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Abstract

This paper discusses several factors influencing the evaluation of the degree of interestingness of rules discovered by a data mining
algorithm. This article aims at: (1) drawing attention to several factors related to rule interestingness that have been somewhat neglected in
the literature; (2) showing some ways of modifying rule interestingness measures to take these factors into account; (3) introducing a new
criterion to measure attribute surprisingness, as a factor influencing the interestingness of discovered rules.q 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

A crucial aspect of data mining is that the discovered
knowledge should be somehow interesting, where the term
interestingness arguably has to do with surprisingness
(unexpectedness), usefulness and novelty [1].

Rule interestingness has both an objective (data-driven)
and a subjective (user-driven) aspect. This article focuses on
the objective aspect of rule interestingness. For a discussion
about subjective aspects of rule interestingness, the reader is
referred, e.g. to Ref. [2]. It should be noted that, in practice,
both objective and subjective approaches should be used to
select interesting rules. For instance, objective approaches
can be used as a kind of first filter to select potentially
interesting rules, while subjective approaches can then be
used as a final filter to select truly interesting rules.

This article is organized as follows. Section 2 presents a
review of several rule interestingness criteria. Section 3
presents a case study on how a popular rule interestingness
measure can be extended to take into account several rule
interestingness criteria in an integrated, combined fashion.
Section 4 introduces a new criterion for rule interestingness
measures. Finally, Section 5 summarizes and concludes the
paper.

2. A review of rule interestingness criteria

2.1. Rule interestingness principles

For the purposes of this paper, a classification rule is a
knowledge representation of the formA) B, whereA is a
conjunction of predicting attribute values andB is the
predicted class. When evaluating the quality of a rule,
three common factors to be taken into account are the cover-
age, the completeness and the confidence factor of the rule,
defined as follows. The coverage of the rule (i.e. the number
of tuples satisfied by the rule antecedent) is given byuAu. The
rule’s completeness (or proportion of tuples of the target
class covered by the rule) is given byuA&Bu/uBu. The rule’s
confidence factor (or predictive accuracy) is given by
uA&Bu/uAu.

Piatetsky-Shapiro [3] has proposed three principles for
rule interestingness (RI) measures, as follows:

1. RI� 0 if uA&Bu � uAuuBu/N.
2. RI monotonically increases withuA&Bu when other para-

meters are fixed.
3. RI monotonically decreases withuAu or uBu when other

parameters are fixed.
The first principle says that the RI measure is zero if the
antecedent and the consequent of the rule are statistically
independent. The second and the third principle have a
more subtle interpretation. Note that Piatetsky-Shapiro
was careful to state these principles in terms ofother
parameters, which is a phrase general enough to include
any other parameter that we can think of. Let us assume
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for now that the rule parameters referred to by these
principles are the termsuAu, uBu, and uA&Bu, which are
the terms explicitly used to state the principle. Note
that this is an implicit assumption in most of the litera-
ture. However, we will revisit this assumption later in
this section.
With the above assumption, principle 2 means that, for
fixed uAu and fixeduBu, RI monotonically increases with
uA&Bu. In terms of the above mentioned rule quality
factors, for fixeduAu and fixeduBu, the confidence factor
and the completeness of the rule monotonically increase
with uA&Bu, and the higher these factors the more inter-
esting the rule is.
Principle 3 means that: (1) for fixeduAu and fixeduA&Bu
(which implies a fixed coverage and a fixed confidence
factor) RI monotonically decreases withuBu—i.e. the less
complete, the less interesting the rule is; and (2) for fixed
uBu and uA&Bu (which implies a fixed rule completeness)
RI monotonically decreases withuAu—i.e. the greater the
coverage, the smaller the confidence factor, and the less
interesting the rule is.
Major and Mangano [4] have proposed a fourth principle
for RI measures (which does not follow from the first
three principles), namely:

4. RI monotonically increases withuAu (rule coverage),
given a fixed confidence factor greater than the baseline
confidence factor (i.e. the prior probability of the class).

In passing, we mention that Kamber and Shinghal [5]
have proposed a fifth principle for rule interestingness, but
this principle is mainly oriented for characteristic rules,
which are beyond the scope of this paper.

It should be noted that the above principles were designed
mainly for considering the widely used rule quality factors
of coverage, completeness and confidence factor. Another
widely used rule quality factor is rule complexity. Although
these factors are indeed important when evaluating the qual-
ity of a rule, they are by no means the only ones. In this
paper we draw attention to five other factors related to rule
quality and particularly to rule interestingness. These addi-
tional factors are discussed in the next sections.

Note that, in theory, Piatetsky-Shapiro’s principles still
apply to rule interestingness measures considering these
additional factors, as long as they remain fixed. (As
mentioned before, the principles were carefully defined
with the expression “fixedotherparameters”.) The problem
is that, in practice, these additional factors do not remain
fixed. These additional factors will probably vary a great
deal across different rules, and this variation should be taken
into account by the rule interestingness measure.

2.2. Disjunct size

A rule set can be regarded as a disjunction of rules, so that
a given rule can be regarded as a disjunct. The size of a
disjunct (rule) is the number of tuples satisfied by the rule
antecedent, i.e.uAu.

Thus, small disjuncts are rules whose number of covered
tuples is small, according to some specified criterion (e.g. a
fixed threshold, or a more flexible criterion). At first glance,
it seems that small disjuncts are undesirable, and indeed
most data mining algorithms have a bias favoring the
discovery of large disjuncts.

Unfortunately, however, prediction accuracy can be
significantly reduced if all small disjuncts are discarded
by the data mining algorithm, as shown in [6]. This is a
particularly serious problem in domains where the small
disjuncts collectively match a large percentage of the
number of tuples belonging to a given class [7]. The main
problem is that a small disjunct can represent either a true
exception occurring in the data or simply noise. In the
former case the disjunct should be maintained, but in the
latter case the disjunct is error prone and should be
discarded. Unfortunately, however, it is very difficult to
tell which is the case, given only the data.

Holte et al. [6] suggested that one remedy for the problem
of small disjuncts was to evaluate these disjuncts by using a
bias different from the one used to evaluate large disjuncts.
Hence, they proposed that small disjuncts be evaluated by a
maximum-specificity bias, in contrast with the maximum-
generality bias (favoring the discovery of more general
rules—i.e. larger disjuncts) used by most data mining algo-
rithms. Ting [8] further investigated this approach, by using
an instance-based learner (as far as we can go with the
maximum-specificity bias) to evaluate small disjuncts.

From a rule interestingness point of view, the lesson is
that small disjuncts and large disjuncts should be evaluated
in different ways—i.e. with different evaluation biases—by
a rule interestingness measure.

2.3. The imbalance of the class distribution

A class distribution is imbalanced if tuples belonging to
one class are either much more frequent or much rarer than
tuples belonging to other classes. To simplify our discus-
sion, let us consider the common case of two-class
problems.

Other things being equal, a problem where the two classes
have the same relative frequency (or prior probabilities) is
more difficult than a problem where there is a great differ-
ence between the relative frequencies of the two classes. In
the latter case, it is relatively easy to discover rules predict-
ing the majority class, but it is difficult to discover rules
predicting the minority class. The smaller the relative
frequency of the minority class, the more difficult it is to
discover rules predicting it, and thus, intuitively, the more
interesting are the rules predicting the minority class and the
less interesting are the rules predicting the majority class.
This point if often ignored by data mining algorithms.

Kononenko and Bratko [9] have proposed an informa-
tion-theoretic measure for evaluating the performance of a
classifier by taking into account the problem of imbalanced
class distributions, and their measure has some interesting
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properties. However, their approach was designed to eval-
uate a classifier as a whole—mainly to compare the perfor-
mance of different classifiers in the same domain or the
performance of a classifier in different problem
domains—rather than to compare the interestingness of
different rules discovered by the same classifier, which is
the focus of this article.

Note that the problem of imbalanced class distributions
interacts with other problems discussed in this article. For
instance, consider the interaction between the problem of
imbalanced class distributions and the problem of small
disjuncts. Letr1 and r2 be two small disjuncts (rules) of
the same size (i.e. the same number of covered tuples),
where r1 predicts the minority class andr2 predicts the
majority class for a new tuple. Thenr1 tends to have a
much smaller prediction accuracy thanr2 [10].

Finally, note that using a rule interestingness measure
which takes into account the relative class frequencies is
not the only approach to cope with the problem of imbal-
anced class distributions. For instance, another approach to
address this problem consists of selectively removing tuples
from the majority class, so that the class distribution
becomes less imbalanced [11]. In this paper however, we
are interested only in modifying the rule interestingness
measure used by the algorithm, leaving the data being
mined intact.

2.4. Attribute costs

Most rule interestingness measures consider the rule ante-
cedent as a whole, without paying attention to the individual
attributes occurring in the rule antecedent. In this sense,
these measures are coarse-grained. However, two rules
with the same value of a coarse-grained rule interestingness
measure can have very different degrees of interestingness
for the user, depending on which attributes occur in the rule
antecedent.

In this section we consider one situation where the notion
of attribute interestingness is crucial and is related to the
issue of attribute costs. In Section 4 we will propose a new
criterion to measure the interestingness of individual attri-
butes occurring in a rule antecedent.

In order to classify a new tuple with a given rule, it is
necessary to match the rule conditions against the tuple’s
predicting attributes (i.e. attributes other than the class one).
Hence, the algorithm must access the values of the new
tuple’s predicting attributes. In some application domains,
different attributes might have very different “costs” to be
accessed. The typical example is medical diagnosis. For
example, it is trivial to determine the gender of the patient,
but some health-related attributes can only be determined by
performing a very costly examination. In this case attribute
costs must be taken into account when evaluating a rule.
Continuing with our example, suppose that the antecedent
(“if part”) of a discovered ruler1 involves the result of an
exam e1 costing, say, US$200, while the antecedent of a

discovered ruler2 involves instead the result of another
exam e2 costing, say, US$20. All other things (including
prediction accuracy) being equal, we would rather use rule
r2 for diagnosis. In other words, the smaller the cost of the
attributes occurring in the rule, the more interesting (the
more useful, the less costly) the rule is. Some data mining
algorithms that take into account attribute costs are
described in [12–14].

2.5. Misclassification costs

In some application domains, different misclassifications
might have very different costs. For instance, in the domain
of bank loans, the cost of erroneously denying a loan to a
good client (who is likely to pay it back) is usually consid-
erably smaller than the cost of erroneously granting a loan to
a bad client (who is unlikely to pay it back). In this case the
data mining algorithm must be modified to take misclassi-
fication costs into account [15–18]. This implies that the
rule interestingness measure should take misclassification
costs into account. We will revisit the issue of misclassifica-
tion costs in Section 3.2.1.

We must make here a comment similar to the one made in
the section on imbalanced class distributions. Using a rule
interestingness measure which takes into account misclassi-
fication costs is not the only approach to cope with this
problem. For instance, another approach to address this
problem consists of adjusting the relative proportions of
each class in the data being mined. Once more in this article,
however, we are interested only in modifying the rule inter-
estingness measure used by the algorithm, leaving the data
being mined intact.

2.6. Asymmetry in classification rules

It should be noted that classification is anasymmetrictask
with respect to the attributes in the database. Indeed, we
want to discover rules where the value of predicting attri-
butes determines the value of the goal attribute, not vice
versa. Hence, intuitively a rule interestingness measure
should be asymmetric with respect to the rule antecedent
and the rule consequent.

It is interesting to note that statistical measures of asso-
ciation, such as the popularx 2 (chi squared) measure, which
is widely used in data mining systems, were not designed for
classification tasks. Rather, they were designed for measur-
ing the association (or dependency) between two attributes
in a symmetricway, i.e. none of the two rule terms (ante-
cedent and consequent) being analyzed is given special
treatment when computing thex 2 value.

We note in passing that an additional problem associated
with the use of statistical significance tests in data mining, as
pointed out by Glymour et al. [19], is that these tests were
designed to evaluate a single hypothesis, whereas data
mining algorithms typically have to evaluate many alterna-
tive hypothesis.
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3. A case study on the applicability of additional rule
interestingness factors

The above Sections 2.2 –2.6 have identified five factors
that should be involved in measuring the interestingness of a
rule, but that have often been somewhat ignored in the
literature on rule interestingness. We now discuss how
these factors can be applied to define a rule interestingness
measure.

There are several rule interestingness measures proposed
in the literature. As a case study, we will focus on one of the
most popular ones, introduced by Piatetsky-Shapiro [3] as
the simplest measure satisfying the three principles
discussed in Section 2.1. This measure, hereafter called
PS (Piatetsky-Shapiro’s) measure, is defined as:

PS� uA&Bu 2 uAiBu=N: �1�
The remaining of this section is divided into two parts.

Section 3.1 discusses how the PS measure addresses the
additional rule interestingness factors discussed in Sections
2.2–2.6. Section 3.2 shows how this measure can be
extended to better address some of those rule interestingness
factors.

3.1. Analyzing the PS rule interestingness measure

We now discuss how the PS measure, given by formula
(1), addresses the rule quality factors of disjunct size, imbal-
ance of the class distribution, attribute costs, misclassifica-
tion costs and the asymmetry of classification rules.

Disjunct size. The PS measure takes into account the size
of the disjunct, as formula (1) contains the termuAu.
However, this measure treats small disjuncts and large
disjuncts in the same way, with the same bias, which is
undesirable, as discussed in Section 2.2.

Imbalance of the class distribution. The PS measure takes
into account the relative frequency (prior probability) of the
class predicted by the rule, as formula (1) contains the term
uBu. Other things being equal, the larger the value ofuBu, the
smaller the value of PS, so that the PS measure has the
desirable property of favoring rules that predict the minority
class.

Attribute costs. The PS measure does not take into
account attribute costs, neither any other measure of attri-
bute interestingness. Actually, this measure considers the
rule antecedent as a whole only, without paying attention
to individual attributes of the rule antecedent.

Misclassification costs. The PS measure does not take
into account misclassification costs.

Asymmetry of classification rules. The PS measure is
symmetric with respect to the rule antecedent and the rule
consequent. We consider this an undesirable property of this
measure, given the asymmetric nature of the classification
task.

To summarize, out of the five factors influencing rule
interestingness discussed in Sections 2.2–2.6, the PS

measure takes into account only one of them (imbalance
of the class distribution).

3.2. Extending the PS rule interestingness measure

To render our case study more concrete, we will consider
how to extend the PS rule interestingness measure in the
context of a medical diagnosis application, where the goal is
to predict whether or not the patient has a given fatal
disease. We will make the realistic assumption that our
application domain has two important characteristics,
which will influence our design of an extended PS measure,
namely varying misclassification costs and varying attribute
costs. Sections 3.2.1 and 3.2.2 will discuss these two char-
acteristics and how a rule interestingness measure can be
extended to take them into account.

3.2.1. Varying misclassification costs
Different misclassification have different costs. The cost

of predicting that a patient does not have a disease, while
(s)he in reality does, is very high, as it can lead to the death
of the patient due to lack of proper treatment. However, the
cost of predicting that a patient has a disease, while (s)he in
reality does not, is relatively smaller—see also Section 2.5.
Hence, in our example application domain, the PS measure
must be modified to take misclassification costs into
account. A simple way of doing this is to multiply formula
(1) by a new term called MisclasCost, defined as the inverse
of the sum of the expected misclassification costs, as
follows:

MisclasCost� 1=
Xk
j�1

Prob�j�Cost�i; j� �2�

where Prob(j) is the probability that a tuple satisfied by the
rule has true classj, classi the class predicted by the rule,
Cost(i,j) the cost of misclassifying a tuple with true classj as
classi, andk the number of classes.

Assuming a two class problem, a natural estimate for
Prob(j) would be:

Prob�j� � uA& , Bu=uAu �3�
where,B denotes the logical negation of the rule conse-
quentB. One problem with this estimate is that, if the rule
covers few tuples, this estimate is not reliable. In other
words, there is an interaction between the rule interesting-
ness criteria of misclassification costs and disjunct size.
Unfortunately, these criteria are usually considered inde-
pendently from each other in the literature. In order to
take into account the interaction between these two criteria,
the reliability of the above probability estimate can be
improved by using the Laplace correction [16], so that the
estimate for Prob(j) in formula (3) would be given by:

Prob�j� � �1 1 uA& , Bu�=�2 1 uAu�: �4�
(This correction can be easily generalized to ann-class

problem by replacing the “2” in the denominator withn.)
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Note how the Laplace correction improves the reliability of
a probability estimate for small disjuncts without signifi-
cantly affecting this reliability for large disjuncts.

3.2.2. Varying attribute costs
Different attributes have different costs of testing—see

Section 2.4. In our example application domain, attributes
can represent several different kinds of predicting variables,
including the patient’s physical characteristics—gender,
age, etc.—and the results of medical exams undergone by
the patient—X-rays, blood tests, etc. Let us assume that
each attribute has a well-defined cost, which represents
the cost of determining the value of that attribute. Hence,
attributes referring to the patient’s physical characteristics
have a minimum (virtually zero) cost to have their values
determined, while attributes referring to the result of medi-
cal exams have much more significant costs to have their
values determined.

Hence, in our example application domain, the PS
measure must be modified to take attribute costs into
account. A simple way of doing this is to multiply formula
(1) by a new term called AttUsef (Attribute Usefulness),
defined as the inverse of the sum of the costs of all the
attributes occurring in the rule antecedent, that is:

AttUsef� 1=
Xk
i�1

Cost�Ai� �5�

where Cost(Ai) is the cost of theith attribute occurring in the
rule antecedent, andk the number of attributes occurring in
the rule antecedent.

Note that this formula has the side effect of penalizing
“complex” rules, i.e. rules with many attributes in their
antecedent. In some cases, however, the number of attri-
butes in the rule is already being taking into account by
another term of the rule interestingness measure, such as
an explicit measure of rule complexity. In this case, to
avoid that a rule be penalized twice for its high complexity,
AttUsef can be simply defined as the inverse of the arith-
metic average of the costs of all the attributes occurring in
the rule antecedent, that is:

AttUsef� 1=�
Xk
i�1

Cost�Ai�=k� �6�

where Cost(Ai) andk are as defined above.
To summarize, in our example application domain, the PS

measure must be extended to take into account both misclas-
sification costs and attributes costs, and a simple way of
doing this is to multiply formula (1) by formulae (2) and
(6). Notice that this extension also has the effect of render-
ing the PS measure asymmetric. It is easy to see that in other
application domains the PS measure should be extended in
other ways, depending on the particular characteristics of
the application. Hence, a rule interestingness measures is a
bias and, as any other bias, has a domain-dependent effec-
tiveness [17,20,21]. The challenge is to define a rule inter-

estingness measure that is the most suitable for the target
application domain.

4. A new criterion for rule interestingness measures:
attribute surprisingness

Sections 2.4 and 3.2.2 have discussed attribute costs as a
kind of rule interestingness factor. In the literature, this
seems to be the only rule interestingness factor defined on
a “fine-grain, predicting-attribute level”—i.e. directly based
on individual attributes occurring in a rule’s antecedent—
rather than being defined on a “coarse-grain” level, consid-
ering a rule antecedent as a whole. This section proposes a
new rule interestingness criterion defined on the predicting-
attribute level. Instead of focusing on attribute costs, which
are related to rule usefulness, our new criterion focuses on
the aspect of rule surprisingness. (Recall that rule interest-
ingness involves several aspects, including both usefulness
and surprisingness.)

Hence, we introduce a new term to measure rule surpris-
ingness, called AttSurp (Attribute Surprisingness). In prin-
ciple, any rule interestingness measure can be extended to
take this term into account. For instance, the PS measure
defined in formula (1) can be extended by multiplying that
formula by the new term AttSurp. We propose that AttSurp
be defined by an information-theoretic measure, based on
the following idea.

First, we calculate the information gain of each attribute,
defined as the class entropy minus the class entropy given
the value of the predicting attribute. Attributes with high
information gain are good predictors of class, when these
attributes are considered individually, i.e. one at a time.
However, from a rule interestingness point of view, it is
likely that the user already knows what are the best predic-
tors (individual attributes) for its application domain, and
rules containing these attributes would tend to have a low
degree of surprisingness (interestingness) for the user.

However, the user would tend to be more surprised if
(s)he saw a rule containing attributes with low information
gain. These attributes were probably considered as irrele-
vant by the users and they are kind of irrelevant for classi-
fication when considered individually, one at a time.
However, attribute interactions can render an individually
irrelevant attribute into a relevant one. This phenomenon is
associated with surprisingness, and so with rule interesting-
ness. Therefore, all other things (including prediction accu-
racy, coverage and completeness) being equal, we argue that
rules whose antecedent contain attributes with low informa-
tion gain are more interesting (more surprising) than rules
whose antecedent contain attributes with high information
gain. This idea can be expressed mathematically by defining
the term AttSurp in the rule interestingness measure as:

AttSurp� 1=�
Xk
i�1

InfoGain�Ai�=k� �7�
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where InfoGain(Ai) is the information gain of theith attri-
bute occurring in the rule antecedent andk the number of
attributes occurring in the rule antecedent.

5. Summary and discussion

This article has discussed several factors influencing the
interestingness of a rule, including disjunct size, imbalance
of class distributions, attribute interestingness, misclassifi-
cation costs and the asymmetry of classification rules. These
factors are often neglected by the literature on rule interest-
ingness, which often focuses on factors such as the cover-
age, completeness and confidence factor of a rule.

As a case study, we focused on a popular rule interesting
measure, defined by formula (1). We have shown that this
measure takes into account only one of the five rule quality
factors discussed in this paper, namely imbalanced class
distributions. Then we discussed how this measure could
be extended to take into account the other four factors. In
particular, the extended rule interestingness measure has the
form:

�uA&Bu�2 uAuuBu=N�pAttUsefpMisclasCost �8�
where the term AttUsef measures attribute usefulness-
computed, e.g. by formulae (5) or (6)— and the term
MisclasCost measures the misclassification cost—
computed e.g. by formulae (2) and (4). Finally, the problem
that formula (1) is symmetric, whereas classification rules
should be asymmetric, was solved by adding the asym-
metric terms AttUsef and MisclasCost to the extended
formula (8).

The main goal of this article was not to introduce yet
another rule interestingness measure, but: (1) drawing atten-
tion to several factors related to rule interestingness that
have been somewhat neglected in the literature; (2) showing
some ways of modifying rule interestingness measures to
take these factors into account, which will hopefully inspire
other researches to do the same; (3) introducing a new
criterion to measure attribute surprisingness, as a factor
influencing the interestingness of discovered rules. In parti-
cular, we believe that this new criterion is quite generic, and
can be used in a large range of different application
domains, so that it is a promising factor to take into account
when designing a rule interestingness measure.

We cannot overemphasize that a rule interestingness
measure is a bias, and so there is no universally best rule
interestingness measure across all application domains.
Each researcher or practitioner must adapt a rule interest-
ingness measure (or invent a new one) to his/her particular
target problem.

One limitation of this article is that we have, implicitly
and largely focused on how to measure the interestingness
of different rules discovered by the same data mining algo-
rithm, mining the same data. An open problem is how to
extend our arguments for comparing the interestingness of

different rules discovered by different data mining algo-
rithms, or discovered from different data sets. Another
limitation is that our discussion has not taken into account
the interaction between rules in the induced rule set. In
principle, however, the issue of rule interaction is somewhat
orthogonal to the issue of individual rule interestingness, in
the sense that the measure of rule interaction (typically a
measure of rule overlapping) is often independent of the
measure of individual rule interestingness. The reader inter-
ested in rule selection procedures taking into account rule
interaction is referred to [4,22,23].
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