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Abstract: Recovery of corrupted images, large 

image databases and  texture synthesis are three 

diverse topics that are studied in both computer 

graphics and in computer vision.  In this paper 

we demonstrate to teach a neural network simply 

a texture to handle the problems stated.  In 

particular, we propose a novel approach, the 

NeuroTextures, to model the texture at hand.  

NeuroTextures not only model the image but it is 

effective to complete the parts of an image when 

it is corrupted.  Different network architectures 

are offered for modeling.  We modeled just a 

simple intensity texture with a NeuroTexture, 

but its extensions to medical data, 

photovolumetric data and image databases are 

straightforward. 
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1    Introduction 
Application of machine learning methods to 

computer graphics is relatively a new topic 

whereas there have been lots of research in the 

computer vision field in the last decade.  Images 

are stored as to represent pixel values in 

computers.  Although there is no problem in 

storing and processing small images, 

manipulation and storage of large images, 

medical data and large image databases are still 

challenging problems in the literature.  Beside 

storage and processing problems there is always 

the problem of recovery of images that are 

corrupted. 

This paper proposes neural network approaches 

to store images and complete corrupted images 

within NeuroTextures, whose name was inspired 

by Demetri Terzopoulos’ NeuroAnimators [1].  

In this work we trained NeuroTextures that learn 

only a small (ie;32x32 8bpp, 64x64 8bpp) 

corrupted texture, but the work presented here 

may be especially to corrupted medical data 

perhaps deserving the name NeuroTexels etc. 

 

1.1 Previous Work 
We do not see much work taken in computer 

graphics field related with network architectures.   

Network models especially found place in 

computer graphics literature by Demetri 

Terzopoulos et. Al. Before his work, some 

researchers used simple architectures in 
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character animation. Ridsdale [2] uses a 

connectionist model of skill memory for skill 

acquisition. Van de Panne and Fiume [3] uses 

the sensor-actuator networks that are recurrent 

networks of units taking sensory information as 

input and producing actuator controls as output. 

Sims designed a network architecture to 

construct simple “brains” that control evolved 

creatures. 

Except from those explained above, Terzopoulos 

et. al exploited neural networks to produce 

controlled, physically realistic animation 

satisfying user-specified constraints at a fraction 

of the computational cost of conventional 

numerical simulation.  Their work tried to 

replace the numeric solution of complex 

animation system with a fast neural network 

emulator.   

Inspired by these results, we thought using 

neural networks for volume, medical or simply 

texture data.  Medical data especially comes in 

image slices that are sampled from a patient’s 

body’s some region.  Each slice stores some data 

related to the region of interest in terms of X-

Ray absorption, ultra sound interference etc. and 

this information is usually stored as 8 or 16 bit 

integers to represent the relative intensity of the 

measured activity.  Modeling through neural 

networks give us the opportunity to reduce the 

memory cost as much as completing the missing 

information in these images. 

 

 

 

1.2    NeuroTextures 
Teaching a neural net a texture can be done 

through supervised learning where each of the 

training sample’s class label is known.  Then 

another important parameters that effect the 

network performance are the number of training 

samples, type of the network, number of input 

and output layer units, number of hidden layers 

and hidden layer units etc.  Feature selection is 

another important topic that we consider. 

In designing NeuroTextures we try different 

network architectures to get the best 

performance in terms of low training time and 

correct classification of pixel intensities.  Before 

discussing the different types of architectures it 

is necessary to introduce some field related 

concepts. 

 

2 Artificial Neural Networks 

(ANNs) 
An Artificial Neural Network (ANN) is an 

information processing unit that is inspired by 

the nervous systems. ANNs  learn by example. 

Learning in biological systems involves 

adjustments to the synaptic connections that 

exist between the neurons. The same approach is 

valid for the ANNs.  

The basic processing unit of an ANN is called a 

neuron.   Mathematically, the neuron behaves as 

an activation or mapping function f(.) producing 

an output y = f(net), where net is the cumulative 

input stimuli to the neuron and f is typically a 
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nonlinear function of net.  For example, net is 

often taken as the weighted sum of the inputs  
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and f is typically a monotonic nondecreasing 

function of net.  An artificial neuron model is 

shown below in Figure 1. 

 

Figure 1 – Artificial Neuron 

 

In our experiments we used the sigmoid function 

as the activation function. For sigmoid units, the 

output varies continuously but not linearly as the 

input changes. Sigmoid units bear a greater 

resemblance to real neurons than do linear or 

threshold units, but all three must be considered 

rough approximations.  Some activation 

functions used in ANNs are in Figure 2. 

 

Figure 2 – Activation Functions 

 

A neural network is a set of interconnected 

neurons.  The connections between the units and 

the layers characterize the network.  In our 

experiments we mainly used feedforward neural 

network. 

 

2.1 NeuroTextures with Multilayer 

Feedforward Neural Networks 

 
The first type of the network architecture that we 

used for designing a NeuroTexture is the 

multilayer feedforward neural network (MLFF) 

with backpropagation (BP) learning.  A simple 

perceptron may also be used for a trial but since 

our textures represent arbitrary nonlinear 

regions, it does not worth trying such a simple 

model.  Therefore we start with an MLFF.  A 

general MLFF is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

Figure 3 – A General Multilayer Feedforward 

Network 

 

The network shown in Figure 3 is a feedforward, 

fully-connected hierarchical network consisting 
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of an input layer, one hidden layer and an output 

layer.  The internal layers are called ‘hidden’ 

because they only receive internal inputs (inputs 

from other processing units) and produce 

internal outputs  (outputs to other processing 

units).   

A unit in the hidden layer computes a function of 

the input signal and the weights, and passes its 

output forward to all of the units in the next 

successive layer.  The process is repeated until 

the final computation is produced by the output 

units when there are more than one hidden layer. 

To train the network there have been so many 

approaches such as the perceptron learning 

algorithm, Widrow-Hoff LMS or delta learning 

rule  and backpropagation algorithm.  Neither 

the perceptron algorithm nor the Widrow-Hoff 

delta rule cannot be applied to networks with 

hidden layers.  These methods fail tospecify how 

to adjust the hidden layer weights.  This is 

known as the ‘credit assignment’ problem since 

these nethods are unable to give credit or assign 

blame to hidden layer weights for errors that 

occur in the output layer.  The backpropagation 

learning method, a generalization of the delta 

rule, does specify how to adjust the weights in 

hidden layers.  It therefore permits the 

construction of feedforward, multilayer networks 

which can learn to compute much more complex 

mappings.   

 

 

 

 

2.1.1 Input Layer for The NeuroTexture 

To be able to determine the number of input 

units, it is necessary to decide the features that is 

representative for the problem domain.  We 

approach the problem in a local and spatial way 

and choose the pixel coordinates as the features.  

Of course a more global approach is necessary 

for more complicated subjects such as texture 

synthesis or image segmentation, but for now we 

just focus on the learning of the texture and local 

completion.  We found it to be sufficient for this 

purposes.  As a result, our NeuroTexture has 2 

input units in the input layer one of which is the 

x coordinate and other one is the y coordinate of 

the pixel. 

 

2.1.2 Input and Output Layers 

After selecting the features for a given texture 

image and inputs for the network, it is necessary 

to model the output values.  For the sake of 

simplicity, we teach the network 8 bit intensity 

images only for now.  Extension to 24 bit color 

images is obvious but requires more memory 

space and training time.  In an 8 bit intensity 

image, the value of a pixel is between 0 and 255 

meaning it can have 256 different values.  This 

leads us to design the network with 256 output 

units in the output layer.   

 

2.1.3 Training Examples and Sampling 

Process 

Our training examples for the NeuroTexture is 

the pixel coordinates and corresponding intensity 

values.  It is important here that if the network is 
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given all the pixels in the image, then it will try 

to overfit the data which will require a lot of 

neurons in the hidden layers.  On the other hand, 

supplying too few data will prevent the network 

to learn the overall structure of the texture.  

Therefore, we give the network only a 

representative part of the image and this is 

controlled by horizontal and vertical sampling 

rates.  The training data is formed by sampling 

the image in both horizontal and in vertical axes.  

For fixed network parameters, the best sampling 

frequency appeared to be 4 in our experiments.  

Frequencies above 4 result in very distorted 

images and the network cannot get the details 

well.  Frequencies below 4 result in overfitting, 

requires a lot of neurons and long training times.   

When the sampling frequency is selected as 4, it 

means that we construct the image from its 1/16 

sized samples, meaning if we have 1/16 of an 

image, it is possible to recover it with 

NeuroTextures as long as the data is 

representative. 

 

2.1.4 Hidden Layers 

When designing the hidden layers, we first 

prefer the simpler approaches such as one hidden 

layer and networks having no more than 500 

neurons in the hidden layer.  We realized that for 

images larger than 64x64 pixels, it is more 

efficient to partition the image into parts and 

designing a NeuroTexel for each part.  Small, 

simpler networks are more successfull in 

learning the images.  For a 32x32 image, one 

hidden layer with 100 neurons with a sampling 

frequency of 4 in both horizontal and vertical 

axes achieved the best in our experiments.  

When the image size is increased to 64x64, it is 

necessary to partition the image and train each 

part separately or to add one more hidden layer 

to compensate for the reflection of the 

complexity of the image. 

 

2.2  Backpropagation Learning   

The backpropagation learning method was 

discovered by several researchers for different 

reasons.  Werbos [4] was perhaps the earliest to 

propose the method.  Even so, Rumelhart is 

known for his many contributions on the 

algorithm and putting it into work.  The 

backpropagation learning method can be applied 

to any multilayer network that uses differentiable 

activation functions and supervised training. It is 

an optimization procedure based on gradient 

descent that adjusts weights to reduce the system 

error or cost function.  During the learning 

phase, input patterns are presented to the 

network in some sequence.  Each training pattern 

is propagated forward layer by layer until an 

output pattern is computed.  The computed 

output is then compared to a desired or target 

output and an error value is determined.  The 

errors are used as inputs to feedback connections 

from which adjustments are made to the synaptic 

weights layer by layer in a backward direction. 

Using backpropagation, the hidden layer weights 

are adjusted using the errors from the subsequent 

layer.  Thus, the errors computed at the output 

layer are used to adjust the weights between the 
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last hidden layer and the output layer.  Likewise, 

an error value computed from the last hidden 

layer outputs is used to adjust the weights in the 

next to the last hidden layer and so on until the 

weight connections to the first hidden layer are 

adjusted.  In this way, errors are propagated 

backwards layer by layer with corrections being 

made to the corresponding layer weights in an 

iterative manner.  The process is repeated a 

number of times for each pattern in the training 

set until the total output error converges to a 

minimum or until some limit is reached in the 

number of training iterations completed. 

 

2.2.1 Network Parameters of The 

NeuroTexture 

2.2.1.1 Learning Rate Coefficient 

The learning rate coefficient detemines the size 

of the weight adjustments made at each iteration 

and hence influences the rate of convergence.  

This coefficient is important since poor choice 

can result in failure to converge.  Although it is 

known that it is better to have a varying learning 

rate coefficient throughout the learning process, 

for the sake of simplicity we kept it to be 

constant.  We found it to be 0.00001 for the best 

convergence. 

 

2.2.1.2  Momentum Constant 

The rate of convergence also may be improved 

with introduction of some inertia or momentum 

to the gradient expression.  This can be 

accomplished by adding a fraction of the 

previous weight change to the current weight 

change.  The addition of such a term can help 

smooth out the descent path by preventing 

extreme changes in the gradient due to local 

anomalies.  It can act as an averaging effect 

which smooths the trajectory of the gradient as it 

moves downhill.  The value of the momentum 

constant should be positive and less than 1.  In 

fact it is better to vary it during the learning 

phase but in our problems we found it to be 

nonproblematic for a constant momentum 

constant.  In our problem we found the 

momentum constant to be 0.9 for the best 

convergence. 

 

2.2.1.3 Activation Function 

The most frequently used activation function in 

the neural network community is perhaps the 

sigmoid function.  This function has some very 

good properties especially when the 

computational properties are concerned.  

Although it may drastically decrease the 

performance when used in the incorrect problem, 

this was not the case for ours.  We designed all 

of our layers with a sigmoid activation function.   

 

2.2 NeuroTextures with Boltzmann 

Machines and Simulated Annealing 
Although the results with multilayer feedforward 

neural network with backpropagation are not 

bad, we think that we may get better 

convergence rates with less neurons using a 

different architecture.  Our another approach to 

design the NeuroTexel is Boltzmann Machines.  
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Multilayer feedforward networks are good at 

generalizations and learning but when it comes 

to image remembering associative memory 

approaches are more successfull.  We did not try 

associative memory directly because it is too 

simple to handle our problem.  Hopfield 

networks which are similar to the Boltzmann 

machine is another alternative but we did not 

prefer it since it does not have hidden layers 

which we suppose the network should have for 

the diverse nonlinearity of textures. 

 

2.2.1 Boltzmann Machines 

The Boltzmann machine is different from a 

feedforward neural network in the sense that it is 

a stochastic network.  The states which the 

network assumes are governed by the Boltzmann 

distribution, an exponentional form of 

probability distribution which is used to model 

the states of a physical system at thermal 

equilibrium.   

Feedforward networks with backpropagation had 

the risk of being trapped in a local minimum.    

Boltzmann machines tackle this problem.  A 

method calles as simulated annealing is applied 

to the network during operation and learning.  

This process permits the network to escape from 

local minima and converge to a global 

equilibrium.   

Design of the machine and its results will be 

given after the review process. 

 

 

 

3 Results 
We have experimented with 32x32 and 64x64 

textures.  The original textures and the learned 

textures are shown in Figure 4 and Figure 5. 

               

                                
                     (a)          (b)         (c) 

Figure 4 – Original texture in (a). 2 hidden layers 
with 100 neurons total with a sampling 
frewuency of 3 (b).  1 hidden layer with 100 
neurons total with a sampling frewuency of 4 (c) 
 

                           
                    (a)                         (b)  

Figure 4 – Original texture in (a). 2 hidden layers 
with 2000 neurons total with a sampling 
frewuency of 4 (b) 
                                      

4   Summary &Future Work  
We presented a neural network approach to the 

completion, storage and synthesis of textures.  

This work may find application areas such as 

scientific visualization, image databases and 

perhaps compression.  

As a future work, Boltzmann machine 

implementation is proposed.  Also experiments 

with larger datasets and especially with medical 

data may be done.  Performance analysis of the 

system may also be done more seriously. 
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