2 Crossover

There are two elements of g; to be crossed over with g;, for ¢ and j to be the
indices of the mating elements selected. These are mating probabilities p;
and p;, and genes I'; and I';. For g, is the chromosome produced by mating
gi and gj,
_PitDj
2
and 'y is reproduced by following procedure:

Let I'_ be the set for identical elements in I'; and T';.

Pk

I ={w|(mweli)A(mely)}

Let I'; « be the set for elements in I'; which is not an element of I';. T'; . is
defined similarly.

Liz = {ml(meli) Al ¢l;)}

and
iz ={wmlmelj)A(w ¢T)}

Define I'y, as
Ty =T_UZ(4Tz)

where Z is a n-point crossover function that selects elements from either set
and returns a set having a size n — m where m is the number of identical
elements in I'; and T';.

This way removes the necessity to check for multiple elements in ['y and
will make salient words that are common to all documents persistent. A

drawback to this scheme is the slowness to fix incorrect words common to
all chromosome. This problem is parallel to local optima problem we face
in all hill-climbing algorithms. A remedy for this case is mutation which is
described in the next section.

2.3 Mutation

Mutation is primary means to learn new information in newly encountered
documents. Unlike traditional GA, probability of mutation is higher and
dependent to the number of documents encountered. If, in the beginning,
n = 5 and a new document is encountered first time, ¢ = 6 and probability
of mutation p,, = % t is the number of classifications plus number of
chromosomes in the system. In the course of classification, as ¢ increase, p.,
will decrease and in the long run, G will be stabilized.

Let a document D consists of unique words D, = {d1,...,d,} . Let Rc p
be the real classification (state of the world) of document D according to class
C. R¢,p determines the valence of d; , a random element selected from D,
according to its frequency in the document. Frequent words appearing in
the document will be likely to be selected for replacing words in the genes.
For each v; = (w;,v;) € I' of a chromosome +; is replaced by (d;, Rc,p) with
a probability of p,,, if d; is not in words of I'already.

In other words, if Rc p is positive, we will have new words in I' with a
positive valence (v; = 1) and if R¢ p is negative, we will have new words
with v; = 0.

2.4 Initialization

Initialization of classifier is similar to mutation. In this case, however, instead
of replacing, mutation procedure selects words with a probability determined
by their frequency in the document. Since there is no negative instance, all
valence in this phase is 1.

Let there be a different document D; for each chromosome in this phase.
Let W; be the unique words of this document and for each word w; let there
be a function Cp,(w) that returns the number of w in D,. For m is the
number of genes, we select a word w; to build ; = (w;, 1) with a probability

of
Cp, (wi)
> k=1 Cp, (wr)
where n is the cardinality of W, and Cp, (w) is the number of w in document
D,. Note that, in each step, the selected word, w; is removed from W; so
probability of each word changes. This scheme is identical to the basic mating
procedure of GA.

2.5 Variations

There are some variations to the basic algorithm described above. These
variations may give good results in some cases where the assumptions of the
basic algorithm do not hold. Although there are no tests regarding these
variations currently, as a future work, these variations may be tested and
possible outcomes are reported on different datasets.

2.5.1 Including New Document Information as a Chromosome

Including newly acquired information by a new document is solved in basic
algorithm with mutation. In that scheme, mutation elements are determined
by new document and thus all chromosomes are affected from new informa-
tion. Another way to include information from document is to create a brand
new chromosome from document that has the same number of genes with
other chromosomes and giving it a power proportional to its desired effect;
making it to mate with other chromosomes as normal.

Like the initialization of chromosomes, if the document is a positive in-
stance that belongs to the class, valence of its words in genes are all 1 and if
the document is a negative instance, valence of its words in genes are all 0.

In this case, information from new document will affect a particular chro-
mosome if it has any chance to affect. The proposed voting and crossover
scheme does not allow more than 50% change in genes in one crossover. Since
there is no control over mating except power, new document’s probability to
affect voting scheme seems to be limited than that of mutation way. Along
with this, without elitism, chromosomes representing different local optima
may yield poor results. In mutation, a newcomer’s effect is limited in es-
pecially later cases, however in this case if it is able to mate, it can alter
behavior of resulting chromosome at once.

All these disadvantageous cases may be read advantageous if new docu-
ment is a good representative that may feed good results in later generations
of chromosomes.

2.5.2 Multiple Classes and Mutation

Despite the algorithm’s suitability for multiple classes by introducing differ-
ent chromosomes for each class, mutation model tends to increase negative
elements (elements that have v = 0 in genes) in chromosomes as the number
of classes increase. The reason behind this is to allocate more training to
negative instances, due to increased relative frequency of documents for a
particular class. For single class case, the number of negative instances can
be assumed to be around positive instances. However as the ratio of doc-
uments in a particular class decrease, this assumption (despite its inherent
unreliability in the beginning) becomes more and more invalid and genes
in chromosomes begin to be shaped by elements outside of the class and

this possibly decreases the performance in real world applications. Learning
what class is not cannot be relied on for classification because practically,
there may be infinite number of words that does not represent a class. And
classifying a document because of the lack of a finite subset of this infinite
words guarantees a failure in classification.

In order to solve this, an option is to eliminate all negative learning from
the algorithm and relying only on the representative words of class. However,
for textual information where nuances between classes are not always shown
by representatives of classes and where negation is sometimes necessary for
definitions, this scheme will perhaps yield a poor general performance too.

Another option is to make negative learning harder by reducing mutation
probability. A factor that can help in this option is the prior probabilities
of classes. In mutation of chromosomes (§2.3) p,, for negative instances
multiplied by P(C;), the prior probability of class before determining a pos-
sible mutation in genes. This way, the probability to have 0 in valence field
of genes is reduced by the ratio of documents in this class to the ratio of
elements in total.

In current tests, where a single class is used with a prior probability of
0.5, this modification is not reflected. Nevertheless, this is an important
modification for future versions to be tested with multiple classes.

2.5.3 Elitism

The basic algorithm does not include a version of elitism to conserve high
performance chromosomes. The hypothesis behind this says: After process-
ing a high number of documents, chromosomes will be stable enough to not
to preserve them against defects in the documents. Intuitively, there will be
representative words twice the number of genes in a chromosome after some
time. However, this may not give good performance and may result in low
accuracy at the end; which is unlikely to be recovered.

An alleviation to this problem is to have some number of chromosomes in
areserved place for each class as the elite ones. Since we have a metric, power,
in determination of the quality of chromosomes; there can be some parking
place for those chromosomes that have the highest ranking in classification
in the course training.

However, due to difference of textual data, success of classification may
not be repeatable. Since the algorithm may change the qualia of a class
during training, success at some training time ¢ may not represent the actual
success of chromosome. For textual classification, it is harder to propose a
consistent scheme for success of classifier since the classification process is
about semantics of the document and there is no way to enumerate semantics
which allows an objective success.

Another use for elitism is building a caste instead of reducing effect of
later documents. In this case, training does not change the behavior of de-

cision making chromosomes immediately. Instead a lower level of “common”
chromosomes are maintained along with elites and effect of new training doc-
uments are only applied to lower level chromosomes. Actual voting is carried
out by elite ones, but evaluation of common ones still continue. If any of
the commons is able to maintain a higher power than an elite chromosome,
these are exchanged. In this scheme, an oligarchy of chromosomes

3 Evaluation

The implementation of the algorithm is written in Python. In this deci-
sion, language’s capabilities regarding string processing played a role. As a
dataset, I used Reuters-21578 data [3] since it is a standard among text cat-
egorization community and has a size that makes managing and evaluation
easier.

I implemented an SGML parser to parse Reuters data files. Reuters-
21578 data has 27244419 total and 72967 distinct words. From these, I
have filtered the most frequent 200 words that make up 14066768 (~51%)
words in the corpus. I have also removed words containing digits and all
punctuation from the dataset. All textual data is converted to lowercase. A
naive stemming algorithm which drops all final “es”, “s”, “ed” and “ing” from
words is applied to the dataset.

In voting, thresholds are set to % of total chromosomes for classifier and
% of total genes in chromosome. This means, for any chromosome to vote
for the document, % of the genes must be in coherence with the document.
For a text to be classifier, at least % of the chromosomes must decide that
this text belongs to this class.

3.1 Tests for number of chromosomes and genes

I tested the parameters, number of chromosomes per class and number of
genes per chromosome. For this test, all 1912 instances from Reuters-21578
“coffee” category is applied to the classifier with the same number of random
texts from other categories.

In Table 1 accuracy of the classifier is maximized when n (number of
chromosomes) is equal to 7 or 9. In this case, for 11 genes, there are 77
or 99 total features for the category are considered for classification. Note
that, beyond this, accuracy decreases about 3% per 100 feature and this
shows the role of overfitting for the classification clearly. An interesting
point in the results is the 1-2% consistent difference between training and
test data. As we have mentioned, while training, features are also crossed
over and mutation from current data is applied for the next generation.
However, this scheme does not yield an optimum performance and with the
same parameters, in almost all cases, a classifier that does no training while

Table 1: Accuracy of Classifier for “coffee” category, number of genes = 11

‘ Number of chromosomes ‘ Accuracy Training Data ‘ Accuracy Test Data

1 0.5 0.5
3 0.69 0.68
5 0.71 0.72
7 0.75 0.75
9 0.73 0.75
11 0.71 0.73
13 0.73 0.75
15 0.72 0.73
17 0.73 0.75
19 0.69 0.71
21 0.69 0.75
29 0.70 0.74
31 0.69 0.71
33 0.67 0.72
35 0.69 0.72
39 0.73 0.72
49 0.66 0.73
59 0.71 0.73
69 0.67 0.69
89 0.66 0.71
111 0.66 0.71

classification gives better results. Reasons behind this must be investigated
thoroughly in the future.

In Table 2, same category is used to evaluate the threshold to set for
number of genes per chromosome. As it can be seen from the table, there
is a steady decrease in the accuracy in training phase while it is oscillating
around 67% for the test data.

3.2 Effect of Data Set Size

One of the big problems is having large number of documents to classify,
while rather dull tools to describe the semantics of categories. Examples are
“palladium”, “platinum” and “silver” categories of the dataset. In these, I
had high rates of accuracy over less number of documents (48 for palladium,
132 for platinum, 384 for silver) given 11 genes in each of 7 chromosomes.

Results for these conditions are in Table

Table 2: Accuracy of Classifier for “coffee” category, number of Chromosomes
=7

‘ Genes ‘ Accuracy Training ‘ Accuracy Test ‘

11 0.75 0.75
15 0.64 0.67
19 0.64 0.68
21 0.65 0.67
25 0.61 0.66
29 0.61 0.68

Table 3: Sensitivity to Data Set Size, 11 genes, 7 chromosomes

‘ Category ‘ Train Acc. ‘ Test Acc.

Palladium (48) | 0.94 0.96
Platinum (132) 0.64 0.81

Silver (384) 0.79 0.78
Coffee (1912) 0.75 0.75

The reason behind this sensitivity to data set size is the increased false
negatives in outcomes. For example, in “coffee” data set’s testing results,
there are 440 rejected true documents, while 517 are accepted. The number
of false positives for this case is only 32 while 925 elements are correctly
identified as alien to the category. The increase in dataset size triggers the
increase in number of false negatives more than others. For a document
to be classified in a category, it must have g ~ 8 words in common with
chromosomes in the configuration giving this results. However, as we have
seen, requiring more number of words does not lead a sharp drop in accuracy.

Crossing over words and expecting a mixture of document structure and
category semantics is, in fact, a bizarre way of applying statistics to seman-
tics, though current techniques to text categorization do the same thing,
maybe with some extra care and information. Above figures show that, for
large datasets, it is hard to expect a correct classification using only word
lists. There is perhaps some way to discriminate quality of information for a
given dataset other than just counting the number of words. There must be
a hierarchy from the most salient words of the category to the least, while
preserving nuances between categories.

4 Future Work and Conclusion

This work is a chopped down version of a greater one, where the structural
properties of document are also considered and all documents are specified
with a tree and category can be specified with crossovers and mutations over
this tree. Representing salient information of a document as a tree where the
root is the most important element of document can lead to a tree where the
semantics of a category is represented through relations between words rather
than numbers. This way, there could be a better representation of semantics
and errors leading to false classification can be overcome by relations of this
type.

Despite the high error rate in classification, this work told me where does
a “word list” approach to text categorization may fail. There is no “right
number of words” to classify a document into a category, since increasing
the number of words also increases the number of inconsistencies between
elements of classifier and document. “Word lists” which are used in almost
all Machine Learning approaches to Text Categorization, simply result in a
very rough shape that must be interpreted with a very skilled machine. Since
we cannot adjust the intelligence provided by computers, our only exit is to
adjust the representation we use for information. A natural one which leads
to learning the world as the problem progresses; rather than association of
statistics can yield better results in terms of intelligence.

With these ideals, there can be much to be done for this work to become
a real classifier. Genes having a valence of 0 must be analyzed thoroughly,
because their benefit may not deserve the complexity they bring. Also for
multi-category case, where the probability of mutation must adjusted, there
can be a better scheme to include new information as it becomes available.

The holy grail of semantics in computers is to describe the world to com-
puter as we describe it to another human. This ideal seems to be impossible
to achieve by just symbol manipulation, because “meaning” for a human is
not sourced directly from symbols. Without relating symbols to perception,
there is possibly no way that can make to tell the meaning in all facets. We
are like in front of a person without any senses, no vision, no touching, no
smelling while we are trying to tell a machine how the world works. Text
Categorization, with its all broad coverage of problems that we face and
solve daily, is a good representative of this kind of problems.

References

[1] Sebastiani, F.; Machine Learning in Automated Text Categoriza-
tion; ACM Computing Surveys, Volume 34, Issue 1, March 2002
http://doi.acm.org/10.1145/505282.505283

10

[2] Goldberg, David; Genetic Algorithms in Search, Optimization and Ma-
chine Learning, Addison-Wesley, 1989

[3] Hettich, S., Bay, S. D. (1999). Reuters-21578 Dataset in
The UCI KDD Archive, Irvine, CA: University of Cali-
fornia, Department of Information and Computer Science
http://kdd.ics.uci.edu/databases/reuters21578 /reuters21578.html

[4] Beasley D., Bull D. R. Martin R. R., An Overview of Genetic
Algorithms: Part 1 Fundamentals, University Computing, 1993
http://laseeb.isr.ist.utl.pt /tfc_dae/docs/ga_overviewl.pdf

[5] Beasley D., Bull D. R. Martin R. R., An Overview of Genetic
Algorithms: Part 2 Research Topics, University Computing, 1993
http://laseeb.isr.ist.utl.pt /tfc_dae/docs/ga_overview2.pdf

[6] Davis L., Steenstrup M., Genetic Algorithms and Simulated Annealing,
Pitman, London, 1987

[7] Russell. S., Norvig P.; Artificial Intelligence: A Modern Approach; Pren-
tice Hall, 2003

11

