Effects Of Country Specific Features On

Summer Olympics Swimming Games Medal Results

Tunç GÜLTEKİN

Ekonomi | Spor | Bilim-Teknoloji | Sağlık | Yaşam | Basın Özeti Türkiye neden madalya alamıyor? Türk Eğitim Sen ve Kamu Sen Genel Başkanı İsmail KONCUK:

Üc tarafı denizlerle cevrili bir ülkede bir yüzücü dahi cıkaramamıs olmamız son derece ilginc. Eğitim sistemimizi bu yönüyle masaya yatırmalıyız. Başarısızlığı, eğitim sisteminden bağımsız düşünemeyiz.

Ülkemizi uluslararası alanda temsil edecek yüzücü çok vetişmiyor. Oysa üç vanı denizlerle çevrili bir ülkeviz. Bu ironinin nedeni nedir?

Derya Büyükuncu: Mantıken dediğiniz gibi olması lazım. Her tarafimiz deniz, suyu sevmeliyiz. Ama maalesef biz sporu sevmiyoruz.

Özgür BOLAT ozgurbolat@hurriyet.com.tr 2 Ağustos 2012

Türkiye neden olimpiyatlarda başarısız?

13.08.2011 - 01:19 🛛 🚔 🔀 🗛+ 🗛-

"Üç tarafı denizlerle çevrili bir ülkenin çocukları Derya Büyükuncu dışında bir isim çıkaramıyorsa bu büyük bir kayıptır"

Spor Bakanı Suat Kılıç ilk röportajını VATAN'a verdi:

Outline

- Some Statistics about Swimming on Olympics.
- Data Collection
- Data Integration
- Data Preperation
- Data Analysis
 - Simple Visualization
 - Clustering
 - Classification
- Conclusion

Some Information

 Michael Phelps is the most decorated Olympian of all time, with a total of 22 medals.
 (18 gold, 2 silver, 2 bronze)

Some Information

 Derya Büyükuncu is the first ever Turkish swimmer to win an international competition. (1997 Mediterranean Games 3rd)

 Also he has been a Turkish national team member for more than 25 years

What about countries?

Some Statistics

Rank 🖨	Nation 🗢	Gold 🗢	Silver 🗢	Bronze 🗢	Total 🗢
1	United States (USA)	230	164	126	520
2	🏝 Australia (AUS)	57	60	61	178
3	East Germany (GDR)	38	32	22	92
4	Hungary (HUN)	25	23	18	66
5	Japan (JPN)	20	24	29	73
6	Netherlands (NED)	19	18	19	56
7	🚟 Great Britain (GBR)	15	22	30	67
8	Germany (GER)	13	18	28	59
9	Soviet Union (URS)	12	21	26	59
10	China (CHN)	12	17	8	37

- Two different data was used for this;
 - Athlete medal information related to specific olympic swimming event.
 - Country specific features (Coastline Length GNI...)

Athlete Medal Information

Contains these features;

- Athlete Name
- Country Name
- Sex
- Race Cource Length
- Race Type
- Race Time
- Year,
- Medal Type
- Example: Larsen Jensen, USA, Men, 1500, Freestyle, 2004, 14:45.3, SILVER

Country Specific Features

- **CoastLine:** Numeric, Defines the coastline length of that country.
- EducationIndex : Numeric, Defines the adult literacy rate of that country. It is a value which between 0 and 1.
- **GNI** : Numeric, Defines the Gross National Income of that country.
- **Population :** Numeric, Defines the Population of that country.

Country Specific Features

- ForestArea : Numeric, Defines Forest Area of that country.
- **Fishing :** Numeric, Defines Fisheries Production of that country.
- **BirthRate :** Numeric, Defines Birth Rate of that country. It is a value which between 0 and 1.
- **GDP** : Numeric, Defines Gross Domestic Product of that country. It is often considered an indicator of a country's standard of living.

Country Specific Features

- **CO2Rate :** Numeric, Defines CO2 Emission (metric tones) of that country.
- **DeathRate :** Numeric, Defines Death Rate of that country. It is a value which between 0 and 1.
- HDI: Numeric, Defines the Human Development Index of that country.

- Country medal information was taken from <u>www.databaseolympics.com</u>
- Country specific features were taken from different pages of wikipedia.
- This method created many different tables

Horizontal Data Integration is Required

Listestring> forestNotFoundList = new Listestring>(); List<string> gdpHotFoundList = new List<string>(); Listsstring> fishingHotFoundList = new Listsstring>(); Listering> risningworrounolist = new Listering>(); Listering> deathRateNetFoundList = new Listering>(); List(string) co2NotFoundList = new List(string)(); Liststring> birthRateNotFoundList = new Liststring>(); Liststring> birthRateNotFoundList = new Liststring>(); List<Countryinfox allCountries = new List<Countryinfox();

var educationInfo = educationList.Where(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var coastlineList.Where(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var educationInfo = educationList.Mere(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var cosstlineInfo = scastlineList.Mere(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var gniList.Mere(a => a.CountryName == (item.CountryName)).SingleOrDefault();

var hdiinfo = hdilist.khere(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var forestlinfo = forestlist.khere(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var hdlinfo = hdllit.hhere(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var forestLinfo = forestList.hhere(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var gdplnfo = gdpList.hhere(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var forestlifo = forestlist.Where(a => a.CountryName == (item.CountryName)).SingleOrDefaul: var gdpInfo = gdpList.Where(a => a.CountryName == (item.CountryName)).SingleOrDefaul: var fishingLifo = fishingList.Where(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var fishingLifo = fishingList.Where(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var gdplafo = gdplist.Where(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var fishingLifo = fishingList.Where(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var deatMateList.Where(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var fishingLife = fishingLife.ubere(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var desthateLife = desthateList.ubere(a => a.CountryName == (item.CountryName)).SingleOrDefault(); var collife = collist.ubere(a => a.CountryName == (item.CountryName)).SingleOrDefault();

foreach (var item in populationList)

if (educationInfo == null)

if (soilofo_ss_oull)

To achive this goal, a .net application was developed. List<string> educationNotFoundList = new List<string>(); List<string> coastlineNotFoundList = new List<string>(); List(string) gniNotFoundList = new List(string)(); List<string> hdiNotFoundList = new List<string>();

Data was integrated over country name

	А	В	С	D	E	F	G	Н	I.
1	AthletName	CountryName	Coastline	EducationRate	GNI	Population	HDI	GDP	ForestArea
2	Larsen Jensen	United States	133312	0.968	48890	314419000	91	14447100	3030890

J	K	L	М	N	0	Р	Q	R	S
Fishing	BirthRate	CO2	DeathRate	Gender	RaceCourceLength	RaceType	Time	Year	MedalType
100000	13.7	5461014	8.2	Men	1500	Freestyle	14:45.3	2004	SILVER

Data Preparation & Cleaning

- Country name for some feature sets are inconsistent or misspelled.
 - Ex: USA → United States → America
 China, Ch, PRC …
 - Solved programmaticaly.
- Some countries do not exist anymore.
 - Ex: Soviet Union, West Germany...
 - These ones are eliminated.

Data Preparation & Cleaning

- Some country specific feature information is incomplete for some countries.
 - Ex: Fishery information below 100K Tones.
 - Assigned constant value (100K), and deleted
- Country specific informations belongs to 2000's but medal informations cover all olympics of last century.
 - Solved by using recent years' results (such that 1996 and later.)

Data Preparation & Cleaning

• Some other data preparation techniques were used before performing different analysis methods.

Data Transformation & Analysis

- Three different approaches were followed to analyse
 - Simple visualization of data
 - Clustering
 - Classification

- To analyse distribution of data, Weka's Visualization tool was used without performing any special operation.
- Some results were obtained.

 Probability of getting Gold Medal is higher than other medals for the countries which have very high forest area and low CO2 emission.

 Probability of getting a Medal is high for the countries which have very high CO2 emission and races with women athletes.

x: Gold

x: Silver

x: Bronze

X-Axis: CO2 Y-Axis: Gender

• Probability of getting a Medal (especially gold) is higher than other medals for the countries which have very high forest area and races with male athletes.

3882431

x: Gold

x: Silver

x: Bronze

X-Axis: Forest Area Y-Axis: Gender

 Probability of getting Silver Medal is lower than other medals for the countries which have medium hdi and medium-low population.

x: Silver

x: Bronze

X-Axis: Population Y-Axis: HDI

 Probability of getting Bronze Medal is lower than other medals for the countries which have very high population and mid-low education index.

What about more general results?

- The goal is finding natural groups, which have similar features and medal results, on the data.
- Some of the attributes are removed;
 - CountryName, RaceTiming, Year
- All data belongs to 1996 and later Olympics

- K-Means and EM algorithms were run with different cluster number parameters.
 - With 3, 5 and 10
- K-Means algorithm with 5 clusters exhibited the best performance.

• %66 of 304 instances were used for training and leftovers were used for testing.

Cluster centroids:

		Cluster#				
Attribute	Full Data	0	1	2	3	4
	(200)	(48)	(14)	(36)	(40)	(62)
Coastline	66552.555	63901.2708	63334.9286	133312	29955.8	54178.9839
EducationRate	0.9583	0.96	0.9016	0.968	0.9401	0.9761
GNI	35757.45	37713.3333	15185.7143	48890	26199.25	37429.6774
Population	182442969.66	243053645.0625	124374568.6429	314419000	195846751.35	63351950.871
HDI	0.8705	0.8832	0.7217	0.91	0.8226	0.9022
GDP	5664302.195	6377401.2917	1252518.2143	14447100	2923731.425	2776855.8871
ForestArea	1688294.975	1518583.375	4926650.6429	3030890	748929.725	914913.7903
Fishing	2559371.135	4569233.6875	410797.7143	100000	5616683.2	944072.8065
BirthRate	12.508	12.2896	14	13.7	12.4275	11.7
C02	2248048.815	2668110.0417	1025752.2857	5461014	1519502.15	803279.9839
DeathRate	9.105	8.3646	13.45	8.2	9.9825	8.6565
Gender	Men	Women	Men	Men	Women	Men
RaceCource	267.5	229.1667	221.4286	181.9444	220	387.9032
RaceType	Freestyle	Freestyle	Freestyle	Backstroke	Medley	Freestyle
MedalType	BRONZE	SILVER	BRONZE	GOLD	BRONZE	BRONZE

• Are there similar countries, which have not earn any silver medal, on some events?

- Are there similar countries, which have not earn any silver medal, on some events?
 - 17 instances were found over 200 instance (%16)
 - Coastline: [Medium Low] Scale (Mean: 29995 Km)
 - Education Rate: High Scale (Mean: 0.9401)
 - GNI: Medium Scale (Mean: 26199 Dolars)
 - Population: Low Scale (Mean: 135M)
 - GDP: [Medium Low] Scale (Mean: 2723931 Dolars)
 - Forest Area: [Medium Low] Scale (Mean: 748929 Km2)
 - CO2: [Medium Low] Scale (Mean: 1519502 Tones)
 - HDI: High Scale (Mean: 0.8226)
 - Category: Women
 - Race Type: All types except freestyle

South Africa, Australia Poland ...

• Combining some attributes can be useful.

• K-Means algorithm result with 5 clusters.

		Cluster#				
Attribute	Full Data	0	1	2	3	4
	(200)	(54)	(35)	(58)	(24)	(29)
Coastline	66552.555	32609.4259	47267.6	133312	10217.4167	66135.2414
EducationRate	0.9583	0.9625	0.9573	0.968	0.9293	0.9566
GNI	35757.45	35378.3333	30997.1429	48890	18000.4167	30638.9655
Population	182442969.66	154210489.2778	86905868.6857	314419000	193982076.7917	76815526.3448
HDI	0.8705	0.8846	0.8601	0.91	0.7835	0.8497
GDP	5664302.195	2776866.1667	1512588.1143	14447100	1204850.5417	2176581.6897
ForestArea	1688294.975	737830.0926	1433430.8857	3030890	379717.0417	2163491.7241
Fishing	2559371.135	4480266.5185	1858177.3714	100000	6603660.2917	1400544.1379
BirthRate	12.508	11.5537	13.5	13.7	12.0875	11.0517
C02	2248048.815	1151855.1111	601530.8286	5461014	1075534.2083	820840.5172
DeathRate	9.105	8.4444	8.4286	8.2	11.1167	11.2966
Gender	Men	Women	Men	Men	Women	Men
RaceType	Freestyle	Freestyle	Freestyle	Freestyle	Medley	Breaststroke
RaceAndMedalType	200_BRONZE	200_SILVER	1500_GOLD	200_GOLD	200_GOLD	100_BRONZE

Cluster centroids:

 Are there similar countries, which have earned medal, only on 100m and 200m events?

- Are there similar countries, which have earn medal, only on 100m and 200m events?
 - 14 instances were found over 200 instance (%13)
 - Coastline: Medium Scale (Mean: 66135 Km)
 - Education Rate: High Scale (Mean: 0.9566)
 - GNI: [Medium High] Scale (Mean: 30638 Dolars)
 - Population: Low Scale (Mean: 76M)
 - GDP: [Medium Low] Scale (Mean: 2176581 Dolars)
 - Forest Area: [Medium Low] Scale (Mean: 2163491 Km2)
 - CO2: [Low] Scale (Mean: 820840Tones)
 - HDI: High Scale (Mean: 0.8497)
 - Category: Men
 - Race Type: All types except freestyle and medley

Can be a model built for medal type prediction?

- There were not any correlation with medal type attribute and other features.
- Some preprocessing operations were required.

 Z Score Standardization was used to standardize all numeric attributes to have zero mean and unit variance.

- For better classification performance, discretization method was used.
 - Sturges' Rule

 $k = \left\lceil 1 + \log_2 n \right\rceil$

- 10 Bin is required for 304 instance.
- 5 Bin discretization showed better performance on classification.

After the data preparation operations;

Ranked attributes:

InfoGainAttrEval With Ranker

	0.0271458	1	Coastline
	0.0242433	2	EducationRate
	0.0218696	9	BirthRate
	0.0136533	3	GNI
	0.0123667	11	DeathRate
	0.0092241	10	C02
	0.0075056	7	ForestArea
	0.0072773	5	HDI
	0.0071924	4	Population
	0.0071838	6	GDP
	0.002023	8	Fishing
	0.0014055	15	Year
	0.0006656	14	RaceType
	0.0000619	13	RaceCource
	0.0000259	12	Gender
-	-		

	corr = -1	e B			Ξ			Ξ	_	lå,		:	<u> </u>	Ξ	:	:
	corr = +1	St.	Cat		-P			est	j	ř	~	÷	<u>e</u>	S	e	넕
\times	corr = n/a	õ	멉	S	P	Ē	ē	Ē	흜	Bit	Ö	Ď	B	Rac	Rac	Ξ
	Coastline															
	EducationRate															
	GNI															
	Population															
	HDI															
	GDP															
	ForestArea															
	Fishing															
	BirthRate															
	CO2															
	DeathRate															
	Gender															
	RaceCource															
	RaceType															
	MedalType															

- Different classification algorithms were tested with ten folds cross validation.
 - J48, Decision Stump, Random Forest, RBF Network...
- The most successfull one is J48

• J48 classification results;

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
Total Number of Instances

120	
184	
0.0916	
0.4287	
0.5089	
96.4949	8
107.9713	8
304	

Success rate is too low.

Random classification rate would be 33.3333 %

• J48 classification results;

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.417	0.328	0.394	0.417	0.406	0.534	GOLD
	0.289	0.324	0.295	0.289	0.292	0.46	SILVER
	0.471	0.255	0.49	0.471	0.48	0.625	BRONZE
Weighted Avg.	0.395	0.302	0.395	0.395	0.395	0.542	

=== Confusion Matrix ===

```
a b c <-- classified as
43 33 27 | a = GOLD
45 28 24 | b = SILVER
21 34 49 | c = BRONZE
```


 Classification by using combined attribute; RaceLengthAndMedalType

Correctly Classified Instances	67
Incorrectly Classified Instances	237
Kappa statistic	0.1548
Mean absolute error	0.1105
Root mean squared error	0.2507
Relative absolute error	90.3079 %
Root relative squared error	101.3435 %
Total Number of Instances	304

Success rate is too low.

Random classification rate would be 6.6667%

• Knime's decision tree view; (first three node)

	E	BRONZE	E (9)	3/27	3)			
		Table:						
	Cat	egory		%	n			
	GO	D	3	3,7 92				
	SIL	VER	3	32,2	88			
	BRO	ONZE	3	84,1	93			
	Tot	al	10	0,0	273			
			Τ					
		e)			_		
Coastline is	:In ['\	'(Соа	stline	e is	sIn ['\'	(2
						I		
			1	_				
GOLD (9	2/268))			BRO	VZI	E (4/5)	
GOLD (9) □▽ Table: —	2/268))		V	BROI Table	vzi	E (4/5)	
GOLD (9 ▼ Table: Category	2/268) %) n		⊂ Cat	BROI Table egory	NZI : —	E (4/5) %	n
GOLD (9) Table: Category GOLD	2/268) % 34,3) n 92		⊂マ Cat	BRO Table egory D	NZI :	E (4/5) % 0,0	n 0
GOLD (9. Table:	2/268) % 34,3 32,5) n 92 87		Cat GOI SIL	BROf Table egory LD VER		E (4/5) % 0,0 20,0	n 0 1
GOLD (9. Table: Category GOLD SILVER BRONZE	2/268) % 34,3 32,5 33,2) 92 87 89		Cat GOI SIL	BROI Table egory LD VER DNZE		E (4/5) % 0,0 20,0 80,0	n 0 1 4
GOLD (9. Table: Category GOLD SILVER BRONZE Total	2/268) % 34,3 32,5 33,2 98,2	n 92 87 89 268		Cat GOI SIL BR(Tot	BROI Table egory LD VER DNZE al		E (4/5) % 0,0 20,0 80,0 1,8	n 0 1 4 5
GOLD (9. Category GOLD SILVER BRONZE Total	2/268) % 34,3 32,5 33,2 98,2) 92 87 89 268		Cat GOI SIL BR(Tot	BROI Table egory LD VER DNZE al		E (4/5) % 0,0 20,0 80,0 1,8	n 0 1 4 5
GOLD (9. Category GOLD SILVER BRONZE Total	2/268) % 34,3 32,5 33,2 98,2	n 92 87 89 268		Cat GOI SIL BR(Tot	BROI Table egory LD VER DNZE al		E (4/5) % 0,0 20,0 80,0 1,8	n 0 1 4 5

n 0

• Rapid Miner's whole tree view (without prunning);

Conclusions

- Coastline Length is the most effective feature to decide medal type but not good enough.
- Some patterns like clusters, exist in the data.
- But they are not sufficient to create a accurate model.

Thanks!

Questions

