Social Media Monitoring by Using Data Mining

Fuat Basık
Presentation Plan

• Introduction
• Motivation
• Stream Processing
• Data Set
• Turkish Language
• Pre Processing and Stemming
• Term Frequency and Inverse Document Frequency
• Support Vector Machines
• Demo
• Conclusion
Introduction

• Different than the discussion on the class.
 • But includes applications of what we learned so far.
• Business Intelligence applications use old data.
 • It is like using only rearview mirror to drive a car.
• Social media is a bridge that companies can reach to customers directly.
• Statistics about Social Media
 • Facebook reached 1 billion customers recently.
 • By the end of 2010, Twitter gets 400 million tweets per day.
 • Turkey is the 11th country that contributes Twitter most.
• Big Numbers, Big Data, Big Market, Big Problem.
Motivation

• Turkish is an agglutinating language.
• There are only a few numbers of research about Turkish Language.
• Companies need a way to extract knowledge from social media.
• Twitter data fit perfectly stream processing applications.
• Creating an application that is able to process streaming data.
Motivation

- **Stream Processing**
 - Process the data while it is flowing into the system.
 - Before inserting to database.
 - No I/O cost.
 - Real time analysis.
 - Good for the Business Intelligence applications, Fraud Detection, Image processing applications.
Data Set

• For Learning Phase
 • Data collected and written to a file by using Twitter4J.
 • Labeled as negative or positive.
 • 2250 Instances
 • 1650 Negative Labeled.
 • 600 Positive Labeled.

• For Application Phase
 • Live data flow from Twitter itself.
 • Keyword based search.
 • Using Twitter4J, Twitter API for Java.
 • Example Tweet:
 • avea gibi hiçbir yerde çekmeyen başka bir hat daha yoktur heralde.
Turkish Language

- Turkish Language is one of the Morphologically Rich Languages.
- It is an agglutinating language.
- Harder to process.
- Stemming algorithm should remove suffixes from the root.
- For example:
 - Söyleyemedim (Söy-le-ye-me-dim) vs Söylemedim (Söy-le-me-dim).
 - Not being able to.
Pre Processing and Stemming

• Stop word removal.
 • Words that do not have meaning.
 • Domain specific words.
• Repeating letter removal.
• Smiley replacing.
 • Not done yet.
 • Replace 😊 with Positive and 😞 with negative.
• Zemberek, Natural Language Processing Tool.
 • Official spell checker of Turkish Applications of Open Office.
 • Spell checking, word suggestions, separating the root and suffixes.
Pre Processing and Stemming

• Example:
 • Go over the same tweet:
 • avea gibi hiçbir yerde çekmeyen başka bir hat daha yoktur herhalde.
 • After Pre Process:
 • hicbir yer _cek başka hat yok herhalde
 • After pre processing, each word will be evaluated separately.
 • Then, TF-IDF Transformation will be applied.
Term Frequency

• Term Frequency is the count of occurrences of a word in a given class.
• How often a term occurs.
• Normalized.

\[tf(t, d) = \frac{f(t, d)}{\max\{f(w, d) : w \in d\}} \]
Inverse Document Frequency

- Counts the occurrences of a word in the not given classes.
- For example, count of word “Harika” in positive labeled tweets are TF and negative labeled tweets are IDF.
- Formulization

\[
\text{idf}(t, D) = \log \frac{|D|}{|\{d \in D : t \in d\}|}
\]
TF-IDF

- Helps to find words that are occurring frequently in a class and not frequently in other classes.
- In our case we have two classes: positive and negative.
- We try to find most negative words by applying TF-IDF.
- Each word becomes an id + a frequency value.
- TF * IDF
Support Vector Machines

• A collection of features called an instance.
• Includes a class value, and list of features.
• Each feature is a word but with TF-IDF transform.
• Ex:
 • \{0 ,136 2.500744,413 2.137636,427 3.627779,436 3.688091,890 2.208427,897 1.970956\}
Support Vector Machines

- Correctly Classified Instances 1772 78.7556 %
- Incorrectly Classified Instances 478 21.2444 %
- Kappa statistic 0.4551
- Mean absolute error 0.2455
- Root mean squared error 0.4089
- Relative absolute error 62.7583 %
- Root relative squared error 92.474 %
- Total Number of Instances 2250

- Confusion Matrix

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>--- classified as</th>
</tr>
</thead>
<tbody>
<tr>
<td>358</td>
<td>242</td>
<td>a = positive</td>
</tr>
<tr>
<td>236</td>
<td>1414</td>
<td>b = negative</td>
</tr>
</tbody>
</table>
Demo & Conclusion

• Please send a tweet that contains “cs553” in it.
References

• 4. Zemberek Natural Language Processing Tool,
 http://code.google.com/p/zemberek/
• 5. TF-IDF: http://en.wikipedia.org/wiki/Tf%E2%80%93idf