
Extending DeEPs, An Instance-Based Lazy

Discovery And Classification System

Onur Onder
oonder@cs.bilkent.edu.tr

Computer Science Department
Bilkent University
Ankara - TURKEY

April 7, 2005

Abstract

DeEPs concentrates on the frequency of emerging patterns that can
be computed between the classes. One of the features of this classification
system is to use the infinite frequency-change rate between the emerging
patterns. Instead of infinite rate, a finite rate can be used, which would
include the discovery of attribute subsets that are found in both classes.

Keywords: DeEPs, instance-based, lazy discovery, classification, finite frequency-

change rate

1 Introduction

1.1 DeEPs Definition

DeEPs is defined in [1], is the acronym of “Decision making by Emerging Pat-

terns”. It uses pattern information on the training set to find the class of a test

instace. The DeEPs technique described in the paper does the classification by

calculating the frequency of patterns found in each class. The frequency-change

rate between the classes creates a base for the idea and only the infinite rates

are considered between the classes. DeEPs is a lazy learning algoritm and to

1

Figure 1: Whole training set

make sure that it does compete with the other lazy learning classifiers some

data reduction methods are described by the authors.

1.2 Data Set Reduction

1.2.1 Eliminating Irrevelant Data

Since the lazy learning approaches has no (or little) previous learning phase, the

training data must be evaluated at the testing phase. Considering efficiency, the

training data must be simplified as much as possible. For this purpose, initially

the irrevelant data is removed or filtered out from the data set. This can be

done by eliminating the data that does not match the test instance attributes.

This operation will decrease the data set in horizontal dimention.

After eliminating the irrelevant data, the maximal instances can be chosen

to further make the data set sparse in the vertical dimension.

For instance, the figures 1 and 2 show the original training set, then the

removed irrelevant data and the maximal instances.

2

Figure 2: Reduced data set, the highlighted instances are the maximal ones

1.2.2 Borders for Efficiency

The implementation of DeEPs classifier searches the subsets of a test instance

attributes in the classes. However finding and evaluating all the subsets is not

feasible. For this purpose, the concept of “Borders” is given.

A border is denoted by < L,R >, is defined as an ordered pair of two bounds

L and R such that L and R are two anti-chains satisfying:

• ∀X ∈ L,∃Y ∈ R such that X ⊆ Y

• ∀Y ∈ R,∃X ∈ L such that Y ⊇ X

For instance, a border < {{a}, {b}}, {{a, b, c}, {b, c, d}} > will describe the

collection of [L, R] that is {{a}, {b}, {a, b}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c}, {b, c, d}}.

Borders for a test instance can be found by the equations

[{∅},max Rp]− [{∅},max Rn]

[{∅},max Rn]− [{∅},max Rp]

3

where max Rp and max Rn defines the maximal items that are gathered

from the classes in the previous section.

These difference operations can be efficiently implemented with the JepPro-

ducer algorithm given in [1]. Also the cases where there are more then two class

are explained in [1].

1.3 DeEPs Classification Handling

After the data reduction operations, a score for each class is calculated and

compared for the classification of test instance. For these scores to work some

representatives from the boundaries has to be selected and used in the compu-

tation. The authors from [1] suggest that we should select hte left boundaries

(L from < L, R >) because we know that they are the most general of the

collection they represent, and also they cannot be further simplified. So after

selecting these boundaries as representatives of their classes, they are put in a

formulation to find the score. The method called “Compact Summation” has

the following formula;

compactScore(c) =
countDc

(SEP)
| Dc |

where SEP is the collection of EPs (the collection represented by the boundary)

and Dc is the set of training instances for class c. By this way, a score for all the

classes can be computed and the one that has the highest score will be predicted

as the class of the test instance.

4

2 Extending DeEPs

2.1 Main Idea: Finite Frequency-Change Rate

One of the enchantments that can be made on the DeEPs classifier is to let

it handle the patterns that might occur on more then one class, that is the

frequency-change rate of a pattern between any two class is not infinite.

For this case to work, there are some modifications that has to be done on

the original system. For instance, the boundaries must cover some subsets that

are found in more than one class. Another change would include how to include

the fractions of patterns that are found in more then one class to the overall

score. For these changes, firstly an example will be given to understand the idea

of the extended system.

2.2 Implementation Details

Consider an example where the saturday morning sports activity is suitable or

not for a given day1. Considering the figure 1, the table describes the training set

for the two classes, Class P (that is the activity is suitable) and Class N (that is

the activit is not suitable). And the test instance T = {sunny,mild, hightrue}

is given.

Using this information and continuing with the initial steps of DeEPs system,

we need to eliminate irrelevant data and select the maximal items. The results

are already shown in the figure 2.

At this point, the original DeEPs would calculate the borders, however, the

common subsets of the test instance in both of the classes will be found. For
1The example information taken from [1]

5

the current example, the list of common subsets can be described with;

[{∅}, {{s,m, t}, {m,h, t}}] ∩ [{∅}, {{s, h, t}, {s,m, h}, {m,h, t}}]

which are

commonS = {{∅}, {s}, {m}, {h}, {t}, {s,m}, {s, t}, {m, t}, {m,h}, {h, t}, {m, t, h}}

Then the frequency changes of these subsets between each class has to be cal-

culated. For this purpose, the following formula will give the frequency change

between two classes;

freqChange(c1, c2) =
∑

x∈commonS

countc1(x)
countc2(x)

where c1 and c2 are the two classes and the result of this formula will give a

score for the c1 class.

Continuing from the example, the following scores are found;

freqChange(P,N) = 10.91

freqChange(N,P) = 10.83

which would result in predicting the class P as the test instance’s class.

2.3 Multi-class Case

When there exists more then two classes to decide, the freqChange formula

can be applied to all of the other classes and the results will be added up to

form that class’ overall score. For instance, if we have k classes, say D1, D2, ...,

Dk, then the score for Di will be calculated as;

score(Di) =
∑

j∈[1,k],j 6=i

freqChange(Di, Dj)

6

2.4 Non-discrete Valued Attributes

As defined in [1], a similar approach will be taken for the continuous valued

attributes. For instance is an attribute has a continuous value, a small ε will

be chosen for an interval, which will help us to make the comparisons with the

other values. Let’s say if there is some value like 1.34 and the ε = 0.02 then the

values in the interval

[x− ε, x + ε] = [1.32, 1.36]

will be viewed as the same data and for the intersection process they will be

counted as an intersection point.

2.5 Efficiency

Finding an efficient algorithm for the intersection operation is required in this

process since the evaluation of the whole subset collection will be very expensive.

For this intersection operation, the following algorithm will be used;

commonS(< {A1, A2, ..., Ak1} >, < {B1, B2, ..., Bk2} >

1. diff ← JepProducer(< {∅}, {A1, A2, ..., Ak1} >,< {∅}, {B1, B2, ..., Bk2} >

)

2. commonS ← JepProducer(< {∅}, {A1, A2, ..., Ak1} >, diff)

3. return commonS

JepProducer algorithm taken from [1] and included here in figure 3.

7

Figure 3: The JepProducer algorithm

3 Conclusion

Throughout the previous sections, the some of the steps of DeEPs classifier is

redefined for the case where the patterns are seached within more then one class.

After that the scores are calculated based on these pattern frequencies in each

class and a prediction is made by comparing these scores between the classes.

As a future work, the performance evaluation of this extended system can be

made. Comparing the results with the normal DeEPs and other lazy discovery

classifiers. Since the algorithm uses the JepProduces routine twice as the normal

DeEPs, the speed might be decreased, but the accuracy of the system should

be increased.

Another option might be to unite the results of the normal DeEPs system

with the extended one and make a prediction based on the both results. Based

8

on the data set, some predefined biases might be placed to balance the results

of the classifiers.

This extended DeEPs classifier might be slower than the other lazy discovery

classifiers, but on the accuracy part, it will probablt be able to at least compete

with the others. The system will probably result in be better outcomes in

error-critical jobs instead of time-critical ones.

References

[1] J. Li , G. Dong , K. Ramamohanarao and L. Wong, “DeEPs: A New

Instance-Based Lazy Discovery and Classification System,” Machine Learn-

ing, vol. 54, no. 2, pp. 99 - 124, 2004

[2] Hongjian Fan “Efficient Mining of Interesting Emerging Patterns and Their

Effective Use in Classification,” PhD Thesis, University Of Melbourne, 2004

[3] J. Li , G. Dong , K. Ramamohanarao, “Instance-Based Classification by

Emerging Patterns,” Principles of Data Mining and Knowledge Discovery,

2000

[4] G. Dong, J. Li, “Efficient Mining of Emerging Patterns: Discovering Trends

and Differences,” Knowledge Discovery and Data Mining, 1999

9

