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Abstract. This work is a survey on the concept of neural cryptography, which 
is a communication of two tree parity machines for agreement on a common 
key over a public channel. Not only the communication but also the conver-
gence analyses for both natural and feedback model are included. At last, some 
modifications on the communication protocol are proposed. 

1   Introduction 

Since January 2002, when the Physicists Kanter, Kinzel and Kanter [1] proposed a 
new key exchange protocol between two parties, there is a new notion of public key 
exchange, neural cryptography. They made it possible for two weakly interacting 
chaotic systems to converge, such that they agree on the same information. 
Now, let us look at the concepts of neural networks and public key exchange, which 
will be basis for our observations. 

1.1   Neural Networks 

Throughout the foundation of learning rule for the synapses between neurons, some 
mathematical explanations of artificial neurons are given, which gave birth to the 
concept of neural networks [2]. 
To be more specific, a neural network is a weighted graph of artificial neurons, such 
that the learning process of a neural network is to adjust the weights of the graph. The 
accuracy of the learning neural network is changed by propagating the output error to 
the adjustment process of the weights for each given input. Therefore, by this back-
propagation, precision of the output is increased. 
For the purpose of neural cryptography, we will fix a learning rule (i.e. an adjustment 
process for the graph weights) for two neural networks of the same structure, such 
that they will be synchronized in the end. The synchronization will be in the sense 
that, from some point on they will have the same weights, even if they change their 
weights continuously in each step. 



1.2   Public Key Exchange 

Informally, a public key exchange protocol is for agreement on a secret over a public 
channel for which any eavesdropper of the channel could not be able to come up with 
the same secret. 
For the key exchange, in the protocol of neural cryptography, each side of the syn-
chronization process will use the weights as a secret key. Since the weights of the 
neural networks are random at the beginning of the communication, the synchronized 
weights could be recognized as an agreement on the same information. 
As a consideration of the secrecy of the protocol, any eavesdropper of neural network 
should not be able to come up with the same weights, or in other words, should not be 
synchronized with the on going communication process. 
 
As an outline of this work, first we describe the details of protocol in section 2. De-
tails are given in the order such that what is the structure of a tree parity machine 
(2.1), how the two end points of communication synchronize (2.2), what any attacker 
can do (2.3) and some modifications proposed by the founders of the concept (2.4). In 
section 3, I will propose some modifications for decreasing the time complexity with 
respect to the increasing security of the protocol. And we will conclude in section 4. 

2   Neural Cryptography 

As I have described in previous section, neural cryptography is about the synchroni-
zation of two neural networks, hopefully without leaking information.  
The two neural networks should be given the same inputs, such that each endpoint of 
the communication should have common information before to begin communication. 
For each communication step they should give common inputs to the neural net-
works, which can be done by a pseudorandom stream generator by giving common 
initial seed [3]. 
The neural network structure is a tree parity machine (TPM) such that it outputs a 
single bit (i.e. a parity bit) for some input. Now, we will examine the structure of a 
TPM, the communication and learning process of neural cryptography protocol. 

2.1   Tree Parity Machine (TPM)  

We know that a neural network is a graph of artificial neurons. A TPM is a tree struc-
tured graph of artificial neurons. Height of a TPM, in terms of graph concepts, is two. 
Additionally, leaves of a TPM are input units, intermediary nodes are hidden units, 
and root is the output unit of a TPM. 
The edges between hidden units and root are not weighted. So, the weighted ones are 
the edges between hidden units and input units. Let us have a look on the structure of 
these hidden units, which are the backbones of both the TPM and neural cryptogra-
phy. 



Hidden Unit Structure The notation for the structure is as follows, K is the number 
of hidden units in TPM. N is the total number of inputs. X is the input vector of size 
N. W is the weight vector of size N. When we see a declaration of weights or inputs 
as w(i, j) or x(i, j), those are respectively jth weight or jth input for ith hidden unit. At 
last τ stands for the output of the TPM. 

As explained before, hidden unit is itself a tree. The function inside the hidden unit is 
the sign of weighted sum of inputs as follows: 

σ(i) = sign(Σj[w(i, j)x(i, j)]) (1) 

The sign is the signum function by a small difference, such that one of the endpoints 
counts zero as negative while the other side counts as positive[5]. Moreover the 
output of whole TPM is simply multiplication of the outputs of hidden units. Namely, 

τ = Πi[σ(i)] (2) 

Therefore the output of a TPM is a parity check on the weighted sum of its inputs. It 
is clear that for common input and weight vectors, the output of the TPMs should be 
same. Now a question arises, how could we synchronize randomly weighted TPMs? 

Communication and Learning Process The TPMs in each endpoint will have same 
input vectors, where each input is either 1 or -1. The weight vectors will be 
randomized, where each weight will be an integer between L and –L, such that L is 
also a parameter for the communication process. For each step of communication the 
TPMs exchange their output bits in order to run their learning algorithms. 

We will mark one of the endpoint as A and the other as B without loss of generality. 
Then the learning process is as follows: 
Initially, set W0 to random values 

For each turn t 

Set Xt to common values 

Run TPMs and exchange outputs 

τt,A is not equal to τt,B  No change 

σA|B(i) = τA = τB  Train each such unit i 

τA = τB for last tmin turns  Finish 

Here tmin should be analyzed and considered to be a threshold of learning process, 
such that if machines give the same output for some number of times then we can 



assume that they are synchronized[6]. The next thing for the communication is the 
training of hidden units. 
There are three simple ways of training [7]: 

Wt+1(i) = Wt(i) - τtX(i)Θ(σt(i)τt)Θ(τt,Aτt,B) (3) 

Wt+1(i) = Wt(i) + τtX(i)Θ(σt(i)τt)Θ(τt,Aτt,B) (4) 

Wt+1(i) = Wt(i) + X(i)Θ(σt(i)τt)Θ(τt,Aτt,B) (5) 

Remark 1: if for any w(i,j) ∈ W(i), |w(i,j)|>L then set w(i,j) = sign[w(i,j)]L 
Remark 2: Θ is the Heaviside function for which, if the input is positive, then output 
is 1 and if input is negative then the function evaluates to 0. Moreover, function is not 
defined on 0. Here, the usage of Heaviside function is to guarantee that the training 
process is executed when TPMs have common output and only the hidden units hav-
ing the common output are trained. 
It is easy to see that if two TPMs are synchronized such that they have the same 
weights, then for next turn their weights will be same too. So, after synchronization, 
they will remain synchronized. 

2.2   Analysis of Convergence 

The question of the synchronization is: why do TPMs converge to the same state of 
weights, even if they are distributed randomly? Well, as the founders of the system 
are physicists, they came up with the definition of attractive and repulsive forces. 
Mutual Overlap is a metric for measuring the coherency of states of the weight vec-
tors for each side of the communication [7]. For example, for any two vectors over a 
two dimensional space, the probability of having same projections on any axis in-
creases while the angle between vectors converges to zero. And the probability de-
creases, while the angle approaches to π/2. So, we may approximate the cosine of the 
angle between vectors as probability of having same values for each attribute. Then 
define mutual overlap (ρ) for weight vectors WA(i) and WB(i)  as 

ρ(i) = WA(i). WB(i) /| WA(i) || WB(i) | (6) 

Then the probability ε(i) such that a common randomly chosen input vector X(i) leads 
to a different output for hidden unit σ(i) is given by[7] 

ε(i) = 1/π[arcos ρ(i)] (7) 

Therefore, the vectors should be adjusted in a way that, for the visualization of vec-
tors, they should be attracted to each other and for an eavesdropper; attacker’s ad-
justment should result in repulsion of the weight vectors. So, for the learning rules 
(3), (4) and (5); the vectors are attracted if the outputs of the hidden units are equal to 
the common output. And they do repulsive moves if their outputs are not common. 



2.3   Attacker 

For a secure key exchange protocol, any attacker who knows all of the details of the 
protocol and all of the information exchanged should not have the computational 
power to calculate the secret key. 
Under the assumption of the attacker E, who knows the algorithm, input vectors and 
output bits; could start from all of the (2L+ 1)3N initial weight vectors and calculate 
the ones which are consistent with the communication made. All of these initial states 
end up with the same final weight vector, so the key is unique. However, this task is 
computationally infeasible [7]. 
Although, the feasibility of the attack is in question, the attacks that make the at-
tacker’s probability of finding the key high are declared in [8]. 

Genetic Attack is made by a population of TPMs. As our communicating TPMs 
update their weights while the outputs are the same, the attacker’s TPM population is 
increased by the ones, whose outputs are also the same with actually communicating 
TPMs. So, the population of TPMs evolves in the way that if a TPM’s output is 
common with the communicating TPMs then it lives and reproduces; or dies if not 
same with the common output.  

This is the step of evolution of TPMs as given in [8](A and B are actual TPMs): 
� A and B have different outputs τA, τB; and thus do not change their weights. Then 

all the attacker’s networks remain unchanged as well. 
� A and B have the same outputs τA = τB, and the total number of attacking networks 

is smaller than some limit M. Then the attacker replaces each network C from the 
population by variants of itself, C1, ... , C4 where in each variant the actual hidden 
outputs of the hidden units are replaced by one of the four possible combinations 
whose product is equal to the declared τA. The attacker then uses the standard 
learning rule with the new hidden outputs in order to update the weights of each 
network. 

� A and B have the same outputs τA = τB but the total number of simulated networks 
machines is larger than M. In this case the attacker computes the outputs of all the 
networks, deletes the unsuccessful networks whose output is different from τA, and 
updates the weights in the successful networks by using the standard learning rule 
with the actual hidden outputs of the hidden units. 

 

Geometric Attack relies on the similarities of the structure of TPM and a hyper 
plane definition. This, enables us to assume each X(i) as a hyper plane such that: 

f(z(1),...,z(n)) = Σj x(i,j).z(j) (8) 

f(Z)∈U where U = {-L,...,L}N (9) 



So, we can think of K weight vectors W(1),...,W(K) as points in vector space U. Then 
the attack is as follows. 
The attacking network C of the communicating TPMs A and B considers one of three 
hidden units (i.e. ith hidden unit). Then, if output of C is different from the common 
output, then most probably, only one hidden unit should have different output. So, 
actual output WA(i) will be separated from WC(i) by X(i) in U. Hence, we will deal 
with the distance from WC(i) to hyper plane X(i), which is: |f(WC(i))|. Therefore, the 
attack will be nothing but minimizing this distance, when A and B have same output 
and C has different output 

Probabilistic Attack goes under the assumption that distribution of w(i,j) are 
independent. So, we can find the probability of position of W(i) in the tth step from 
the probabilities for (t-1)st step. Such that, unconditional probability of being in any 
position over the field is 1/(2L+1). And conditionally, for any position l, probability 
will be the sum of probabilities of being in position m, where if Xt-1 = m then Xt = l. 
Thus, by dynamic programming it will be possible to compute distribution of 
w(i,j).x(i,j) because that τ is publicly known. Therefore, with the same probability of 
communicators A and B, attacker C will approach to the common vectors. 

2.4   TPM with Feedback 

As a consideration about the attacks on the scheme, the attacker’s probability behaves 
similar to the synchronization probability function. Such that, the attacker approaches 
to synchronization as well as the communicating TPMs approach to the synchroniza-
tion. Hence, there should be a way that increases the repulsion for the attacker, and 
the probability of the attack should drop drastically with respect to the decrease in 
synchronization probability. 
In [7] Ruttor, Kinzel, Shacham and Kanter proposed TPM with feedback scheme. For 
feedback scheme, there are three new evaluations to consider: 
� After each step t the input is shifted, x(t+1)(i,j) = xt(i,j-1) for j > 1. 
� If τ t,A = τ t,B then x(t+1)(i,1) = σt(i), else x(t+1)(i,1) are set to common values 
� If τt,A is not equal to τ t,B for R steps, then all X are reset to common values. 
It is easy to see that, these evaluations give some privacy to inputs, and additionally 
system becomes sensitive about the learning rule. As described in [7] learning rule (3) 
will reveal less information then (4) and (5). Therefore, the anti-Hebbian learning will 
be more appropriate for the feedback scheme. 

Attack Analysis of the TPM with feedback shows that basically the probability of 
the attacker drops down exponentially with L2. Moreover, for large values of N prob-
ability of the attacker decreases with L. Not only the parameter L, but also R comes 
into place, for which increasing values of R make probability of the attacker to de-
crease as well [7]. 

As we have assumed it to be, security is increased with the confusion of the input 
values. However, making confusion on the input also results in the increase of the 
synchronization time. Therefore, for constant effort on the synchronization, increase 
in the security does not seem promising. 



3   Modifications on the Structure 

As we have inspected the analyses of the scheme, the main problem they have in-
sisted on is the security of the protocol, which is based on the synchronization prob-
ability of the attacker. However, not only the security but also the usage of the 
scheme is a problem. The two TPMs exchange only single bits for the whole syn-
chronization process, but we use headers for communication, where hundreds of bits 
are only overhead. 

3.1   Multiple Machines 

Since, the need for multi-bit output we can simply use multiple TPMs in each end-
point. But, some questions arise here. What will be the effect on the synchronization? 
How will the key be computed? What will be the effect on the probability of the at-
tacker? 
It is clear that the output of one endpoint is simply concatenation of the output bits of 
each TPM. Therefore, the synchronization time will be O(T.S) where T is number of 
TPMs in each endpoint, and S stands for the synchronization complexity of a TPM 
pair. Additionally, not to increase the probability of attacker, for each synchronized 
TPM Pk, the kth bit in the T-bit output is randomized (or simply set to some constant1) 
and Pk is stopped. 
Now, let us think of the key. If we use concatenation of the weight vectors Wk for 
each TPM, then under the assumption that attacker has found some TPMs’ weight 
vectors, parts of key would be compromised. Hence, simply exclusive-or of weight 
vectors will reveal no information unless the attacker finds Wk for each k∈{1,...,T}. 
So the key F as a function of weight vectors is: 

F = ⊕kWk  (10) 

As the computation of exclusive-or operation is simple, the computation time of the 
key will be O(T). 
There is no reveal of information, when the attacker synchronizes without all TPMs, 
and the synchronizations of the TPMs are independent. So, the probability of the 
attacker will be pE

T, where pE is the synchronization probability of the attacker for a 
single pair of TPMs. Hence, the probability of the attacker decreases exponentially 
with T. 
Therefore, this multi-bit protocol increases the synchronization and processing time 
linearly by T, while the synchronization probability of the attacker decreases expo-
nentially with T. 

                                                           
1 Since the attacker eavesdrops the overall output, he can consider that kth bit is same for tmin 

rounds and kth TPMs are synchronized 



3.2   Diffusion for the Attacker 

For special uses of the protocol there are some improvements as well. Basically, the 
usage of the protocol is a session key agreement, where it is under the assumption 
that two endpoints have already agreed on a long term key. By using this long term 
key, they create random (actually deterministic randomization is achieved by using 
long term key as a seed) sequences for non-public but common input vectors. 
However, the attacker can still use his assumptions on the input and can approach to 
the synchronization as well. Therefore, we can propose a random permutation, which 
relies on the common secret randomization process, on the output bits for multi-bit 
scheme. These will be nothing but diffusion for the attacker.  
For the sake of completeness we can set the number of output bits to T+Z where T is 
the number of TPMs and Z is the number of extra random bits, for which randomiza-
tion function takes secret as a seed too. But randomization function is different from 
the function for input randomization process. Additionally, we should randomize the 
output of synchronized TPMs (i.e. we set them constant in previous scheme) for no 
reveal of information on the permutation2. 

3.3   Possible Attackers 

As I have described earlier, in the sense of geometric or probabilistic attacks, the 
probability of the attacker will decrease exponentially while the computing time in-
creases linearly. However, for genetic attack the probability of the attacker does not 
diminish but the attacker’s processing time increases as well as the communicator 
endpoints. Moreover, instead of the traditional scheme, if we use feedback system 
then inherently, genetic attack will be almost impossible to synchronize. 

4   Conclusion 

The neural cryptography schemes proposed so far, do not seem promising. But, this is 
a quite new approach to public key exchange and people in both physics and cryptog-
raphy communities would find some way to make it reasonable.  
Moreover, we have given two new approaches to the neural cryptography. Both of 
them use multi-bit communication, which decreases the attacker’s probability with 
respect to the synchronization complexity. Additionally, one of them is for specific 
use (i.e. secret input vectors), and almost eliminates the attacker. 
Furthermore, there are some more interesting titles for this scheme, such that they are 
investigated in [4] and much closer to the cryptography. 

                                                           
2 Since, the synchronized TPMs output the same bit, while approaching to the synchronization, 

the permutation, which is a function of the common secret, will be clear. 
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