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Abstract 
A large volume of protein data has been generated as 
a result of biological research. This vast amount of 
data is generally stored in the textual form in 
databases such as Medline. Currently, over 11 million 
summaries of articles are stored in Medline. 
However, lack of formal structure in the articles 
makes difficult to retrieve and process the information 
stored in these articles. In this paper, we explore the 
use of machine learning techniques for the 
information extraction task and present the initial 
results of the conducted experiments. Particularly, we 
study using Hidden Markov Models (HMMs) for 
protein name extraction from the biological texts. 
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INTRODUCTION 
Biological knowledge, generated as a result of 
biological research in the past, is currently stored in 
published articles in scientific publications. Medline, 
a rich knowledge source for biological information, 
currently contains over 11 million abstracts of these 
articles. Although Medline contains enormous amount 
of biological information, there is no formal structure 
in which Medline can present the stored information. 
Stored information is generally found in the textual 
form. Lack of formal structure in the articles makes it 
tedious and time-consuming to retrieve and process 
the information stored in these articles. There is a 
growing demand for automatic discovery and 
extraction of information from biological texts. 
Information extraction systems can be used to meet 
the need for automatic discovery and extraction of 
information from biological texts. 
      Information Extraction (IE) may be defined as the 
task of extracting relevant information from a specific 
document set. As a discipline, information extraction 
is as old as the Message Understanding Conference 
(MUC) (Def, 1995), the forum that defined the 
problem. MUC-style IE problem can be defined as the 
identification of instances of a particular class of 
events or relationships in a natural language text, and 

the extraction of the relevant arguments of the event 
or relationship. IE has figured prominently in the field 
of NLP. However, its domain-specific nature makes it 
difficult to adapt an IE system to a new domain. In 
order to overcome this adaptation problem, many 
researches address using machine learning algorithms 
to perform IE tasks [3]. 
      In this paper, we explore the use of machine 
learning techniques to extract protein names from the 
biological text and present the initial results of the 
conducted experiments. The structure of the paper is 
as follows. Section 2 describes the previous work, 
which has been done until now on the subject. After 
reviewing the previous work, we present the example 
corpora used in the experiments in Section 3. In 
Section 4, protein name extraction problem and the 
implemented machine learning approach are defined. 
Section 5 describes the experimental evaluation of the 
study. Finally, in the last section we discuss our 
conclusions, pointing towards future research. 

RELATED WORK 
Many research projects [5, 6] have focused on the 
manual development of IE systems for the discovery 
and extraction of information from biological texts. 
As stated above, manual adaptation of IE systems to 
specific domains is tedious and time-consuming. 
Moreover, human error during rule generation makes 
these systems error-prone.  
      Recent research on the subject has shown that 
machine learning techniques can be used in order to 
perform protein name extraction from texts. 
Moreover, many recent projects [1, 2, 8, 9, 10, 11, 12] 
have focused on the automatic extraction of protein 
names from biological texts using machine learning 
methods. 
      Hidden Markov Models are among the successful 
statistical learning techniques. Moreover, recent 
research [8, 10] in the IE community has shown that 
HMMs can be of service, both in performing 
fragment-to-slot mapping and in solving associated 
tasks.  
      In this study, we applied HMMs to protein name 
extraction task. We combined various approaches on 
the subject, made enhancements to get better 
performance, and present the results of the conducted 
experiments 



EXAMPLE CORPORA 
In order to conduct experiments, we use YAPEX [7] 
corpora, which contains two collections that consist of 
Medline abstracts, obtained in the following way. 
      A document set was obtained by posing the query 
“protein binding [Mesh term] AND interaction AND 
molecular” with the parameters “abstract”, “English”, 
“human”, and “publication date 1996-2001” to 
Medline. From this set 99 abstracts were drawn 
randomly to form the reference (training) collection. 
Another non-overlapping set of 48 abstracts was 
drawn to form a part of the test collection. 
      The remaining 53 abstracts of the 101 in the test 
collection correspond to a randomly chosen, re-tagged 
subset of the GENIA corpus [4] containing 723 
annotated protein names.  
      The reference and test corpora are mutually 
exclusive. The corpora are available for download at 
“http://www.sics.se/humle/projects/prothalt/”. Sample 
tagged data is shown in Figure-1.  
 

 
 
      In the corpora each article has four parts:  

• MedlineID: starts with <MedlineID> tag 
and ends with </MedlineID>. 

• PMID: starts with <PMID> tag and ends 
with </PMID>. 

• ArticleTitle: starts with <ArticleTitle> tag 
and ends with </ArticleTitle>. 

• AbstractText: starts with <AbstractText> tag 
and ends with </AbstractText>. 

 
      Last two parts, ArticleTitle and AbstractText, 
contain protein names. In the figure, tagged protein 
names can be seen clearly. Each protein name is 
marked by two tags: <Protname> and </Protname> 
(e.g. <Protname> retinoic acid receptor alpha 
</Protname>). 

PROTEIN NAME EXTRACTION 
Problem Definition 
The task of extracting protein names from biomedical 
corpora is still a challenge, due to the following 
reasons: 

• Many instances of new protein names do not 
suit exactly the standard terminology. 

• Authors often refer to proteins already stored 
in protein databases using variations, which 
do not exist in the databases. 

 
      The success of a protein name extraction method 
depends on how well it recognizes the regularities of 
protein naming and name variations. Our approach 
was to start with a set of protein names collected from 
the training set, and then extend it using a carefully 
designed method. We centered our effort around this 
initial set of proteins, our aim being to develop a 
highly accurate information extraction system. The 
major task was to generalize the coverage of the 
training set, while at the same time trying to minimize 
any decrease in accuracy. 

Representing Fragments & Generalization 
Despite the lack of common standards and 
irregularities, and all the problems stated above, 
protein names exhibit several regularities that can be 
exploited in order to perform generalization [7]. First 
of all, protein names are almost always depictive. 
Protein characteristics such as function (e.g., growth 
hormone), localization or cellular origin (such as 
HIV-1 envelope glycoprotein gp120), physical 
properties (salivary acidic protein-1), similarities to 
other proteins (Rho-like protein) are commonly 
reflected in the name. Names are also constructed 
using a combination or abbreviation of the above. As 
can be noted from the examples, protein names often 
consist of multiple words. 

<PubmedArticle> 
<MedlineID>21294781</MedlineID> 
<PMID>11401507</PMID> 
<ArticleTitle>Molecular dissection of the <Protname>importin 
beta1</Protname>-recognized nuclear targeting signal of 
<Protname>parathyroid hormone-related 
protein</Protname>.</ArticleTitle> 
<AbstractText>Produced by various types of solid tumors, 
<Protname>parathyroid hormone-related protein</Protname> 
(<Protname>PTHrP</Protname>) is the causative agent of humoral 
hypercalcemia of malignancy. The similarity of 
<Protname>PTHrP's</Protname> amino-terminus to that of 
<Protname>parathyroid hormone</Protname> enables it to share some of 
the latter's signalling properties, but its carboxy-terminus confers distinct 
functions including a role in the nucleus/nucleolus in reducing apoptosis and 
enhancing cell proliferation. <Protname>PTHrP</Protname> nuclear 
import occurs via a novel <Protname>importin beta1</Protname>-
mediated pathway. The present study uses several different direct binding 
assays to map the interaction of <Protname>PTHrP</Protname> with 
<Protname>importin beta</Protname> using a series of alanine mutated 
<Protname>PTHrP</Protname> peptides and truncated human 
<Protname>importin beta1</Protname> derivatives. Our results indicate 
that <Protname>PTHrP</Protname> amino acids 83-93 (KTPGKKKKGK) 
are absolutely essential for <Protname>importin beta1</Protname> 
recognition with residues 71-82 (TNKVETYKEQPL) additionally required 
for high affinity binding; residues 380-643 of <Protname>importin 
beta1</Protname> are required for the interaction. Binding of 
<Protname>importin beta1</Protname> to 
<Protname>PTHrP</Protname> is reduced in the presence of the GTP-
bound but not GDP-bound form of the guanine nucleotide binding protein 
<Protname>Ran</Protname>, consistent with the idea that 
<Protname>Ran</Protname>GTP binding to <Protname>importin 
beta</Protname> is involved in the release of 
<Protname>PTHrP</Protname> into the nucleus following translocation 
across the nuclear envelope. This study represents the first detailed 
examination of a modular, non-arginine-rich <Protname>importin 
beta1</Protname>-recognized nuclear targeting signal. Copyright 2001 
Academic Press.</AbstractText> 
</PubmedArticle> 

Figure 1: Sample Tagged Medline Abstract 



      As stated above, the primary task of the learner is 
to generalize the coverage of the training set. 
Therefore, our first aim is to design a method that 
provides both generalization and accuracy. 
Generalizing means to recognize the parts susceptible 
of being changed in new protein names, and replace 
them with generic placeholders [1]. Thus, following 
the approach used in [8], we generalize protein names 
by using words and word-type information. We 
determine eight types for the words: 

• SingleLetter: Single-letter words are in this 
type. 

• Number: Numbers are in this type. 
• RomanNumeral: Roman numerals are in this 

type. 
• GreekLetter: Many protein names contain 

Greek letters (e.g. retinoic acid receptor 
alpha).  We group Greek letters into this type. 

• Abbrv: Abbreviations are in this type. 
• Regular: Regular words are in this type. 
• Delimeter: Delimiters are in this type. 
• Unknown: This type contains the words that 

can not be grouped into the above types. 
 
      Table-1 shows word-type patterns and some 
examples. 
 

Patterns 

SingleLetter:  [a-zA-Z] 
Number:  [0-9]+ 
RomanNumeral: I|II|III|IV|V|VI|VII|VIII|IX|X|XI|XII|X

III|XIV|XV|XVI|XVII|XVIII 
GreekLetter:  alpha|beta|gamma|delta|epsilon|theta|k

appa|lambda|sigma|mu 
Abbrv:  [a-zA-Z]+)(([A-Z][a-z]*)|([0-

9]+))(([a-zA-Z]+)|([0-9]+)|['])* 
Regular:  [a-zA-Z][a-z']+ 
Delimeter:  [.,;:(){}/]|- 
Unknown:   

 
Examples 

SingleLetter:  a 
Number:  768   
RomanNumeral I 
GreekLetter:  alpha 
Abbrv:  AB 
Regular:  Abnormal 
Delimeter:  ( 
Unknown:  80% 

Table 1: Word-type patterns and examples 

IE and Hidden Markov Models (HMMs) 
As compared to many other techniques used in natural 
language processing, HMMs are an extremely flexible 
tool and has been successfully applied to a wide 
variety of stochastic modeling tasks.  
      Hidden Markov Models are the stochastic analogs 
of finite state automata. A stochastic FSA is a 
generalization of a deterministic FSA in which each 
transition and each accepting state has an associated 
probability. Associated emission probabilities define 
the likelihood of a state to emit various tokens. The 
transitions from a given state have an associated 
transition distribution which defines the likelihood of 
the next state given the current state. For any given 
state in such an automaton, the probability of 
acceptance (i.e., of the state being terminal) and the 
probabilities of its outgoing transitions must all sum 
to one. Thus, a probability can be associated with any 
sequence belonging to the language the FSA models. 
This membership probability is the product of the 
transition probabilities along the unique state 
trajectory encoded by the sequence, and the 
acceptance probability of the terminal state. 
      HMMs and IE are widely discussed in [10].      
Formally, HMMs are composed of a set of states Q, 
with specified initial and final states q1 and qF, a set of 
transitions between states (q → q’), and output 
symbols Σ ={σ1, σ2,…, σm}. The model generates a 
string X=x1x2…xl by beginning in the initial state, 
following the allowed possible states and reaching the 
final state. We denote one state follows another by 
P(q → q’) and a state emits a particular output symbol 
by P(q ↑ σ). Finally, the probability of a string X 
being emitted by an HMM M is computed as a sum 
over all possible paths by:  

 
where q0 and ql+1 are restricted to be q1 and qF 
respectively, and xl+1 is an end-of-string token [10].  
       While extracting the information the state 
sequence with the highest probability will be chosen 
[10]. That is;  
 

  

     Π  V(X|M) = P(qk-1 → qk) P(qk ↑ xk) 
l+1

  q0...ql

argmax
k=1

Σ  Π  P(X|M) = P(qk-1 → qk) P(qk ↑ xk)  
l+1

q0...ql k=1



Learning to Perform Protein Name Extraction 
To build an HMM for information extraction, first 
how many states the model should contain and what 
transitions between states should be allowed must be 
decided. We can learn the model structure from 
training data. Training data with tagged protein names 
can be used to build the model. After producing the 
model, we can apply it to the test data and chose the 
state sequences with the highest probability as protein 
names.  
      Training is a matter of scanning the training 
corpus and building the various probability tables 
needed for the protein name extraction task. 
Pseudocode for the training algorithm is shown in 
Figure-2. 
 

 
 

      In the learning algorithm, we first read the training 
data. Afterwards, we process the training data, collect 
information about the articles and extract the all 
words in the training data. At the same time, we 
process and extract all the tagged protein names. We 
produce statistical data about the words present in the 
training data: total number of occurrences, number of 
occurrences in a protein name, number of occurrence 
in a protein name as a first word, number of 
occurrence in a protein name as a last word and 
number of occurrence in a protein name as a single 
word. We use two linked-lists to keep word-list and 
protein name list. While inserting the words into the 
list, we determine the type of the word.  
      After collecting the statistical data about the 
words, we begin to produce four probabilities for each 
word: probability of being a first word in a protein 
name, probability of being a last word in a protein 
name, probability of being a single protein name and 
probability of being a word in a protein name. 
      Afterwards, we scan all words and for each word 
we calculate: a) the count of coming a word wk after 
another word wk-1  b) the count of coming a word wk 
after another word wk-1 in a protein name. At the 
same time, for each word-type we calculate: a) the 
count of coming a word-type wtk after another word-
type wtk-1 b) the count of coming a word-type wtk after 
another word-type wtk-1 in a protein name. We use 
two matrices for these calculations. At this point, the 
training process is completed. 
         After building necessary probability tables, test 
algorithm can estimate the protein names in the test 
corpus. During testing, an estimate is produced for 
every fragment in the test data.  
      In the test algorithm, we first read the test data. 
After reading, we process the test data, collect 
information about the articles and extract the all 
words in the test data. Afterwards, for each fragment 
in the test data we calculate the likelihood 
probabilities. We use sliding-window technique to 
determine fragments. Each word in the window 
represents a state in the HMM. While calculating 
these probabilities, we use the word-type 
probabilities. Thus, we achieve the generalization 
task.  
      Putting the probabilities generated during the 
training into the below formula  
 

 
while not eof (training_data) { 
  
   Read training data from the training data set; 
    
   Extract articles; 
    
   Create a list of training words; 
    
   Collect protein names;  
 
} 
 
for each word w in the training set { 
 
   calculate frequencies for w; 
 
} 
 
for each word wk in the training set { 
 
   for each word wk-1 in the training set { 
 
      calculate the probability P(wk | wk-1) 
 
      calculate the probability P(wk | wk-1) 
 
   } 
 
} 

Figure 2: Training algorithm 



 
 
we can make estimates for each fragment. Fragments 
with the maximum likelihood are extracted as protein 
names. Pseudocode for the training algorithm is 
shown in Figure-3. 
 

 
       
EXPERIMENTAL EVALUATION 
Methodology  
In this section, we present how our model performs 
the extraction task in terms of precision and recall. 
We begin this section by explaining the methodology 
followed in our experiments. 
      To evaluate the effectiveness of our model, we 
conducted a series of comparative experiments. We 
used the same annotated corpora used in [7]. The 

details of the corpora were presented. In our 
experiments, two protein names are considered a 
match if they consist of the same character sequence 
in the same position in the text.   
      We measured precision (percentage of extracted 
names that are correct), recall (percentage of correct 
names that are found), and F-measure (harmonic 
mean of precision and recall); as is commonly done in 
the MUC evaluations. The metrics and their 
calculation methods are shown below: 

 
      The parameter β determines how much to favor 
recall over precision. We set β parameter to 1 (β =1) 
to make precision and recall equally-weighted. 

Results  
Figure-4 shows the precision-recall graph for the 
experiment. In the graph, we show the curve 
indicating the precision for each achievable level of 
recall.  
 

 
Figure 4: Precision - Recall graph  

 

while not eof (test_data) { 
  
   Read training data from the training data set; 
    
   Extract articles; 
    
   Create a list of test words; 
    
} 
 
prob = maxProb = 0; 
 
for k=1 to NO_OF_TEST_WORDS{ 
 
   for l=k+1 to k+WIN_SIZE { 
 
     prob= P(wk+1 | wk) P(wk+2 | wk+1)......P(wl | wl-1) 
  
     if prob>maxProb then maxProb=prob; 
   } 
 
   if maxProb>threshold  

then extract the fragment; 
} 
 

Figure 3: Test algorithm 

     Π  V(X|M) = P(qk-1 → qk) P(qk ↑ xk) 
l+1

  q0...ql 
argmax  

k=1

Precision =
# of correct protein names

# of extracted  protein names

Recall =
# of correct protein names

# of protein names to extract

F-measure =
(β2 + 1.0) PR

(β2 P)+R 



   Maximum F-measure value measured during the 
experiment and precision-recall values for that point 
is shown in Table-2. 
 
 
Precision Recall F-measure 

0.5473 0.5448 0.5460 
Table 2: Maximum F-measure 

 
      Experiments show that the use of word-type 
generalization increases the performance of HMM.  
      We tried to improve the performance and made 
some changes in the test algorithm. In the test 
algorithm, instead of using word-type probabilities in 
every case –whether or not the word exists in the 
training set– we try to use the maximum of the  word-
type probability and word probability. 
      Figure-5 shows the precision-recall graph for the 
derived method. In the graph, we show the curve 
indicating the precision for each achievable level of 
recall. Maximum F-measure value measured during 
the experiment and precision-recall values for that 
point is shown in Table-3. 
 

 
Figure 5: Precision - Recall graph for the derived 

method 
 
 
 
Precision Recall F-measure 

0.5575 0.6037 0.5797 
Table 3: Maximum F-measure for the derived method 

      We had a little improvement by changing the 
algorithm. Both precision and recall values show the 
improvement.  

CONCLUSION 
This study has showed the initial results on the 
extracting protein names from Medline abstracts using 
HMMs. One of the most important conclusions from 
this project is the high importance of model design 
and generalization method in HMMs applied to 
protein name extraction.  
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