
Vol. 1 no. 1 2005
Pages 1–5

Upstream/Downstream Relation Detection of
Signaling Molecules using Microarray Data
∗Ozgun Babur1

1Center for Bioinformatics, Computer Engineering Department, Bilkent University,
Ankara 06800, Turkey

ABSTRACT
Motivation: Construction of molecular networks is one
of the main challenges in biology. Most of the work in
this area is done by manual curation of the data in the
literature. Microarray data give information on the expres-
sion levels of genes in a certain state of the cell. When
compared two microarray experiments, the differential
expression of genes is highly affected by the underlying
network structure. This fact brings a great motivation for
using microarray data to re-construct molecular networks,
even there is no demonstrated success of this approach
yet.
Results: We developed a new method for detection of the
upstream/downstream relation of molecule pairs that may
be used in automated or semi-automated construction of
molecular networks. We compare microarray experiments
and calculate statistics of coordinated and independent
behavior of gene pairs. This statistics is later used for
estimating possible upstream or downstream relation of
new gene pairs in the molecular network.

We demonstrated this method using an annotated set of
gene pairs, which is compiled from CSNDB database, and
355 microarray experiments that use the array platform
Affymetrix HuGeneFL, which is available in NCBIs Gene
Expression Omnibus.
Contact: ozgun@cs.bilkent.edu.tr
Keywords: cellular pathways, microarray data analysis,
pathway re-construction

INTRODUCTION
Molecular Networks
One of the best ways to capture data on cellular processes
is by molecular networks. This network then can act as
a blueprint for simulations and other analysis methods,
enabling us to understand and predict the behavior of
a cell much better. There are several commonly known
databases of cellular network data, each of which is
using a different ontology (Ogata et al., 1999; Takai-
Igarashi and Kaminuma, 1999; Karp et al., 2002; WIT,
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2001; BRITE, 2001; Wingender and Chen, 2001). For
instance KEGG (Ogata et al., 1999) database aims to
model metabolic pathways (the pathways that are related
to utilize metabolites in the cell) and its ontology is
enzymatic reaction centric (Figure 1).

Fig. 1. Part of the pyruvate pathway in KEGG. Rectangular nodes
represent a specific enzymatic activity which may be possessed by
several enzymes, small circles represent the metabolites and other
small chemicals, edges represent substrate and product relations
between reactions and chemicals.

On the other side, signaling pathway databases such as
CSNDB (Cellular Signaling Networks Database) (Takai-
Igarashi and Kaminuma, 1999) tries to model signaling
events in the cell and its ontology is signaling centric,
which identifies actors and signals clearly (Figure 2).

There are two types of edges in CSNDB ontology.
Cellular Signaling edges represent protein-protein
interactions, while GeneExpression edges represent
transcriptional regulation, i.e. one gene product activates
expression of another.

Microarray Technology
Microarray is a widely used high-throughput molecular
biology technique, which provides researchers with cell-
wide expression profiles. It is based on detection of RNA
molecule concentration in the cell for thousands of genes
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Fig. 2. p38MAPK Pathway in CSNDB Database. Circles represent
a protein product of certain genes. Activation relations between
proteins is shown with edges, also with edge labels redundantly. In
this figure BPI -> LSP means “at least one protein state of BPI
makes LSP to transform from its inactive state to active state”.

with an experiment. Complementary DNA sequences are
attached to a glass surface, which each point belogs to a
different gene, and the surface (chip) is hybridized with
the extracted RNA molecules of the cell being tested.
Then the amount of hybridized RNA is measured with
lazer scanning, constructing a microarray image whose
intensity of the dots correspond to RNA concentrations
(Figure 3).

Fig. 3. An image of two channel microarray experiment. The col-
ors and intensity of the dots correspond to differential expression
of genes when two type of cells are compared. Red: upregulated,
Green: downregulated, Yellow: no change. Single channel experi-
ment images are similar but instead of three colors they are in gray-
scale, where the intensity of the dot corresponds to the concentration
of an RNA molecule in a single type of cell.

There may be one or two signal channels in microarray

data according to its type. When it is two channel, two
different cell types are hybridized with a single chip and
concentrations are read by measuring the intensities in two
different wavelengths, usually red is used for one channel
and green is for other channel. Then the colors are mixed
according to intensities on the spots, therefore a red spot
means relatively higher expression in the first cell type,
while yellow spot means equal level of expressions. When
one channel microarray data is used, we can compare two
experiments to figure out the differential expression.

Pathway Re-construction
Expression patterns in the microarray data is highly
affected by the underlying cellular network. However
deriving systemic information from expression profiles
remains a big challenge. There are a significant number
of studies that try to re-construct the molecular network
information using the gene expression data. D’haseleeret
al classifies and reviews these methods, whose common
part is that they use some correlation measure between
genes and estimate an undirectional link between genes
using this correlation (D’haeseleer et al., 2000).

None of the methods enumerated above targets to find
directional links from a moleculeto another. Fuenteet
al propose an experimenting system for detection of
directional and quantitative affects of genes to each other
(de la Fuente et al., 2002). They suggest to perform a
series of microarray experiments where in each of them
just a single gene is less-expressed. So, when compared
with the control experiment it would be possible to detect
effects of the single gene to others. They suggest to repeat
these experiments for each gene, which will collectively
lead to a regulatory strength matrix that would be used
for network re-construction. However, there are no such
experiments performed yet.

In this paper, we propose a new method for inferring
the upstream/downstream relation between pairs of genes.
We utilize a large number of microarray experiments to
calculate co- and independent behavior of the genes, and
use this data to classify a given pair. We demonstrate this
method using a set of training pairs of genes compiled
using CSNDB database, and 355 microarray experiments
all of which use the array platform Affymetrix HuGeneFL.

SYSTEM AND METHODS
Types of relations in the cellular network
In the cellular network, molecules affect each other
through paths of interactions. When we investigate a
pair of molecules A and B, we identify three types of
interesting relations (Figure 4).

• Upstream: Molecule A affects molecule B through a
path of interactions (Figure 4(a)).
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• Downstream: Molecule A is affected by molecule B
through a path of interactions (Figure 4(b)).

• Co-affected: Molecule A and molecule B do not
have any upstream or downstream relation but they
are affected by the activity of another molecule
(Figure 4(c)).

Fig. 4.Three interesting types of relations between molecules A and
B. (a) Molecule A is at the upstream of molecule B, (b) molecule A
is at the downstream of B, (c) molecules A and B do not affect each
other but are at the downstream of a common affector. In this figure,
edges represent an existing pathway between molecules, not just a
direct interaction as was in Figure 2.

In each of these relations we expect to observe a corre-
lation in the differential expression patterns of molecules
A and B, i.e. when the upstream molecule changed its ex-
pression (up or down) the downstream molecule may be
affected and change its expression in the same way. In the
third case this correlation is expected because of being at
the downstream of the same molecule. Other kinds of re-
lations, e.g. being on the same cycle, are more complex to
analyze and out of the scope of this paper.

Correlated and independent behaviors
In this paper we question whether upstream or down-
stream molecule behavesmore independentthan the other
throughout microarray experiments. To rationalize this,
consider the first case (Figure 4(c)). In a broader picture
we will have other molecules that will affect the relation
of molecules A and B (Figure 5). If we imagine two other
upstream molecules of B, i.e. X and Y intercepting the
A-B path, we see that A may affect B only when some
certain conditions are satisfied and the path from A to B
has the ability to carry the signal. Molecule A may behave
independently when the A-B path is not carrying the
signal, and B may behave independently when the A-B
path is working but B is affected from other molecules
like X or Y.

Another factor that affects observed correlation between
A and B is the length of the A-B path. When this path is
short, then A and B would correlate more because there
would be less number of interceptors, which may decrease

Fig. 5. Two actors that affects the regulation of molecule A on
molecule B. In this scenario, the path from A to B works only when
the molecules X and Y are also present. Otherwise A cannot affect
B.

the significance of independent behaviors. On the other
side, when the A-B path is too long the correlation would
decrease because of increased number of interceptors
and independent behaviors would become more frequent.
However, again because of the increased number of
interceptors there would be more noise in the statistics,
which may obscure the detection of any deviation from
random behavior. Therefore we expect an optimum length
of the path to give us some useful statistics. The optimum
length is related to the observed correlation of molecules,
so this correlation may be used to check if it is meaningful
to make an estimation.

Taking the statistics
We need a large number of microarray data to calculate
statistics, preferably all on the same platform to reduce
errors because of systematic differences between arrays.
Consider we haveN experiments andM genes, and let all
data is represented by the matrixX whereX(n, m) is the
value of the genem in experimentn where1 ≤ n ≤ N
and1 ≤ m ≤ M . Values in matrixX are0 (molecule
absent),1 (molecule present) and2 (could not decide).

We are given the molecule pair A-B whose gene indexes
arena andnb respectively. Then we check for every pair of
microarray experimentsmi andmj to count the correlated
and independent behavior of the gene pair. When we
consider the gene pairna andnb, and the experiment pair
mi and mj one of the 5 types of situations is detected
according to four corresponding values in matrix X:

1. X(mi, na) or X(mi, nb) or X(mj, na) or
X(mj, nb) is 2 (undecided), so data is not useful†.

2. X(mi, na) 6= X(mj, na) and X(mi, nb) 6=
X(mj, nb) andX(mi, na) = X(mi, nb), i.e. there
is positive correlation.

3. X(mi, na) 6= X(mj, na) and X(mi, nb) 6=
X(mj, nb) andX(mi, na) 6= X(mi, nb), i.e. there
is negative correlation.

†All other situations require that those four values are either0 or 1
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4. X(mi, na) 6= X(mj, na) and X(mi, nb) =
X(mj, nb), i.e. A behaves independent of B.

5. X(mi, na) = X(mj, na) and X(mi, nb) 6=
X(mj, nb), i.e. B behaves independent of A.

Count of bad data (case 1) is simply discarded and others
are converted to percentages among last four counts.
Percentage of positive and negative correlation (cases 2
and 3) is used for deciding whether to make an estimation.
We expect one of them to be in a certain range, while the
other is just noise. Percentage of independent behaviors
(cases 4 and 5) is used for deciding if A is at the upstream
of B or vice versa.

RESULTS
We used the interaction data in CSNDB to collect pairs
of genes whose upstream/downstream relation is known
and have a SwissProt protein ID (a cross-reference to
the most popular protein database) that will enable us to
map the molecules to microarray data. We figured out
all unambiguous upstream relations between molecules
(say A and B), i.e. A→B is observed but B→A is
not observed. We prepared a training set of pairs by
choosing these unambiguous upstream relations where the
path contains at least oneGeneExpressioninteraction,
ensuring involvement of gene expression events through
the path. The set of upstream pairs become downstream
pairs when we switch the order, i.e. B←A is a downstream
relation if and only if A→B is upstream. There happens
1130 upstream pairs that match this criteria in CSNDB.

However, obtaining instances for the third type of
relation (co-affected) is not easy as the first two types. This
is because of the missing interactions in the database. To
get a co-expressed sample we need to guarantee that the
pair have no upstream or downstream relation, which is
impossible because CSNDB and other molecular network
databases lack a great amount of data. For this reason we
restrict ourselves to discriminate between only the first
two cases.

Microarray data is obtained from NCBIs Gene Expres-
sion Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/).
We selected the platform GPL80, an Affymetrix gene ar-
ray for human (HuGeneFL) and found 355 experiments
that use this platform (from a collection of 15 published
datasets).

The statistics calculation is done by considering all(
355

2
)

pairs of experiments for each training upstream

pair. We do not need to re-calculate statistics for down-
stream relations because it is just the same when we
switch the counts of independent behavior. We sorted the
pairs according to their positive correlation percentage
across experiments and added an additional column

(winner) indicating the most independent gene of the pair
(1 indicates the first gene behaves more independent than
second, and 0 indicates the vice versa) (Table 1).

gene 1 gene 2 posscorr neg corr ind first ind second winner
P07339 P29597 0.616 0.010 0.159 0.213 0
P15248 P16860 0.567 0.001 0.146 0.285 0
P46108 P35354 0.454 0.029 0.230 0.285 0
P29597 P10145 0.419 0.032 0.250 0.297 0
P04637 P19838 0.406 0.029 0.345 0.219 1
P29597 P35354 0.402 0.018 0.275 0.302 0
P04637 P99999 0.400 0.017 0.393 0.188 1
P07339 P35354 0.364 0.015 0.262 0.357 0
P07339 P99999 0.359 0.034 0.385 0.221 1
P07339 P19838 0.357 0.041 0.337 0.263 1
P01042 P16860 0.351 0.002 0.563 0.083 1
P07339 P06396 0.349 0.046 0.313 0.291 1
P07339 Q92934 0.345 0.047 0.321 0.285 1
P07339 P10145 0.341 0.042 0.256 0.360 0
P04637 P35354 0.338 0.037 0.288 0.335 0

...
...

...
...

...
...

...

Table 1.Statistics of gene pairs in descending correlation.gene 1:SwissProt
ID of first gene, gene 2: SwissProt ID of second gene,posscorr:
percentage of positive correlation of genes,neg corr: percentage of
nagative correlation of genes,ind first: percentage of first gene behaving
independent,ind second:percentage of second gene behaving independent,
winner: is 1 if first gene is more independent than second, 0 otherwise. This
table has 1130 rows which only top 15 are shown here.

In this table we are interested in the unequal distribution
of values (1 and 0) in the winner column. In order to
determine the probability of dominance of upstream gene
independence (first gene being more independent in an
upstream sample), we determine thek gene pairs whose
positive correlation is nearest to the target correlation.
The average of thewinner value is the target probability
approximated by this training set. Similarly we can
calculate the same probability for a range of correlation
limits, just filtering the gene pairs according to their
correlation and calculate averagewinnervalue.

We plot the dominant independence probability of the
first genes across the positive correlation values, where
the probability is calculated using thek- nearest neighbor
gene pairs‡ for two different k values (Figure 6). In
both of the plots it is possible to differentiate between
upstream and downstream genes. With smallk values we
observe higher fluctuation on the dominant independence
probability with the changing correlation, it gets stabilized
with increasingk. The worth of points in these plots
increase as the deviate from 0.5, which could be used to
estimate the status of new gene pairs. In both of the plots

‡In this k- nearest neighbor calculation, the distance function uses just the
positive correlation column, sok- nearest neighbors appear in consequent
order on the sorted table.
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Fig. 6. The plots of dominant independence probability of the first genes across the positive correlation values calculated with 20 nearest
neighbors and 50 nearest neighbors. Each pair in the training sets contribute to a point on the plots.

we observe that in the correlation region from 0.09 to 0.20
there is a consistent deviation of probability. There are
290 gene pairs (more than 1/4 of the whole set) whose
positive correlation falls in this region and we calculate
0.69 dominant independence probability for the region.

DISCUSSION
In this paper we definitely showed that the upstream /
downstream relation between gene pairs affects the co-
and independent behavior of genes across microarray ex-
periments. As we expected, some useful statistics appear
in the area of certain correlation levels between gene pairs.
We observe that microarray experiments do not reveal the
differences between upstream and downstream molecules
when they are highly correlated or when they have very
little correlation. But in about 1/4 of the cases, when the
correlation value between genes fall in a certain range, we
can expect a dominant independence of upstream genes
with 0.69 probability.

This work would be more valuable if we could also
have someco-affectedpairs in our training set. Here what
we achieve is to obtain some probability to distinguish
between upstream and downstream genesgiven that they
have an upstream or downstream relation.
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