
NeuroTextures:
Image Completion and Storage Using Neural Networks

M. Erol Aran

merol@cs.bilkent.edu.tr

Bilkent University

Abstract: Recovery of corrupted images, large

image databases and texture synthesis are three

diverse topics that are studied in both computer

graphics and in computer vision. In this paper

we demonstrate to teach a neural network simply

a texture to handle the problems stated. In

particular, we propose a novel approach, the

NeuroTextures, to model the texture at hand.

NeuroTextures not only model the image but it is

effective to complete the parts of an image when

it is corrupted. Different network architectures

are offered for modeling. We modeled just a

simple intensity texture with a NeuroTexture,

but its extensions to medical data,

photovolumetric data and image databases are

straightforward.

Keywords: Textures, neural networks, learning.

1 Introduction
Application of machine learning methods to

computer graphics is relatively a new topic

whereas there have been lots of research in the

computer vision field in the last decade. Images

are stored as to represent pixel values in

computers. Although there is no problem in

storing and processing small images,

manipulation and storage of large images,

medical data and large image databases are still

challenging problems in the literature. Beside

storage and processing problems there is always

the problem of recovery of images that are

corrupted.

This paper proposes neural network approaches

to store images and complete corrupted images

within NeuroTextures, whose name was inspired

by Demetri Terzopoulos’ NeuroAnimators [1].

In this work we trained NeuroTextures that learn

only a small (ie;32x32 8bpp, 64x64 8bpp)

corrupted texture, but the work presented here

may be especially to corrupted medical data

perhaps deserving the name NeuroTexels etc.

1.1 Previous Work
We do not see much work taken in computer

graphics field related with network architectures.

Network models especially found place in

computer graphics literature by Demetri

Terzopoulos et. Al. Before his work, some

researchers used simple architectures in

 1

character animation. Ridsdale [2] uses a

connectionist model of skill memory for skill

acquisition. Van de Panne and Fiume [3] uses

the sensor-actuator networks that are recurrent

networks of units taking sensory information as

input and producing actuator controls as output.

Sims designed a network architecture to

construct simple “brains” that control evolved

creatures.

Except from those explained above, Terzopoulos

et. al exploited neural networks to produce

controlled, physically realistic animation

satisfying user-specified constraints at a fraction

of the computational cost of conventional

numerical simulation. Their work tried to

replace the numeric solution of complex

animation system with a fast neural network

emulator.

Inspired by these results, we thought using

neural networks for volume, medical or simply

texture data. Medical data especially comes in

image slices that are sampled from a patient’s

body’s some region. Each slice stores some data

related to the region of interest in terms of X-

Ray absorption, ultra sound interference etc. and

this information is usually stored as 8 or 16 bit

integers to represent the relative intensity of the

measured activity. Modeling through neural

networks give us the opportunity to reduce the

memory cost as much as completing the missing

information in these images.

1.2 NeuroTextures
Teaching a neural net a texture can be done

through supervised learning where each of the

training sample’s class label is known. Then

another important parameters that effect the

network performance are the number of training

samples, type of the network, number of input

and output layer units, number of hidden layers

and hidden layer units etc. Feature selection is

another important topic that we consider.

In designing NeuroTextures we try different

network architectures to get the best

performance in terms of low training time and

correct classification of pixel intensities. Before

discussing the different types of architectures it

is necessary to introduce some field related

concepts.

2 Artificial Neural Networks

(ANNs)
An Artificial Neural Network (ANN) is an

information processing unit that is inspired by

the nervous systems. ANNs learn by example.

Learning in biological systems involves

adjustments to the synaptic connections that

exist between the neurons. The same approach is

valid for the ANNs.

The basic processing unit of an ANN is called a

neuron. Mathematically, the neuron behaves as

an activation or mapping function f(.) producing

an output y = f(net), where net is the cumulative

input stimuli to the neuron and f is typically a

 2

nonlinear function of net. For example, net is

often taken as the weighted sum of the inputs

 ∑=++=
i ii wxwxwxwxnet 332211

and f is typically a monotonic nondecreasing

function of net. An artificial neuron model is

shown below in Figure 1.

Figure 1 – Artificial Neuron

In our experiments we used the sigmoid function

as the activation function. For sigmoid units, the

output varies continuously but not linearly as the

input changes. Sigmoid units bear a greater

resemblance to real neurons than do linear or

threshold units, but all three must be considered

rough approximations. Some activation

functions used in ANNs are in Figure 2.

Figure 2 – Activation Functions

A neural network is a set of interconnected

neurons. The connections between the units and

the layers characterize the network. In our

experiments we mainly used feedforward neural

network.

2.1 NeuroTextures with Multilayer

Feedforward Neural Networks

The first type of the network architecture that we

used for designing a NeuroTexture is the

multilayer feedforward neural network (MLFF)

with backpropagation (BP) learning. A simple

perceptron may also be used for a trial but since

our textures represent arbitrary nonlinear

regions, it does not worth trying such a simple

model. Therefore we start with an MLFF. A

general MLFF is shown in Figure 3.

Figure 3 – A General Multilayer Feedforward

Network

The network shown in Figure 3 is a feedforward,

fully-connected hierarchical network consisting

 3

of an input layer, one hidden layer and an output

layer. The internal layers are called ‘hidden’

because they only receive internal inputs (inputs

from other processing units) and produce

internal outputs (outputs to other processing

units).

A unit in the hidden layer computes a function of

the input signal and the weights, and passes its

output forward to all of the units in the next

successive layer. The process is repeated until

the final computation is produced by the output

units when there are more than one hidden layer.

To train the network there have been so many

approaches such as the perceptron learning

algorithm, Widrow-Hoff LMS or delta learning

rule and backpropagation algorithm. Neither

the perceptron algorithm nor the Widrow-Hoff

delta rule cannot be applied to networks with

hidden layers. These methods fail tospecify how

to adjust the hidden layer weights. This is

known as the ‘credit assignment’ problem since

these nethods are unable to give credit or assign

blame to hidden layer weights for errors that

occur in the output layer. The backpropagation

learning method, a generalization of the delta

rule, does specify how to adjust the weights in

hidden layers. It therefore permits the

construction of feedforward, multilayer networks

which can learn to compute much more complex

mappings.

2.1.1 Input Layer for The NeuroTexture

To be able to determine the number of input

units, it is necessary to decide the features that is

representative for the problem domain. We

approach the problem in a local and spatial way

and choose the pixel coordinates as the features.

Of course a more global approach is necessary

for more complicated subjects such as texture

synthesis or image segmentation, but for now we

just focus on the learning of the texture and local

completion. We found it to be sufficient for this

purposes. As a result, our NeuroTexture has 2

input units in the input layer one of which is the

x coordinate and other one is the y coordinate of

the pixel.

2.1.2 Input and Output Layers

After selecting the features for a given texture

image and inputs for the network, it is necessary

to model the output values. For the sake of

simplicity, we teach the network 8 bit intensity

images only for now. Extension to 24 bit color

images is obvious but requires more memory

space and training time. In an 8 bit intensity

image, the value of a pixel is between 0 and 255

meaning it can have 256 different values. This

leads us to design the network with 256 output

units in the output layer.

2.1.3 Training Examples and Sampling

Process

Our training examples for the NeuroTexture is

the pixel coordinates and corresponding intensity

values. It is important here that if the network is

 4

given all the pixels in the image, then it will try

to overfit the data which will require a lot of

neurons in the hidden layers. On the other hand,

supplying too few data will prevent the network

to learn the overall structure of the texture.

Therefore, we give the network only a

representative part of the image and this is

controlled by horizontal and vertical sampling

rates. The training data is formed by sampling

the image in both horizontal and in vertical axes.

For fixed network parameters, the best sampling

frequency appeared to be 4 in our experiments.

Frequencies above 4 result in very distorted

images and the network cannot get the details

well. Frequencies below 4 result in overfitting,

requires a lot of neurons and long training times.

When the sampling frequency is selected as 4, it

means that we construct the image from its 1/16

sized samples, meaning if we have 1/16 of an

image, it is possible to recover it with

NeuroTextures as long as the data is

representative.

2.1.4 Hidden Layers

When designing the hidden layers, we first

prefer the simpler approaches such as one hidden

layer and networks having no more than 500

neurons in the hidden layer. We realized that for

images larger than 64x64 pixels, it is more

efficient to partition the image into parts and

designing a NeuroTexel for each part. Small,

simpler networks are more successfull in

learning the images. For a 32x32 image, one

hidden layer with 100 neurons with a sampling

frequency of 4 in both horizontal and vertical

axes achieved the best in our experiments.

When the image size is increased to 64x64, it is

necessary to partition the image and train each

part separately or to add one more hidden layer

to compensate for the reflection of the

complexity of the image.

2.2 Backpropagation Learning

The backpropagation learning method was

discovered by several researchers for different

reasons. Werbos [4] was perhaps the earliest to

propose the method. Even so, Rumelhart is

known for his many contributions on the

algorithm and putting it into work. The

backpropagation learning method can be applied

to any multilayer network that uses differentiable

activation functions and supervised training. It is

an optimization procedure based on gradient

descent that adjusts weights to reduce the system

error or cost function. During the learning

phase, input patterns are presented to the

network in some sequence. Each training pattern

is propagated forward layer by layer until an

output pattern is computed. The computed

output is then compared to a desired or target

output and an error value is determined. The

errors are used as inputs to feedback connections

from which adjustments are made to the synaptic

weights layer by layer in a backward direction.

Using backpropagation, the hidden layer weights

are adjusted using the errors from the subsequent

layer. Thus, the errors computed at the output

layer are used to adjust the weights between the

 5

last hidden layer and the output layer. Likewise,

an error value computed from the last hidden

layer outputs is used to adjust the weights in the

next to the last hidden layer and so on until the

weight connections to the first hidden layer are

adjusted. In this way, errors are propagated

backwards layer by layer with corrections being

made to the corresponding layer weights in an

iterative manner. The process is repeated a

number of times for each pattern in the training

set until the total output error converges to a

minimum or until some limit is reached in the

number of training iterations completed.

2.2.1 Network Parameters of The

NeuroTexture

2.2.1.1 Learning Rate Coefficient

The learning rate coefficient detemines the size

of the weight adjustments made at each iteration

and hence influences the rate of convergence.

This coefficient is important since poor choice

can result in failure to converge. Although it is

known that it is better to have a varying learning

rate coefficient throughout the learning process,

for the sake of simplicity we kept it to be

constant. We found it to be 0.00001 for the best

convergence.

2.2.1.2 Momentum Constant

The rate of convergence also may be improved

with introduction of some inertia or momentum

to the gradient expression. This can be

accomplished by adding a fraction of the

previous weight change to the current weight

change. The addition of such a term can help

smooth out the descent path by preventing

extreme changes in the gradient due to local

anomalies. It can act as an averaging effect

which smooths the trajectory of the gradient as it

moves downhill. The value of the momentum

constant should be positive and less than 1. In

fact it is better to vary it during the learning

phase but in our problems we found it to be

nonproblematic for a constant momentum

constant. In our problem we found the

momentum constant to be 0.9 for the best

convergence.

2.2.1.3 Activation Function

The most frequently used activation function in

the neural network community is perhaps the

sigmoid function. This function has some very

good properties especially when the

computational properties are concerned.

Although it may drastically decrease the

performance when used in the incorrect problem,

this was not the case for ours. We designed all

of our layers with a sigmoid activation function.

2.2 NeuroTextures with Boltzmann

Machines and Simulated Annealing
Although the results with multilayer feedforward

neural network with backpropagation are not

bad, we think that we may get better

convergence rates with less neurons using a

different architecture. Our another approach to

design the NeuroTexel is Boltzmann Machines.

 6

Multilayer feedforward networks are good at

generalizations and learning but when it comes

to image remembering associative memory

approaches are more successfull. We did not try

associative memory directly because it is too

simple to handle our problem. Hopfield

networks which are similar to the Boltzmann

machine is another alternative but we did not

prefer it since it does not have hidden layers

which we suppose the network should have for

the diverse nonlinearity of textures.

2.2.1 Boltzmann Machines

The Boltzmann machine is different from a

feedforward neural network in the sense that it is

a stochastic network. The states which the

network assumes are governed by the Boltzmann

distribution, an exponentional form of

probability distribution which is used to model

the states of a physical system at thermal

equilibrium.

Feedforward networks with backpropagation had

the risk of being trapped in a local minimum.

Boltzmann machines tackle this problem. A

method calles as simulated annealing is applied

to the network during operation and learning.

This process permits the network to escape from

local minima and converge to a global

equilibrium.

Design of the machine and its results will be

given after the review process.

3 Results
We have experimented with 32x32 and 64x64

textures. The original textures and the learned

textures are shown in Figure 4 and Figure 5.

 (a) (b) (c)

Figure 4 – Original texture in (a). 2 hidden layers
with 100 neurons total with a sampling
frewuency of 3 (b). 1 hidden layer with 100
neurons total with a sampling frewuency of 4 (c)

 (a) (b)

Figure 4 – Original texture in (a). 2 hidden layers
with 2000 neurons total with a sampling
frewuency of 4 (b)

4 Summary &Future Work
We presented a neural network approach to the

completion, storage and synthesis of textures.

This work may find application areas such as

scientific visualization, image databases and

perhaps compression.

As a future work, Boltzmann machine

implementation is proposed. Also experiments

with larger datasets and especially with medical

data may be done. Performance analysis of the

system may also be done more seriously.

 7

References: [4] Werbos, Beyond Regression: New Tools for
Prediction and Analysis in the Behavioral
Sciences, 1974, Harvard University, doctoral
dissertation

[1] NeuroAnimator: FastNeural Network
Emulation and Control of Physics-Based
Models,SIGGRAPH98,Radek
Grzeszczuk,Demetri Terzopoulos, Geoffrey Hinton,

[2] G. Ridsdale. Connectionist modeling of skill
dynamics. Journal of Visualization

and Computer Animation, 1(2):66–72, 1990.

[3] Michiel van de Panne and Eugene Fiume.
Sensor-actuator networks. In James T.
Kajiya, editor, Computer Graphics (SIGGRAPH
’93 Proceedings), volume 27,

pages 335–342, August 1993.

 8

