
Machine Learning for Protein Name Extraction
Serhan TATAR

Bilkent University
statar@bilkent.edu.tr

Abstract
A large volume of protein data has been generated as
a result of biological research. This vast amount of
data is generally stored in the textual form in
databases such as Medline. Currently, over 11 million
summaries of articles are stored in Medline.
However, lack of formal structure in the articles
makes difficult to retrieve and process the information
stored in these articles. In this paper, we explore the
use of machine learning techniques for the
information extraction task and present the initial
results of the conducted experiments. Particularly, we
study using Hidden Markov Models (HMMs) for
protein name extraction from the biological texts.

Keywords
Information Extraction, Machine Learning, Hidden
Markov Models, Protein Name Extraction.

INTRODUCTION
Biological knowledge, generated as a result of
biological research in the past, is currently stored in
published articles in scientific publications. Medline,
a rich knowledge source for biological information,
currently contains over 11 million abstracts of these
articles. Although Medline contains enormous amount
of biological information, there is no formal structure
in which Medline can present the stored information.
Stored information is generally found in the textual
form. Lack of formal structure in the articles makes it
tedious and time-consuming to retrieve and process
the information stored in these articles. There is a
growing demand for automatic discovery and
extraction of information from biological texts.
Information extraction systems can be used to meet
the need for automatic discovery and extraction of
information from biological texts.
 Information Extraction (IE) may be defined as the
task of extracting relevant information from a specific
document set. As a discipline, information extraction
is as old as the Message Understanding Conference
(MUC) (Def, 1995), the forum that defined the
problem. MUC-style IE problem can be defined as the
identification of instances of a particular class of
events or relationships in a natural language text, and

the extraction of the relevant arguments of the event
or relationship. IE has figured prominently in the field
of NLP. However, its domain-specific nature makes it
difficult to adapt an IE system to a new domain. In
order to overcome this adaptation problem, many
researches address using machine learning algorithms
to perform IE tasks [3].
 In this paper, we explore the use of machine
learning techniques to extract protein names from the
biological text and present the initial results of the
conducted experiments. The structure of the paper is
as follows. Section 2 describes the previous work,
which has been done until now on the subject. After
reviewing the previous work, we present the example
corpora used in the experiments in Section 3. In
Section 4, protein name extraction problem and the
implemented machine learning approach are defined.
Section 5 describes the experimental evaluation of the
study. Finally, in the last section we discuss our
conclusions, pointing towards future research.

RELATED WORK
Many research projects [5, 6] have focused on the
manual development of IE systems for the discovery
and extraction of information from biological texts.
As stated above, manual adaptation of IE systems to
specific domains is tedious and time-consuming.
Moreover, human error during rule generation makes
these systems error-prone.
 Recent research on the subject has shown that
machine learning techniques can be used in order to
perform protein name extraction from texts.
Moreover, many recent projects [1, 2, 8, 9, 10, 11, 12]
have focused on the automatic extraction of protein
names from biological texts using machine learning
methods.
 Hidden Markov Models are among the successful
statistical learning techniques. Moreover, recent
research [8, 10] in the IE community has shown that
HMMs can be of service, both in performing
fragment-to-slot mapping and in solving associated
tasks.
 In this study, we applied HMMs to protein name
extraction task. We combined various approaches on
the subject, made enhancements to get better
performance, and present the results of the conducted
experiments

EXAMPLE CORPORA
In order to conduct experiments, we use YAPEX [7]
corpora, which contains two collections that consist of
Medline abstracts, obtained in the following way.
 A document set was obtained by posing the query
“protein binding [Mesh term] AND interaction AND
molecular” with the parameters “abstract”, “English”,
“human”, and “publication date 1996-2001” to
Medline. From this set 99 abstracts were drawn
randomly to form the reference (training) collection.
Another non-overlapping set of 48 abstracts was
drawn to form a part of the test collection.
 The remaining 53 abstracts of the 101 in the test
collection correspond to a randomly chosen, re-tagged
subset of the GENIA corpus [4] containing 723
annotated protein names.
 The reference and test corpora are mutually
exclusive. The corpora are available for download at
“http://www.sics.se/humle/projects/prothalt/”. Sample
tagged data is shown in Figure-1.

 In the corpora each article has four parts:

• MedlineID: starts with <MedlineID> tag
and ends with </MedlineID>.

• PMID: starts with <PMID> tag and ends
with </PMID>.

• ArticleTitle: starts with <ArticleTitle> tag
and ends with </ArticleTitle>.

• AbstractText: starts with <AbstractText> tag
and ends with </AbstractText>.

 Last two parts, ArticleTitle and AbstractText,
contain protein names. In the figure, tagged protein
names can be seen clearly. Each protein name is
marked by two tags: <Protname> and </Protname>
(e.g. <Protname> retinoic acid receptor alpha
</Protname>).

PROTEIN NAME EXTRACTION
Problem Definition
The task of extracting protein names from biomedical
corpora is still a challenge, due to the following
reasons:

• Many instances of new protein names do not
suit exactly the standard terminology.

• Authors often refer to proteins already stored
in protein databases using variations, which
do not exist in the databases.

 The success of a protein name extraction method
depends on how well it recognizes the regularities of
protein naming and name variations. Our approach
was to start with a set of protein names collected from
the training set, and then extend it using a carefully
designed method. We centered our effort around this
initial set of proteins, our aim being to develop a
highly accurate information extraction system. The
major task was to generalize the coverage of the
training set, while at the same time trying to minimize
any decrease in accuracy.

Representing Fragments & Generalization
Despite the lack of common standards and
irregularities, and all the problems stated above,
protein names exhibit several regularities that can be
exploited in order to perform generalization [7]. First
of all, protein names are almost always depictive.
Protein characteristics such as function (e.g., growth
hormone), localization or cellular origin (such as
HIV-1 envelope glycoprotein gp120), physical
properties (salivary acidic protein-1), similarities to
other proteins (Rho-like protein) are commonly
reflected in the name. Names are also constructed
using a combination or abbreviation of the above. As
can be noted from the examples, protein names often
consist of multiple words.

<PubmedArticle>
<MedlineID>21294781</MedlineID>
<PMID>11401507</PMID>
<ArticleTitle>Molecular dissection of the <Protname>importin
beta1</Protname>-recognized nuclear targeting signal of
<Protname>parathyroid hormone-related
protein</Protname>.</ArticleTitle>
<AbstractText>Produced by various types of solid tumors,
<Protname>parathyroid hormone-related protein</Protname>
(<Protname>PTHrP</Protname>) is the causative agent of humoral
hypercalcemia of malignancy. The similarity of
<Protname>PTHrP's</Protname> amino-terminus to that of
<Protname>parathyroid hormone</Protname> enables it to share some of
the latter's signalling properties, but its carboxy-terminus confers distinct
functions including a role in the nucleus/nucleolus in reducing apoptosis and
enhancing cell proliferation. <Protname>PTHrP</Protname> nuclear
import occurs via a novel <Protname>importin beta1</Protname>-
mediated pathway. The present study uses several different direct binding
assays to map the interaction of <Protname>PTHrP</Protname> with
<Protname>importin beta</Protname> using a series of alanine mutated
<Protname>PTHrP</Protname> peptides and truncated human
<Protname>importin beta1</Protname> derivatives. Our results indicate
that <Protname>PTHrP</Protname> amino acids 83-93 (KTPGKKKKGK)
are absolutely essential for <Protname>importin beta1</Protname>
recognition with residues 71-82 (TNKVETYKEQPL) additionally required
for high affinity binding; residues 380-643 of <Protname>importin
beta1</Protname> are required for the interaction. Binding of
<Protname>importin beta1</Protname> to
<Protname>PTHrP</Protname> is reduced in the presence of the GTP-
bound but not GDP-bound form of the guanine nucleotide binding protein
<Protname>Ran</Protname>, consistent with the idea that
<Protname>Ran</Protname>GTP binding to <Protname>importin
beta</Protname> is involved in the release of
<Protname>PTHrP</Protname> into the nucleus following translocation
across the nuclear envelope. This study represents the first detailed
examination of a modular, non-arginine-rich <Protname>importin
beta1</Protname>-recognized nuclear targeting signal. Copyright 2001
Academic Press.</AbstractText>
</PubmedArticle>

Figure 1: Sample Tagged Medline Abstract

 As stated above, the primary task of the learner is
to generalize the coverage of the training set.
Therefore, our first aim is to design a method that
provides both generalization and accuracy.
Generalizing means to recognize the parts susceptible
of being changed in new protein names, and replace
them with generic placeholders [1]. Thus, following
the approach used in [8], we generalize protein names
by using words and word-type information. We
determine eight types for the words:

• SingleLetter: Single-letter words are in this
type.

• Number: Numbers are in this type.
• RomanNumeral: Roman numerals are in this

type.
• GreekLetter: Many protein names contain

Greek letters (e.g. retinoic acid receptor
alpha). We group Greek letters into this type.

• Abbrv: Abbreviations are in this type.
• Regular: Regular words are in this type.
• Delimeter: Delimiters are in this type.
• Unknown: This type contains the words that

can not be grouped into the above types.

 Table-1 shows word-type patterns and some
examples.

Patterns

SingleLetter: [a-zA-Z]
Number: [0-9]+
RomanNumeral: I|II|III|IV|V|VI|VII|VIII|IX|X|XI|XII|X

III|XIV|XV|XVI|XVII|XVIII
GreekLetter: alpha|beta|gamma|delta|epsilon|theta|k

appa|lambda|sigma|mu
Abbrv: [a-zA-Z]+)(([A-Z][a-z]*)|([0-

9]+))(([a-zA-Z]+)|([0-9]+)|['])*
Regular: [a-zA-Z][a-z']+
Delimeter: [.,;:(){}/]|-
Unknown:

Examples

SingleLetter: a
Number: 768
RomanNumeral I
GreekLetter: alpha
Abbrv: AB
Regular: Abnormal
Delimeter: (
Unknown: 80%

Table 1: Word-type patterns and examples

IE and Hidden Markov Models (HMMs)
As compared to many other techniques used in natural
language processing, HMMs are an extremely flexible
tool and has been successfully applied to a wide
variety of stochastic modeling tasks.
 Hidden Markov Models are the stochastic analogs
of finite state automata. A stochastic FSA is a
generalization of a deterministic FSA in which each
transition and each accepting state has an associated
probability. Associated emission probabilities define
the likelihood of a state to emit various tokens. The
transitions from a given state have an associated
transition distribution which defines the likelihood of
the next state given the current state. For any given
state in such an automaton, the probability of
acceptance (i.e., of the state being terminal) and the
probabilities of its outgoing transitions must all sum
to one. Thus, a probability can be associated with any
sequence belonging to the language the FSA models.
This membership probability is the product of the
transition probabilities along the unique state
trajectory encoded by the sequence, and the
acceptance probability of the terminal state.
 HMMs and IE are widely discussed in [10].
Formally, HMMs are composed of a set of states Q,
with specified initial and final states q1 and qF, a set of
transitions between states (q → q’), and output
symbols Σ ={σ1, σ2,…, σm}. The model generates a
string X=x1x2…xl by beginning in the initial state,
following the allowed possible states and reaching the
final state. We denote one state follows another by
P(q → q’) and a state emits a particular output symbol
by P(q ↑ σ). Finally, the probability of a string X
being emitted by an HMM M is computed as a sum
over all possible paths by:

where q0 and ql+1 are restricted to be q1 and qF
respectively, and xl+1 is an end-of-string token [10].
 While extracting the information the state
sequence with the highest probability will be chosen
[10]. That is;

 Π V(X|M) = P(qk-1 → qk) P(qk ↑ xk)
l+1

 q0...ql

argmax
k=1

Σ Π P(X|M) = P(qk-1 → qk) P(qk ↑ xk)
l+1

q0...ql k=1

Learning to Perform Protein Name Extraction
To build an HMM for information extraction, first
how many states the model should contain and what
transitions between states should be allowed must be
decided. We can learn the model structure from
training data. Training data with tagged protein names
can be used to build the model. After producing the
model, we can apply it to the test data and chose the
state sequences with the highest probability as protein
names.
 Training is a matter of scanning the training
corpus and building the various probability tables
needed for the protein name extraction task.
Pseudocode for the training algorithm is shown in
Figure-2.

 In the learning algorithm, we first read the training
data. Afterwards, we process the training data, collect
information about the articles and extract the all
words in the training data. At the same time, we
process and extract all the tagged protein names. We
produce statistical data about the words present in the
training data: total number of occurrences, number of
occurrences in a protein name, number of occurrence
in a protein name as a first word, number of
occurrence in a protein name as a last word and
number of occurrence in a protein name as a single
word. We use two linked-lists to keep word-list and
protein name list. While inserting the words into the
list, we determine the type of the word.
 After collecting the statistical data about the
words, we begin to produce four probabilities for each
word: probability of being a first word in a protein
name, probability of being a last word in a protein
name, probability of being a single protein name and
probability of being a word in a protein name.
 Afterwards, we scan all words and for each word
we calculate: a) the count of coming a word wk after
another word wk-1 b) the count of coming a word wk
after another word wk-1 in a protein name. At the
same time, for each word-type we calculate: a) the
count of coming a word-type wtk after another word-
type wtk-1 b) the count of coming a word-type wtk after
another word-type wtk-1 in a protein name. We use
two matrices for these calculations. At this point, the
training process is completed.
 After building necessary probability tables, test
algorithm can estimate the protein names in the test
corpus. During testing, an estimate is produced for
every fragment in the test data.
 In the test algorithm, we first read the test data.
After reading, we process the test data, collect
information about the articles and extract the all
words in the test data. Afterwards, for each fragment
in the test data we calculate the likelihood
probabilities. We use sliding-window technique to
determine fragments. Each word in the window
represents a state in the HMM. While calculating
these probabilities, we use the word-type
probabilities. Thus, we achieve the generalization
task.
 Putting the probabilities generated during the
training into the below formula

while not eof (training_data) {

 Read training data from the training data set;

 Extract articles;

 Create a list of training words;

 Collect protein names;

}

for each word w in the training set {

 calculate frequencies for w;

}

for each word wk in the training set {

 for each word wk-1 in the training set {

 calculate the probability P(wk | wk-1)

 calculate the probability P(wk | wk-1)

 }

}

Figure 2: Training algorithm

we can make estimates for each fragment. Fragments
with the maximum likelihood are extracted as protein
names. Pseudocode for the training algorithm is
shown in Figure-3.

EXPERIMENTAL EVALUATION
Methodology
In this section, we present how our model performs
the extraction task in terms of precision and recall.
We begin this section by explaining the methodology
followed in our experiments.
 To evaluate the effectiveness of our model, we
conducted a series of comparative experiments. We
used the same annotated corpora used in [7]. The

details of the corpora were presented. In our
experiments, two protein names are considered a
match if they consist of the same character sequence
in the same position in the text.
 We measured precision (percentage of extracted
names that are correct), recall (percentage of correct
names that are found), and F-measure (harmonic
mean of precision and recall); as is commonly done in
the MUC evaluations. The metrics and their
calculation methods are shown below:

 The parameter β determines how much to favor
recall over precision. We set β parameter to 1 (β =1)
to make precision and recall equally-weighted.

Results
Figure-4 shows the precision-recall graph for the
experiment. In the graph, we show the curve
indicating the precision for each achievable level of
recall.

Figure 4: Precision - Recall graph

while not eof (test_data) {

 Read training data from the training data set;

 Extract articles;

 Create a list of test words;

}

prob = maxProb = 0;

for k=1 to NO_OF_TEST_WORDS{

 for l=k+1 to k+WIN_SIZE {

 prob= P(wk+1 | wk) P(wk+2 | wk+1)......P(wl | wl-1)

 if prob>maxProb then maxProb=prob;
 }

 if maxProb>threshold

then extract the fragment;
}

Figure 3: Test algorithm

 Π V(X|M) = P(qk-1 → qk) P(qk ↑ xk)
l+1

 q0...ql
argmax

k=1

Precision =
of correct protein names

of extracted protein names

Recall =
of correct protein names

of protein names to extract

F-measure =
(β2 + 1.0) PR

(β2 P)+R

 Maximum F-measure value measured during the
experiment and precision-recall values for that point
is shown in Table-2.

Precision Recall F-measure

0.5473 0.5448 0.5460
Table 2: Maximum F-measure

 Experiments show that the use of word-type
generalization increases the performance of HMM.
 We tried to improve the performance and made
some changes in the test algorithm. In the test
algorithm, instead of using word-type probabilities in
every case –whether or not the word exists in the
training set– we try to use the maximum of the word-
type probability and word probability.
 Figure-5 shows the precision-recall graph for the
derived method. In the graph, we show the curve
indicating the precision for each achievable level of
recall. Maximum F-measure value measured during
the experiment and precision-recall values for that
point is shown in Table-3.

Figure 5: Precision - Recall graph for the derived

method

Precision Recall F-measure

0.5575 0.6037 0.5797
Table 3: Maximum F-measure for the derived method

 We had a little improvement by changing the
algorithm. Both precision and recall values show the
improvement.

CONCLUSION
This study has showed the initial results on the
extracting protein names from Medline abstracts using
HMMs. One of the most important conclusions from
this project is the high importance of model design
and generalization method in HMMs applied to
protein name extraction.

REFERENCES
[1] Bunescu, R., Ge, R., Kate, R. J., Mooney, R. J., Wong,
Y. W., Marcotte, E. M. and Ramani, A. K. Learning to
Extract Proteins and their Interactions from
MedlineAbstracts. In Proceedings of the ICML-2003
Workshop on Machine Learning in Bioinformatics, pp. 46–
53, August 2003.

[2] Bunescu, R., Ge, R., Kate, Marcotte, E. M., Mooney, R.
J., Ramani, A. K. and Wong, Y. W. Comparative
experiments on learning information extractors for proteins
and their interactions. Special Issue in the Journal Artificial
Intelligence in Medicine on Summarization and
Information Extraction from Medical Documents, 31, 2004.

[3] Cardie, C. (1997). Empirical methods in information
extraction. AI Magazine, 18, pp.65-79.

[4] Collier, N., Park, H. S., Ogata, N., Tateishi, Y., Nobata,
C., Ohta, T., Sekimizu, T., Imai, H., Ibushi, K. and Tsujii,
J. The GENIA project: corpus-based knowledge acquisition
and information extraction from genome research papers.
In Proceedings of the 9th Conference of the European
Chapter of the Association for Computational Linguistics
(EACL), pp.271_272, June 1999.

[5] Fukuda, K., Tsunoda. T., Tamura, A. and Takagi. T.
(1998) Toward information extraction: identifying protein
names from biological papers. In Proceedings of the Pacific
Symposium on Biocomputing (PSB98), pp. 705-716.

[6] Humphreys K., Demetriou G., and Gaizauskas, R.
(2000) Two applications of information extraction to
biological science journal articles: enzyme interactions and
protein structures. In Proceedings of the Pacific
Symposium on Biocomputing (PSB2000) , pp. 502-513.

[7] Olsson, F., Eriksson, G., Franzén, K., Asker, L. and
Lidén, P. “Notions of Correctness when Evaluating Protein
Name Taggers”. In Proceedings of the 19th International
Conference on Computational Linguistics (COLING 2002),
Taipei, Taiwan, 24 August - 1 September.

[8] Ray, S., Craven, M. (2001). Representing sentence
structure in hidden Markov models for information
extraction. Proc. of 17th Intl. Joint Conf. on Artificial
Intelligence (IJCAI-2001) (pp. 1273-1279). Seattle, WA.

[9] Raychaudhuri, S., Chang, J. T., Sutphin, P. D., and
Altman, R. B. (2002). Associating genes with gene
ontology codes using a maximum entropy analysis of
biomedical literature. Genome Research, 12, pp. 203-214.

[10] Seymore, K., McCallum, A., and Rosenfeld, R.
Learning hidden Markov model structure for information
extraction. In Working Notes of the AAAI Workshop on
Machine Learning for Information Extraction, pp. 37–42.
AAAI Press, 1999.

[11] Tanabe, L., and Wilbur, W. J. (2002). Tagging gene
and protein names in full text articles. Proceedings of the
Workshop on Natural Language Processing in the
Biomedical Domain. pp. 9-13.

[12] Tanabe, L., and Wilbur, W. J. (2002). Tagging gene
and protein names in biomedical text. Bioinformatics, 18,
pp. 1124 -1132.

