
Applied Intelligence 15, 57–76, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Learning Translation Templates from Bilingual Translation Examples

ILYAS CICEKLI AND H. ALTAY GÜVENIR
Department of Computer Engineering, Bilkent University, TR-06533 Bilkent, Ankara, Turkey

ilyas@cs.bilkent.edu.tr

guvenir@cs.bilkent.edu.tr

Abstract. A mechanism for learning lexical correspondences between two languages from sets of translated
sentence pairs is presented. These lexical level correspondences are learned using analogical reasoning between two
translation examples. Given two translation examples, the similar parts of the sentences in the source language must
correspond to the similar parts of the sentences in the target language. Similarly, the different parts must correspond
to the respective parts in the translated sentences. The correspondences between similarities and between differences
are learned in the form of translation templates. A translation template is a generalized translation exemplar pair
where some components are generalized by replacing them with variables in both sentences and establishing bindings
between these variables. The learned translation templates are obtained by replacing differences or similarities by
variables. This approach has been implemented and tested on a set of sample training datasets and produced
promising results for further investigation.

Keywords: exemplar based machine learning, example-based machine translation, corpus-based machine trans-
lation, templates

1. Introduction

Due to the requirement of the large-scale knowledge in
traditional machine translation (MT) systems, some re-
searchers looked at the alternative methods in machine
translation. A traditional knowledge-based machine
translation system such as KBMT-89 [1] requires large-
scale knowledge resources such as lexicons, grammar
rules, mapping rules and an ontology. Acquiring these
knowledge resources manually is a time consuming
and expensive process. For this reason, researchers
have been studying the ways of automatically acquir-
ing some portions of the required knowledge. In the
KANT [2] system, which is an immediate descendant
of the KBMT-89, a technique for automatic acquisi-
tion of the lexicon from a large corpus is used [3]. The
technique presented here aims at acquiring all required
knowledge except morphological rules for the machine
translation task from sentence-level aligned bilingual
text corpora only.

Corpus-based machine translation is one of alterna-
tive directions that have been proposed to overcome

the acquisition problem in traditional systems. There
are two fundamental approaches in corpus-based
MT: statistical and example-based machine translation
(EBMT). All corpus-based approaches assume the ex-
istence of a bilingual parallel text (an already translated
corpus) to derive the translation of an input. While sta-
tistical MT techniques use statistical metrics to choose
the most probable structures in the target language,
EBMT techniques employ pattern matching techniques
to translate subparts of the given input.

EBMT, originally proposed by Nagao [4], is one of
the main approaches of corpus-based machine trans-
lation. The main idea behind EBMT is that a given
input sentence in the source language is compared
with the example translations in the given bilingual
parallel text to find the closest matching examples so
that these examples can be used in the translation of
that input sentence. After finding the closest match-
ings for the sentence in the source language, parts of
the corresponding target language sentence are con-
structed using structural equivalences and deviances in
those matches. Following Nagoa’s original proposal,

58 Cicekli and Güvenir

several machine translation methods that utilize bilin-
gual corpora have been studied [5–10]. Some re-
searchers [11, 12] only utilized bilingual corpora to
create a bilingual dictionary and use it during the trans-
lation process. In other words, they aligned bilingual
corpora at word level to figure out corresponding words
in languages. Bilingual corpora is also aligned at phrase
level by some other researchers [13–15]. But these
correspondences between two languages are only ac-
complished at atomic level, and they are used in the
translation of portions of sentences. Kaji [16] tried to
learn correspondences of English and Japanese syntac-
tic structures from bilingual corpora. This is similar to
our early work [17] and it needs reliable parsers for
both source and target languages. The technique de-
scribed here learns not only atomic correspondences
between two languages, but also general templates de-
scribing structural correspondence (not syntactic struc-
ture) from bilingual corpora.

Researchers in Machine Learning (ML) commu-
nity have widely used exemplar-based representation.
Medin and Schaffer [18] were the first researchers who
proposed exemplar-based learning as a model of hu-
man learning. The characteristic examples stored in
the memory are called exemplars. The basic idea in
exemplar-based learning is to use past experiences or
cases to understand, plan, or learn from novel situa-
tions [19–21]. In EBMT, translation examples should
be available prior to the translation of an input sen-
tence. In most of the EBMT systems, these translation
examples are directly used without any generalization.
Kitano [6] manually encoded translation rules, how-
ever this is a difficult and error-prone task for a large
corpus. In this paper, we formulate the acquisition of
translation rules as a machine learning problem in order
to automate this task.

Our first attempt was to construct parse trees between
the example translation pairs [17]. However, the diffi-
culty was the lack of reliable parsers for both languages.
Later, we have proposed a learning technique [22, 23] to
learn translation templates from translation examples
and store them as generalized exemplars, rather than
parse trees. A template is defined as an example trans-
lation pair, where some components (e.g., words stems
and morphemes) are generalized by replacing them
with variables in both sentences. In that early work,
we only replaced differing parts by variables to get a
generalized exemplar. In this paper, we have extended
and generalized our learning algorithm by adding new
heuristics to form a complete framework for EBMT.

In this new framework, we are also able to learn gener-
alized exemplars by replacing similar parts in the sen-
tences. We call these two distinct learning heuristics as
the similarity template learning and the difference tem-
plate learning. These algorithms are also able to learn
new translation templates from examples in which the
number of differing or similar components between the
source language sentences is different from the number
of differing or similar components between the target
language sentences. We refer this technique as GEBMT
for Generalized Exemplar Based Machine Translation.

The translation template learning framework pre-
sented in this paper is based on a heuristic to infer
the correspondences between the patterns in the source
and target languages from given two translation pairs.
According to this heuristic, given two translation ex-
amples, if the sentences in the source language exhibit
some similarities, then the corresponding sentences in
the target language must have similar parts, and they
must be translations of the similar parts of the sentences
in the source language. Further, the remaining differing
constituents of the source sentences should also match
the corresponding differences of the target sentences.
However, if the sentences do not exhibit any similar-
ities, then no correspondences are inferred. Consider
the following translation pairs given in English and
Turkish to illustrate the heuristic:

I will drink orange juice
↔ portakal suyu içeceğim

I will drink coffee ↔ kahve içeceğim

Similarities between the translation examples are
shown as underlined. The remaining parts are the dif-
ferences between the sentences. According to our first
heuristic, the similarities in English sentences are rep-
resented as the template "I will drink X E", and
the corresponding similarities in Turkish sentences as
the template "X T içeceğim", and these similarities
should correspond each other. Here, X E denotes a
component that can be replaced by any appropriate
structure in English and X T refers to its translation in
Turkish. This notation represents an abstraction of the
differences “orange juice” vs. “coffee” in English
and “portakal suyu” vs. “kahve” in Turkish. Continu-
ing even further, we infer that “orange juice” should
correspond to “portakal suyu” and “coffee” should
correspond to “kahve”; hence learning further cor-
respondences between the examples. According to
our second heuristic, two differences in English are

Learning Translation Templates 59

represented as the templates "X Eorange juice" and
"X Ecoffee", and the corresponding differences in
Turkish as the templates "portakal suyu X T" and
"kahve X T". The first template in English should cor-
respond to the first template in Turkish and the second
one in English should correspond to the second one in
Turkish. In addition, “I will drink” in English should
correspond to “içeceğim” in Turkish.

Our learning algorithm based on this heuristic is
called TTL (for Translation Template Learner). Given
a corpus of translation pairs, TTL infers the correspon-
dences between the source and target languages in the
form of templates. These templates can be used for
translation in both directions. Therefore, in the rest of
the paper we will refer these languages as L1 and L2.
Although the examples and experiments herein are on
English and Turkish, we believe the model is equally
applicable to many other language pairs.

The rest of the paper is organized as follows.
Section 2 explains the representation in the form of
translation templates. The TTL algorithm is described
in Section 3, and some of its performance results are
given in Section 4. Section 5 illustrates the TTL al-
gorithm on some example translation pairs. Section 6
describes how these translation templates can be used
in translation, and the general system architecture. Our
system is evaluated in Section 7. The limitations of the
learning heuristics are described in Section 8. Section 9
concludes the paper with pointers for further research.

2. Translation Templates

A translation template is a generalized translation
exemplar pair, where some components (e.g., word
stems and morphemes) are generalized by replacing
them with variables in both sentences, and establish-
ing bindings between these variables. For example, the
following translation templates can be learned from
the example translations given above using our first
learning heuristic.

I will drink X1 ↔ X2 içeceğim
if X1 ↔ X2

orange juice ↔ portakal suyu
coffee ↔ kahve

The first translation template is read as the sentence
“I will drink X1” in L1 and the sentence “X2 içeceğim”
in L2 are translations of each other, given that X1 in L1

and X2 in L2 are translations of each other. Therefore,
for example, if it has already been acquired that “tea” in

L1 and “çay” in L2 are translations of each other, i.e.,
"tea"↔ "çay" then the sentence “I will drink tea”
can be easily translated into L2 as “çay içeceğim”. In a
similar manner, the sentence “çay içeceğim” in L2 can
be translated in L1 as “I will drink tea”. The second and
third translation templates are atomic templates repre-
senting atomic correspondences of two strings in the
languages L1 and L2. An atomic translation template
does not contain any variable. The TTL algorithm also
stores the given translation examples as atomic trans-
lation templates.

Since the TTL algorithm is based on finding the sim-
ilarities and differences between translation examples,
the representation of sentences plays an important role.
As explained above, the TTL algorithm may use the
sentences exactly as they can be found in a regular
text. That is, there is no need for grammatical infor-
mation or preprocessing on the bilingual parallel cor-
pus. Therefore, it is a grammarless extraction algorithm
for phrasal translation templates from bilingual parallel
texts.

For agglutinative languages such as Turkish, this sur-
face level representation of the sentences limits the gen-
erality of the templates to be learned. For example, the
translation of the sentence “they are running” into Turk-
ish is a single word “koşuyorlar”, and the translation of
“they are walking” is “yürüyorlar”. When the surface
level representation is used, it is not possible to find a
template from these translation examples. In this case, it
is assumed that a sentence is a sequence of words and a
word is indivisible. Therefore, we will represent a word
in its lexical level representation,1 that is, its stem and
its morphemes. For example, the translation pair “They
are running” ↔ “koşuyorlar” will be represented as
"they are run+PROG"↔ "koş+PROG+3PL". Simi-
larly, the pair “they are walking” ↔ “yürüyorlar”
will be represented as "they are walk+PROG"↔
"yürü+PROG+3PL". Here, the+ symbol is used to mark
the beginning of a morpheme. In English sentences,
PROGmorpheme indicates progressive tense suffix (ing
suffix), In Turkish sentences, PROG morpheme also in-
dicates progressive tense suffix, and 3PL indicates third
person plural agreement marker. In this case, the sen-
tence is treated as a sequence of morphemes (root words
and morphemes) and a morpheme is the smallest unit.
According to this representation, these two translation
pairs would be given as

they are run+PROG ↔ koş+PROG+3PL
they are walk+PROG ↔ yürü+PROG+3PL

60 Cicekli and Güvenir

Using our first heuristic, the following translation tem-
plates can be learned from these two translation pairs.

they are X1+PROG ↔ X2+PROG+3PL
if X1 ↔ X2

run ↔ koş
walk ↔ yürü

This representation allows an abstraction over tech-
nicalities such as vowel and/or consonant harmony
rules, as in Turkish, and also different realizations of
the same verb according to tense, as in English. We
assume that the generation of surface level representa-
tion of words from their lexical level representations is
unproblematic.

3. Learning Translation Templates

The TTL algorithm infers translation templates using
similarities and differences between two translation ex-
amples (Ea, Eb) taken from a bilingual parallel corpus.
Formally, a translation example Ea : E1

a ↔ E2
a is com-

posed of a pair of sentences, E1
a and E2

a , that are trans-
lations of each other in L1 and L2, respectively.

A similarity between two sentences of a language is
a non-empty sequence of common items (root words or
morphemes) in both of sentences. A difference between
two sentences of a language is a pair of two sequences
(D1, D2) where D1 is a sub-sequence of the first sen-
tence, D2 is a sub-sequence of the second sentence, and
D1 and D2 do not contain any common item.

Given two translation examples (Ea, Eb), we try to
find similarities between the constituents of Ea and
Eb. A sentence is considered as a sequence of lexical
items (i.e., root words or morphemes). If no similarities
can be found, then no template is learned from these
examples. If there are similar constituents then a match
sequence Ma,b in the following form is generated.

S1
0 , D1

0, S1
1 , . . . , D1

n−1, S1
n ,

↔ S2
0 , D2

0, S2
1 , . . . , D2

m−1, S2
m for 1 ≤ n, m

Here, S1
k represents a similarity (a sequence of common

items) between E1
a and E1

b . Similarly, D1
k : (D1

k,a, D1
k,b)

represents a difference between E1
a and E1

b , where D1
k,a

and D1
k,b are non-empty differing items between two

similar constituents S1
k and S1

k+1. Corresponding dif-
fering constituents do not contain common items. That
is, for a difference Dk , Dk,a and Dk,b do not contain
any common item. Also, no lexical item in a similarity

Si appears in any previously formed difference Dk for
k < i . Any of S1

0 , S1
n , S2

0 or S2
m can be empty, however,

S1
i for 0 < i < n and S2

j for 0 < j < m must be non-
empty. Furthermore, at least one similarity on each side
must be non-empty. Note that, given these conditions,
there exists either a unique match or no match between
two example translation pairs.

For instance, let us assume that the following
translation examples are given: "I bought the
book for Cathy"↔ "Cathy için kitabı satın
aldım" and "I bought the ring for Cathy"
↔ "Cathy için yüzüğü satın aldım". The lexi-
cal level representations of these example pairs are:

I buy+PAST the book for Cathy ↔
Cathy için kitap+ACC satın al+PAST+1SG

I buy+PAST the ring for Cathy ↔
Cathy için yüzük+ACC satın al+PAST+1SG

For these translation examples, the following match
sequence is obtained by our matching algorithm.

I buy+PAST the (book,ring) for Cathy
↔ Cathy için (kitap,yüzük)
+ ACC satın al + PAST + 1SG (1)

That is,

S1
0 = I buy+PAST the, D1

0 = (book,ring),
S1

1 = for Cathy,
S2

0 = Cathy için, D2
0 = (kitap,yüzük),

S2
1 = + ACC satın al+PAST+1SG.

After a match sequence is found for two translation
examples, we use two different learning heuristics to
infer translation templates from that match sequence.
These two learning heuristics try to locate correspond-
ing differences or similarities in the match sequence,
respectively. If the first heuristic can locate all corre-
sponding differences, a new translation template can be
generated by replacing all differences with variables.
This translation template is called as similarity trans-
lation template since it contains the similarities in the
match sequence. The second heuristic can infer transla-
tion templates by replacing similarities with variables,
if it is able to locate corresponding similarities in the
match sequence. These translation templates are called
as difference translation templates since they contain
differences in the match sequence. Both similarity and
difference translation templates are the templates with
variables.

Learning Translation Templates 61

For each pair of examples in the training set, the
TTL algorithm tries to infer translation templates us-
ing these two learning heuristics. After all translation
templates are learned, they are sorted according to their
specificities. Given two templates, the one that has a
higher number of terminals is more specific than the
other. Note that, the specificity is defined according to
the source language. For two way translation, the tem-
plates are ordered once for each language as the source.

3.1. Learning Similarity Translation Templates

If there exists only a single difference in both sides of
a match sequence, i.e., n = m = 1, then these differ-
ing constituents must be the translations of each other.
In other words, we are able to locate the correspond-
ing differences in the match sequence. In this case, the
match sequence must be in the following form.

S1
0 , D1

0, S1
1 ↔ S2

0 , D2
0, S2

1

Since D1
0 and D2

0 are the corresponding differences, the
following similarity translation template is inferred by
replacing these differences with variables.

S1
0 X1 S1

1 ↔ S2
0 X2 S2

1

if X1 ↔ X2

Furthermore, the following two atomic translation tem-
plates are learned from the corresponding differences
(D1

0,a, D1
0,b) and (D2

0,a, D2
0,b).

D1
0,a ↔ D2

0,a

D1
0,b ↔ D2

0,b

For example, since the match sequence given in (1)
contains a single difference in both sides, the follow-
ing similarity translation template and two additional
atomic translation templates from the corresponding
differences (book,ring) and (kitap,yüzük) can be
inferred:

I buy+PAST the X1 for Cathy ↔ Cathy
için X2+ACC satın al+PAST+1SG

if X1 ↔ X2

book ↔ kitap
ring ↔ yüzük

On the other hand, if the number of differences are
equal on both sides, but more than one, i.e., 1 < n = m,
without prior knowledge, it is impossible to determine

which difference in one side corresponds to which dif-
ference on the other side. Therefore, learning depends
on previously acquired translation templates. Our sim-
ilarity template learning algorithm tries to locate n − 1
corresponding differences in the match sequence by
checking previously learned translation templates. We
say that the kth difference (D1

k,a, D1
k,b) on the left side

corresponds to the lth difference (D2
l,a, D2

l,b) on the
right side if the following two translation templates
have been learned earlier:

D1
k,a ↔ D2

l,a

D1
k,b ↔ D2

l,b

After finding n − 1 corresponding differences, two
unchecked differences, one at each side, should cor-
respond to each other. Thus, for all differences in the
match sequence, we determine which difference in one
side corresponds to which difference on the other side.
Now, let us assume that the list

CDPair1, CDPair2, . . . , CDPairn

represents the list of all corresponding differences
where CDPairn is the pair of two unchecked differ-
ences, and each CDPairi is the pair of two differences
in the form (D1

ki
, D2

li
). For each CDPairi , we replace

D1
ki

with a variable X1
i , and D2

li
with a variable X2

i in
a match sequence Ma,b. Thus, we get a new match se-
quence Ma,bWDV in which all differences are replaced
by proper variables. As a result, the following similarity
translation template can be inferred.

Ma,bWDV
if X1

1 ↔ X2
1 and · · · and X1

n ↔ X2
n

In addition, the following atomic translation templates
are learned from the last corresponding differences
(D1

kn ,a
, D1

kn ,b
) and (D2

ln ,a
, D2

ln ,b
).

D1
kn ,a ↔ D2

ln ,a

D1
kn ,b ↔ D2

ln ,b

For example, the following translation examples
have two differences on both sides:

I break+PAST the window
↔ pencere+ACC kır+PAST+1SG

You break+PAST the door
↔ kapı+ACC kır+PAST+2SG

62 Cicekli and Güvenir

Figure 1. The similarity TTL (STTL) algorithm.

The following match sequence is obtained for these
examples.

(i,you) break+PAST the (window,door)
↔(pencere,kapı) +ACC kır
+PAST (+1SG,+2SG) (2)

Without prior information, we cannot determine if "i"
corresponds to "pencere" or "+1SG". However, if
it has already been learned that "i" corresponds to
"+1SG" and "you" corresponds to "+2SG", then the
following similarity translation template and two addi-
tional atomic translation templates can be inferred.

X1
1 break+PAST the X1

2 ↔ X2
2+ACC kır

+PAST X2
1 if X1

1 ↔ X2
1 and X1

2 ↔ X2
2

window ↔ pencere
door ↔ kapı

In general, when the number of differences in both
sides of a match sequences is greater than or equal to 1,
i.e., 1 ≤ n = m, the similarity TTL (STTL) algorithm
learns new similarity translation templates only if at
least n−1 of the differences have already been learned.

A formal description of the similarity TTL algorithm
is summarized in Fig. 1.

3.2. Learning Difference Translation Templates

If there exists only a single non-empty similarity in
both sides of a match sequence Ma,b, then these similar
constituents must be the translations of each other. In
this case, each side of the match sequence can contain
one or two differences, and they may contain different
number of differences. In other words, each side (Mi

a,b
where i is 1 or 2) of the match sequence Ma,b : M1

a,b ↔
M2

a,b can be one of the following:

• Si
0, Di

0, Si
1 where Si

0 is non-empty,

and Si
1 is empty.

• Si
0, Di

0, Si
1 where Si

1 is non-empty,

and Si
0 is empty.

• Si
0, Di

0, Si
1, Di

1, Si
2 where Si

1 is non-empty,

and Si
0 and Si

2 are empty.

In this case, we replace the non-empty similarity in
Mi

a,b with variable Xi , and separate difference pairs in
the match sequence to get two match sequences with

Learning Translation Templates 63

similarity variables, namely MaWSV and MbWSV as
follows.

M1
a WSV ↔ M2

a WSV

M1
b WSV ↔ M2

b WSV

For example, M1
a WSV and M1

b WSV will be as follows
for the third case given above.

M1
a WSV : D1

0,a X1 D1
1,a

M1
b WSV : D1

0,b X1 D1
1,b

As a result, the following two difference translation
templates are learned when there is a single non-empty
similarity in the both sides of a match sequence.

MaWSV

if X1 ↔ X2

MbWSV

if X1 ↔ X2

In addition to these templates, the following atomic
translation template is also learned from the corre-
sponding non-empty similarities S1

k in M1
a,b and S2

l in
M2

a,b.

S1
k ↔ S2

l

For example, the match sequence in (2) contains
a single non-empty similarity in both sides. The
following two difference translation templates, and
one additional atomic template from the corres-
ponding similarities "break+PAST the" and "+ACC
kır+PAST" are learned from this match sequence.

i X1 window ↔ pencere X2 +1SG
if X1 ↔ X2

you X1 door ↔ kapı X2 +2SG
if X1 ↔ X2

break+PAST the ↔ +ACC kır+PAST

Let us assume that the number of non-empty simi-
larities on both sides is equal to n (i.e. they are equal),
and n is greater than 1. Without prior knowledge, it is
impossible to determine which similarity in one side
corresponds to which similarity in the other side. Our
difference template learning algorithm can infer new
difference translation templates if it can locate n − 1
corresponding non-empty similarities. We say that non-
empty similarity S1

k on the left side corresponds to non-
empty similarity S2

l on the right side if the following

translation template has been learned earlier:

S1
k ↔ S2

l

After the finding n − 1 corresponding similarities,
there will be two unchecked similarities, one at each
side. These two unchecked similarities should cor-
respond to each other. Now, let us assume that the
list

CSPair1, CSPair2, . . . , CSPairn

represents the list of all corresponding similarities in
the match sequence. In that list, each CSPairi is a pair
of two non-empty similarities in the form (S1

ki
, S2

li
), and

CSPairn is the pair of two unchecked similarities. For
each CSPairi , we replace S1

ki
with a variable X1

i and S2
li

with a variable X2
i in the match sequence Ma,b. Then,

the resulting sequence is divided into two match se-
quences with similarity variables, namely MaWSV and
MbWSV by separating difference pairs in the match se-
quence. As a result, the following two difference trans-
lation templates can be inferred.

MaWSV

if X1
1 ↔ X2

1 and · · · and X1
n ↔ X2

n

MbWSV

if X1
1 ↔ X2

1 and · · · and X1
n ↔ X2

n

In addition, the following atomic translation template
is learned from the last corresponding similarities.

S1
kn

↔ S2
ln

For instance, from the match sequence

S1
0 , D1

0, S1
1 ↔ S2

0 , D2
0, S2

1

where all similarities are non-empty, and if the list of
corresponding similarities is

(
S1

0 , S2
1

)
,
(
S1

1 , S2
0

)
,

the following difference translation templates can be
inferred.

X1
1 D1

0,a X1
2 ↔ X2

2 D2
0,a X2

1
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2

X1
1 D1

0,b X1
2 ↔ X2

2 D2
0,b X2

1
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2

64 Cicekli and Güvenir

In addition, if (S1
1 , S2

0) is the pair of two unchecked
similarities, the following atomic translation template
is learned.

S1
1 ↔ S2

0

For example, the match sequence in (1) contains two
non-empty similarities. Without prior information, we
cannot determine whether "for Cathy" corresponds
to "Cathy için" or "+ACC satın al+PAST+1SG".
However, if it has been already learned that "for
Cathy" corresponds to "Cathy için", then the fol-
lowing two difference translation template and one ad-
ditional translation template can be inferred.

X1
1 book X1

2↔ X2
2 kitap X2

1
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2

X1
1 ring X1

2 ↔ X2
2 yüzük X2

1
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2

i buy+PAST the↔ +ACC satın al+PAST+1SG

In general, when the number of non-empty similari-
ties in both sides of a match sequence is greater than or
equal to 1, e.i. 1 ≤ n = m, the difference TTL (DTTL)
algorithm learns new difference translation templates
only if at least n − 1 of the similarities have already
been learned. A formal description of the difference
TTL algorithm is summarized in Fig. 2.

Figure 2. The difference TTL (DTTL) algorithm.

3.3. Different Number of Similarities or Differences
in Match Sequences

The STTL algorithm given in Section 3.1 can learn new
translation templates only if the number of differences
on both sides of a match sequence are equal. Similarly,
the DTTL algorithm requires that a match sequence has
to have the same number of similarities on both sides.
In this section, we describe how to relax these restric-
tions so that the STTL and the DTTL algorithms can
learn new translation templates from a match sequence
with different number of differences or similarities, re-
spectively. We try to make the number of differences
to be equal on both sides of a match sequence by sep-
arating differences, before the STTL algorithm tries to
learn from that match sequence. Similarly, we try to
equate the number of similarities on both sides of a
match sequence for the DTTL algorithm. For example,
the match sequence of the following two translation
examples ("I came" ↔ "geldim" and "You went"
↔ "gittin") has one difference on the left side, but
it has two differences on the right side:

i come+PAST ↔ gel+PAST+1SG

you go+PAST ↔ git+PAST+2SG

Match Sequence:
(i come,you go) +PAST

↔(gel,git) +PAST (+1SG,+2SG)

Learning Translation Templates 65

The STTL algorithm given in Section 3.1 cannot learn
translation templates from this match sequence because
the number of differences are not the same. Since both
constituents of the difference on the left side contain
two morphemes, we can separate that difference into
two differences by dividing both constituents of that
difference into two parts from morpheme boundaries.
As a result, we get the following match sequence

(i,you)(come,go)+PAST
↔ (gel,git)+PAST(+1SG,+2SG)

Now, the match sequence has two differences on
both sides. If we know that (i,you) corresponds to
(+1SG,+2SG), we can learn the following translation
templates.

X1
1 X1

2 +PAST ↔ X2
2 +PAST X2

1
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2

come ↔ gel
go ↔ git

In general, before we apply the STTL algorithm to
a match sequence, we try to create an instance of that
match sequence with the same number of differences
on both sides by dividing a difference into several dif-
ferences. A difference (Da, Db) can be divided into two
differences (Da1 , Db1), and (Da2 , Db2) if the lengths of
Da and Db are greater than 1. The reader should note
that Da1 , Da2 , Db1 and Db2 are non-empty, the equali-
ties Da = Da1 Da2 and Db = Db1 Db2 hold. We continue
to create an instance of a match sequence with the
same number of differences until new translation tem-
plates can be learned from that instance, or there is no
other way to create an instance with the same num-
ber of differences. We may need to create an instance
of the original match sequence even if it has the same
number of differences on both sides. For example, the
match sequence of the following translation examples
("I drank water" ↔ "su içtim" and "You ate
orange"↔ "portakal yedin") has two differences
on both sides:

i drink+PAST water ↔ su iç+PAST+1SG
you eat+PAST orange

↔ portakal ye+PAST+2SG
Match Sequence:
(i drink,you eat)+PAST (water,orange)

↔ (su iç,portakal ye)+PAST (+1SG,+2SG)

Now, let us assume that we do not know whether
the difference (i drink,you eat) corresponds to

(su iç,portakal ye) or (+1SG,+2SG), or whether
the difference (water,orange) corresponds to (su
iç,portakal ye) or (+1SG,+2SG). In fact, none of
these correspondings should hold because they will
yield incorrect translation templates. But, if we di-
vide the differences on both sides, we get the following
match sequence with three differences on both sides.

(i,you) (drink,eat)+PAST (water,orange)
↔(su,portakal) (iç,ye)+PAST (+1SG,+2SG)

From this match sequence, if we know two cor-
respondings between the differences above, such
as (i,you) corresponds to (+1SG,+2SG), and
(water,orange) corresponds to (su,portakal),
we can learn the following translation templates.

X1
1 X1

2 +PAST X1
3 ↔ X2

3 X2
2 +PAST X2

1
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2 and X1

3 ↔ X2
3

drink ↔ iç
eat ↔ ye

For the DTTL algorithm, we divide similarities to
equate the number of similarities on both sides of a
match sequence. A similarity S can be divided into
two non-empty similarities S1 and S2 to increase the
number of similarities in one side. Before the DTTL
algorithm is executed, we try to equate the number of
similarities on both sides. We continue to create an
instance of a match sequence with the same number
of similarities until the DTTL algorithm can learn new
translation templates from this instance or there is no
other way to create an instance.

For example, from the match sequence of the follow-
ing translation examples ("I came"↔ "geldim" and
"I went"↔ "gittim"), the DTTL algorithm cannot
learn new templates because it contains two similarities
on the left side and one on the right side:

i come+PAST ↔ gel+PAST+1SG
i go+PAST ↔ git+PAST+1SG

Match Sequence:
i (come,go)+PAST ↔ (gel,git) +PAST+1SG

On the other hand, we can divide the similar-
ity "+PAST+1SG" into two similarities "+PAST" and
"+1SG" by inserting an empty difference between
them. Now, the new match sequence has two simi-
larities on both sides. If the correspondence of "i"

66 Cicekli and Güvenir

to "+1SG" is already known, the following translation
templates can be learned by the DTTL algorithm.

X1
1 come X1

2 ↔ gel X2
2 X2

1
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2

X1
1 go X1

2 ↔ git X2
2 X2

1
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2

+PAST ↔ +PAST

3.4. Differences with Empty Constituents

The current matching algorithm does not allow a differ-
ence to contain an empty constituent. For this reason,
the matching algorithm fails for certain translation ex-
ample pairs although we may learn useful translation
templates from those pairs. For example, the current
matching algorithm fails for the following examples
"I saw the man"↔ "adamı gördüm" and "I saw
a man" ↔ "bir adam gördüm" because "bir" and
"+ACC" have to match empty strings:

i see+PAST the man↔ adam+ACC gör+PAST+1SG
i see+PAST a man↔ bir adam gör+PAST+1SG

However, if we relax this restriction in the match-
ing algorithm by letting a difference to have an empty
constituent, this new version of the matching algorithm
will find the following match sequence for the example
above.

i see+PAST (the:a) man
↔(ε:bir) adam (+ACC:ε) gör+PAST+1SG

In this match sequence, "bir" in the difference
(ε:bir) and "+ACC" in the difference (+ACC:ε) cor-
respond to the empty string. If we apply the DTTL
algorithm to this match sequence by assuming that the
correspondence of "man" to "adam" is already known,
the following translation templates can be learned:

X1
1 the X1

2 ↔ X2
2 +ACC X2

1
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2

X1
1 a X1

2 ↔ bir X2
2 X2

1
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2

i see+PAST ↔ gör+PAST+1SG

We do not apply the STTL algorithm to a match
sequence containing a difference with an empty con-
stituent. If we apply the STTL algorithm to this kind
of a match sequence, a translation template whose one

side is empty can be generated. This would mean that a
non-empty string in a language always corresponds to
an empty string in another language. This is not a plau-
sible situation. For this reason, we only apply the DTTL
algorithm to this kind of match sequences since it does
not cause the problem mentioned above. We only try to
get a match sequence with a difference having an empty
constituent, if only the original match algorithm can-
not find a match sequence without differences having
an empty constituent.

3.5. Complete Learning Examples

In this section, we describe the behavior of our learn-
ing algorithms by giving the details of algorithm steps
on two translation example pairs. We assume that the
following two translation templates have been learned
earlier.

i↔ +1SG
you↔ +2SG

The first translation example pair is:

I drank wine ↔ Şarap içtim
You drank beer ↔ Bira içtin

Since our learning algorithms actually work on the
lexical form of sentences, the input for our algorithm
will be the following two translation examples in the
lexical form.

i drink+PAST wine ↔ şarap iç+PAST+1SG
you drink+PAST beer↔ bira iç+PAST+2SG

Then, we will try to find a match sequence be-
tween these two translation examples. To do that,
a match sequence between English sentences "i
drink+PAST wine" and "you drink+PAST beer,"
and a match sequence between Turkish sentences
"şarap iç+PAST+1SG" and "bira iç+PAST+2SG"
are found. As a result, the following match sequence is
obtained between these two translation examples.

(i,you) drink+PAST (wine,beer)
↔(şarap,bira) iç+PAST (+1SG,+2SG)

Then, we try to apply STTL and DTTL algorithms to
this match sequence.

Learning Translation Templates 67

Since there are equal number of differences (two dif-
ferences) on both sides, the STTL algorithm is appli-
cable to this match sequence. But the STTL algorithm
can learn new translation templates from this match
sequence, if it can determine the corresponding differ-
ences. Since the corresponding between (i,you) and
(+1SG,+2SG) has been given, (wine,beer) should
correspond to (şarap,bira). Thus, the STTL algo-
rithm infers the following three translation templates
from this match sequence.

X1
1 drink+PAST X1

2 ↔ X2
2 iç+PAST X2

1
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2

wine ↔ şarap
beer ↔ bira

Since there are equal number of similarities (one
similarity) on both sides, the DTTL algorithm is also
applicable to this match sequence. Since there is
only one similarity on both sides, these similarities
("drink+PAST" and "iç+PAST") should correspond
to each other. Thus, the DTTL algorithm infers the
following three translation templates from this match
sequence.

i X1
1 wine ↔ şarap X2

1 +1SG
if X1

1 ↔ X2
1

you X1
1 beer ↔ bira X2

1 +2SG
if X1

1 ↔ X2
1

drink+PAST ↔ iç+PAST

The second translation example pair is:

I drank a glass of white wine
↔ Bir bardak beyaz şarap içtim

You drank a glass of red wine
↔ Bir bardak kırmızı şarap içtin

The actual input for our algorithm will be the fol-
lowing two translation examples in the lexical form.

i drink+PAST a glass of white wine
↔ bir bardak beyaz şarap iç+PAST+1SG

you drink+PAST a glass of red wine
↔ bir bardak kırmızışarapiç+PAST+2SG

Then, a match sequence between English sentences
"i drink+PAST a glass of white wine" and
"you drink+PAST a glass of red wine", and a
match sequence between Turkish sentences "bir bar-
dak beyaz şarap iç+PAST+ 1SG" and "bir bardak

kırmızı şarap iç+PAST+2SG" are found. As a result,
the following match sequence is found between these
two translation examples.

(i,you) drink+PAST a glass of (white,red)
wine ↔ bir bardak (beyaz,kırmızı)

şarap iç+PAST (+1SG,+2SG)

Then, we try to apply STTL and DTTL algorithms to
this match sequence.

Since there are equal number of differences (two dif-
ferences) on both sides, the STTL algorithm is appli-
cable to this match sequence. But the STTL algorithm
can learn new translation templates from this match
sequence, if it can determine the corresponding differ-
ences. Since the corresponding between (i,you) and
(+1SG,+2SG) has been given, (white,red) should
correspond to (beyaz,kırmızı). Thus, the STTL al-
gorithm infers the following three translation templates
from this match sequence.

X1
1 drink+PAST a glass of X1

2 wine
↔ bir bardak X2

2 şarap iç+PAST X2
1

if X1
1 ↔ X2

1 and X1
2 ↔ X2

2
white ↔ beyaz
red ↔ kırmızı

Since there are equal number of similarities (two
similarities) on both sides, the DTTL algorithm is
also applicable to this match sequence. But we can-
not determine similarity correspondings in this match
sequence. In other words, we cannot know whether
"drink+PAST a glass of" corresponds to "bir
bardak" or "şarap iç+PAST". So, the DTTL algo-
rithm cannot directly learn any new translation tem-
plate from this match sequence. In this case, we look at
instances of this match sequence. A suitable instance
should hold equal number of similarities at both sides,
and similarity correspondings can be determined in that
instance. One of instances of this match sequence can
be obtained by separating the similarity "drink+PAST
a glass of" into similarities "drink+PAST" and "a
glass of", and by separating the similarity "şarap
iç+PAST" into similarities "şarap" and "iç+PAST".
So, we will have 3 similarities on both sides in this in-
stance of the original match sequence. From the first
example, we have learned the correspondence between
"wine" and "şarap", and the correspondence be-
tween "drink+PAST" and "iç+PAST". Furthermore,
the similarity "a glass of" should correspond to
"bir bardak". Since all similarity correspondences

68 Cicekli and Güvenir

can be determined in this instance, the following three
translation templates can be inferred from this instance
by the DTTL algorithm.

i X1
1 X1

2 red X1
3 ↔ X2

2 kırmızı X2
3 X2

1+1SG
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2 and X1

3 ↔ X2
3

you X1
1 X1

2 white X1
3 ↔ X2

2 beyaz X2
3 X2

1+2SG
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2and X1

3 ↔ X2
3

a glass of ↔ bir bardak

In this example, we looked at the instances of the
original match sequence because we could not learn
translation templates from the original match sequence.
In this kind of situation, we continue to generate in-
stances of the original match sequence until the first
instance from which we can learn translation templates
or until there is no more instance of the original match
sequence. In the first example, we did not generate in-
stances of the original match sequence because we were
able to learn translation templates from the original
one.

4. Performance Results

In order to evaluate TTL algorithms empirically, we
have implemented them in PROLOG and evaluated on
medium sized bilingual parallel texts. Our training sets
are artificially collected because of the unavaliabilty of
a large morphologically tagged bilingual parallel text
between English and Turkish.

In each pass of the learning phase, we applied our
learning algorithms for each pair of translation exam-
ples in a training set. Since the number of pairs is∑n−1

i=1 i when the number of translation examples in
a training set is n, the time complexity of each pass of
the learning phase is O(n2). The learning phase con-
tinues until its last pass cannot learn any new trans-
lation templates. In other words, when the number of
new learned translation templates is zero in a pass, the
learning process terminates. Although the maximum
number of passes of the learning phase theoretically
is n − 2, the maximum number of passes which the
learning phase had to do on our training sets was 4.
This means that, the worst case time complexity of our
learning algorithm is O(n3), but in practice it stayed in
O(n2).

One of our training sets contained 747 training pairs
which is enough to teach a small coverage of the basic
English grammar. To find the cost of each portion of

our learning algorithm and our gain from that portion,
we applied the different portions of algorithms on this
training set. As a result, we got the following measure-
ments on a SPARC 20/61 workstation:

1. We applied only the STTL algorithm without di-
viding differences in match sequences and without
having match sequences with an empty difference
constituent. In the first pass, the STTL algorithm
learned 642 translation templates. No new templates
were learned in the second pass. Each pass took
about 53 seconds real time.

2. We applied only the DTTL algorithm without di-
viding similarities in match sequences and without
having match sequences with an empty difference
constituent. In the first pass, the DTTL algorithm
learned 812 translation templates. In the second
pass, using the initial pairs and these new translation
templates, the DTTL algorithm inferred 6 more tem-
plates. No new templates were learned in the third
pass. Each pass took about 54 seconds real time.

3. We applied both the STTL and the DTTL algorithms
on the training set without dividing similarities or
differences in match sequences and without hav-
ing match sequences with an empty difference con-
stituent. In the first pass, 1239 translation templates
were learned. In the second pass, the TTL algo-
rithms inferred 6 more templates. No new templates
were learned in the third pass. Each pass took about
81 seconds real time.

4. We applied both the STTL and the DTTL algo-
rithms on the training set with dividing similari-
ties or differences in match sequences and without
having match sequences with an empty difference
constituent. In the first pass, 1330 translation tem-
plates were learned. In the second pass, the TTL
algorithms inferred 11 more templates. No new tem-
plates were learned in the third pass. Each pass took
about 101 seconds real time. By dividing similar-
ities or differences, 8 percent more new templates
were learned costing 25 percent more on the learn-
ing time.

5. We applied both the STTL and the DTTL algo-
rithms on the training set with dividing similarities
or differences in match sequences and with hav-
ing match sequences with an empty difference con-
stituent. In the first pass, 2055 translation templates
were learned. In the second pass, the TTL algo-
rithms inferred 55 more templates. No new tem-
plates were learned in the third pass. Each pass took

Learning Translation Templates 69

about 170 seconds real time. By having match se-
quences with an empty difference constituent, 57
percent more new templates were learned costing
68 percent more on the learning time.

5. Examples

In this section, we will illustrate the behavior of TTL
algorithms further on some sample training sets.

Example 1. Given the example translations “I came”
↔ “geldim”, “You came” ↔ “geldin”, “I went” ↔
“gittim” and “You went” ↔ “gittin” their lexical level
representations are

i come+PAST ↔ gel+PAST+1SG
you come+PAST ↔ gel+PAST+2SG
i go+PAST ↔ git+PAST+1SG
you go+PAST ↔ git+PAST+2SG .

From the first and second examples, the STTL algo-
rithm learns the first three templates and the DTTL
algorithm the next three templates.

X1 come+PAST ↔ gel+PAST X2 if X1↔X2

i ↔ +1SG
you ↔ +2SG
i X1 ↔ X2 +1SG if X1↔X2

you X1 ↔ X2 +2SG if X1↔X2

come+PAST ↔ gel+PAST

From the first and third examples, the STTL algorithm
learns the following first three templates and the DTTL
algorithm learns the next three templates by separating
the similarity "+PAST+1SG" into similarities "+PAST"
and "+1SG", and using already learned correspondence
"i" ↔ "+1SG".

i X1 +PAST ↔ X2 +PAST+1SG if X1↔X2

come ↔ gel
go ↔ git
X1

1 come X1
2 ↔ gel X2

2 X2
1

if X1
1 ↔ X2

1 and X1
2 ↔ X2

2
X1

1 go X1
2 ↔ git X2

2 X2
1

if X1
1 ↔ X2

1 and X1
2 ↔ X2

2
+PAST ↔ +PAST

From the first and fourth examples, the STTL algo-
rithm learns the first one of the following three new
templates by separating the difference (i come,you

go) into the differences (i,you) and (come,go) and
using already learned correspondences "i"↔ "+1SG"
and "you"↔ "+2SG". The DTTL algorithm learns the
next two templates.

X1
1 X1

2 +PAST ↔ X2
2 +PAST X2

1
if X1

1 ↔ X2
1 and X1

2 ↔ X2
2

i come X1 ↔ gel X2 +1SG if X1↔X2

you go X1 ↔ git X2 +2SG if X1↔X2

From the second and third examples, the STTL algo-
rithm does not learn any new template and the DTTL
algorithm learns the following two new templates.

you come X1 ↔ gel X2 +2SG if X1↔X2

i go X1 ↔ git X2 +1SG if X1↔X2

From the second and fourth examples, the STTL algo-
rithm learns the following new template and the DTTL
algorithm does not learn any new template.

you X1 +PAST ↔ X2 +PAST +2SG if X1↔X2

From the third and fourth examples, the STTL algo-
rithm learns the first one of the following two new
templates and the DTTL algorithm learns the next one.

X1 go +PAST ↔ git +PAST X2 if X1↔X2

go +PAST ↔ git +PAST

So, from these four simple translation examples 20 new
translation templates are learned from our TTL algo-
rithms. Some of the templates are learned more than
once.

Example 2. Given the example translations “red ap-
ple” ↔ “kırmızı elma”, “green apple” ↔ “yeşil elma”,
“We ate a pear” ↔ “Bir armut yedik”, “We ate a
banana” ↔ “Bir muz yedik”, “They ate a pear” ↔
“Bir armut yediler”, “They ate a banana” ↔ “Bir muz
yediler”, their lexical level representations are

red apple ↔ kırmızı elma
green apple ↔ yeşil elma
we eat+PAST a pear

↔ bir armut ye+PAST+1PL
we eat+PAST a banana

↔ bir muz ye+PAST+1PL
they eat+PAST a pear

↔ bir armut ye+PAST+3PL
they eat+PAST a banana

↔ bir muz ye+PAST+3PL.

70 Cicekli and Güvenir

From the first and second examples, the STTL algo-
rithm learns the following first three templates and the
DTTL algorithm learns the next three templates.

X1 apple ↔ X2 elma if X1↔X2

red ↔ kırmızı
green ↔ yeşil
red X1 ↔ kırmızı X2 if X1↔X2

green X1 ↔ yeşil X2 if X1↔X2

apple ↔ elma

From the third and fourth examples, the STTL algo-
rithm learns the following three templates.

we eat+PAST a
X1 ↔ bir X2 ye+PAST+1PL if X1↔X2

pear ↔ armut
banana ↔ muz

From the third and fifth examples, the STTL algorithm
learns the following first three templates and the DTTL
algorithm learns the next three templates.

X1 eat+PAST a pear
↔ bir armut ye+PAST X2 if X1↔X2

we ↔ +1PL
they ↔ +3PL
we X1 ↔ X2 +1PL if X1↔X2

they X1 ↔ X2 +3PL if X1↔X2

eat+PAST a pear ↔ bir armut ye+PAST

From the third and sixth examples, the STTL algorithm
learns the following new template.

X1
1 eat+PAST a X1

2 ↔ bir X2
2 ye+PAST X2

1
if X1

1↔X2
1 and X2

2↔X2
2

From the fourth and sixth examples, the STTL algo-
rithm learns the following first new template and the
DTTL algorithm learns the next new template.

X1 eat+PAST a banana ↔ bir muz ye
+PAST X2 if X1↔X2

eat+PAST a banana ↔ bir muz ye+PAST

From the fifth and sixth examples, the STTL algorithm
learns the following new template.

X1 eat+PAST a banana ↔ bir muz ye
+PAST X2 if X1↔X2

Example 3. Given the example translations “He al-
ways washes his face” ↔ “Her zaman yüzünü yıkar”,
“I watched tv” ↔ “Televizyon seyrettim”, “He always
washes his face after he wakes up” ↔ “Kalktıktan sonra
her zaman yüzünü yıkar”, “I watched tv after I ate the
dinner” ↔ “Akşam yemeğini yedikten sonra televizyon
seyrettim”, their lexical level representations are

he always wash+3SG his face
↔ her zaman yüz+P3SG+ACC yıka+AOR

i watch+PAST tv ↔ televizyon seyret
+PAST+1SG

he always wash+3SG his face after he wake
+3SG up ↔ kalk+ConvNoun=DHk+ABL sonra
her zaman yüz+P3SG+ACC yıka+AOR

i watch+PAST tv after i eat+PAST the
dinner ↔ akşam yemek+P3SG+ACC
ye+ConvNoun=DHk+ABL sonra televizyon
seyret+PAST+1SG.

From the third and fourth examples, the STTL algo-
rithm learns the following first three templates with the
help of the first two examples pairs. The DTTL algo-
rithm learns the next three templates.

X1
1 after X1

2 ↔ X2
2 +ConvNoun=DHk+ABL

sonra X2
1

if X1
1↔X2

1 and X2
2↔X2

2
he wake+3SG up ↔ kalk
i eat+PAST the dinner ↔ akşam
yemek+P3SG+ACC ye

he always wash+3SG his face X1

he wake+3SG up ↔ kalk X2 her zaman
yüz+P3SG+ACC yıka+AOR if X1 ↔ X2

i watch+PAST tv X1 i eat+PAST the
dinner ↔ akşam yemek+P3SG+ACC ye X2

televizyon seyret+PAST+1SG
if X1 ↔ X2

after ↔ ConvNoun=DHk+ABL sonra

6. System Architecture and Translation

The templates learned by the TTL algorithm can be
directly used in the translation. These templates are in
lexical form, and they can be used for translation in both
directions. The general system architecture is given in
Fig. 3.

As it is seen in Fig. 3, the input for the learning mod-
ule is a set of bilingual examples in lexical form. For
this purpose, our sets of bilingual examples have been

Learning Translation Templates 71

Figure 3. The system architecture.

prepared in lexical form between English and Turkish.
To create a set of bilingual examples in lexical form,
a set of bilingual examples in surface form is created,
then all words in these examples are morphologically
tagged using Turkish and English morphological ana-
lyzers. In this process, a morphological analyzer pro-
duces possible lexical forms of a word from its surface
form, and the correct lexical form is selected by a hu-
man expert. Thus, a set bilingual examples in lexical
form is created. Of course, if there were morphological
tagged sets of bilingual examples between English and
Turkish, there wouldn’t be any need for this step. Some
of sets in surface form are constructed by us, and some
of them were prepared by other people. For example,
we used the manuals for small house hold items, which
contain instructions both in English and Turkish, as a
set of bilingual examples in surface form, and then we
morphologically tagged the sentences in those manu-
als. As a result, we got some of our data from other
sources, and some of them are collected by us.

From the surface form of a sentence, the lexical form
of that sentence is created by replacing every word in
that sentence with its correct lexical form. Non-words
such as punctuation markers in the surface form, are
treated as a single root word (i.e. a punctuation marker
appears in the lexical form of the sentences same as
in the surface form of the sentence). In other words, a
punctuation marker is treated as a single word in the
examples. The only exception for this, the punctuation
markers marking the end of sentences, they are com-
pletely eliminated from the lexical forms.

In the translation process, a given source lan-
guage sentence in surface form is translated into
the corresponding target language sentence in surface
form. The outline of the translation process is given
below:

1. First, the lexical level representation of the input
sentence to be translated is derived by using the
source language lexical analyzer.

72 Cicekli and Güvenir

2. Then, the translation templates matching the input
are collected. These templates are those that are
most similar to the sentence to be translated. They
are collected in the specificity order. For each se-
lected template, its variables are instantiated with
the corresponding values in the source sentence.
Then, templates matching these bound values are
sought. If they are found successfully, their values
are replaced in the variables corresponding to the
sentence in the target language.

3. Finally, the surface level representation of the sen-
tence obtained in the previous step is generated by
the target language morphological generator.

For instance, after learning the templates in
Example 1 and 2, if the input is given as “bir kırmızı
elma yedim”, first its lexical level representation, which
is "bir kırmızı elma ye+PAST+1SG", is derived.
Since the following template is the only matching tem-
plate for this input, that template is used in the transla-
tion process.

X1
1 eat+PAST a X1

2 ↔ bir X2
2 ye+PAST X2

1
if X1

1↔X2
1 and X2

2↔X2
2

The variable X2
1 is instantiated with "+1SG", and the

variable X2
2 is instantiated with "kırmızı elma".

Then, the translation of "+1SG" is found to be "i"
using

i ↔ +1SG

and, the translation of "kırmızı elma" is found to be
"red apple" using

red apple ↔ kırmızı elma.

Therefore, replacing "i" for X1
1, and "red apple"

for X1
2 in the template, the lexical level representa-

tion "i eat+PAST a red apple" is obtained. Fi-
nally, the surface level representation “I ate a red apple”
is derived easily by English morphological generator.

Note that, if the sentence in the source language is
ambiguous, then templates corresponding to each sense
will be retrieved, and the corresponding sentences for
each sense will be generated. Among the possible trans-
lations, a human user can choose the right one accord-
ing to the context. We hope that the correct answer
will be among first results generated in the translation
steps by using the specificity order of the templates.
Although the specificity order of the templates helps to

get correct answer among the top results, it may not be
enough. We also looked into the ways to use a statistical
method [26] to order our learned translation templates.
In this statistical method, we assign confidence factor
to the learned translation templates, and we use these
confidence factors to sort the results of translations.
The training data is again used to collect this statistical
information. Using this statistical method, the percent-
age of the correct results is increased 50 percent in the
top 5 results.

7. Evaluation

Since the TTL algorithm can over-specialize, useless
and incorrect templates can be learned. Because of this
problem and the ambiguity problem, the translation re-
sults produced by our translation algorithm can contain
incorrect translations in addition to correct ones. But
our main goal is to accomplish that top results contain
correct translations. For example, according to our re-
sults given in [26] for an experiment reflects that the
percentage of correct results in total results is 33 per-
cent. If we just use the specificity order of templates,
the percentage of correct results are increased to 44 per-
cent in top 5 results. This means that at least 2 of top 5
results are correct. In addition to the specificity order,
using the statistical method described in [26] increased
the percentage of the correct results to 60 percent. In
addition, we look at whether the top results contain at
least one correct translation or not. When we just use
the specifty order, the top 5 results of 77 percent of
all translations contained at least one correct transla-
tion. When the statistical method is used together with
the specifty order, the percentage is increased to 91
percent. Thus, a human expert can choose the correct
answer by just looking to the top results.

Our algorithms are tested on training sets constructed
by us and others. We only morphologically tagged the
training sets prepared by others. Although these train-
ing sets are not huge as bilingual corpora about United
Nations documents, they are big enough to be treated as
real corpora. As a future work, we are planning to test
our algorithms on morphologically tagged huge bilin-
gual corpora between other languages (unfortunately
there is no huge bilingual corpora between English and
Turkish, but we are trying to construct one). The next
language pair that we are planning to work on is English
and French. In fact, we applied our algorithms to small
training sets between English and French, and we got
similar results.

Learning Translation Templates 73

The success of a machine translation system can be
measured according to two criteria: coverage and cor-
rectness. The coverage is the percentage of the sen-
tences which can be translated, and the correctness is
the percentage of correct translations among all transla-
tion results produced by that system. However, for any
machine translation system, it cannot be said that it
guarantees correctness and completeness. There is no
machine translation system that will always produce
the correct translation for any given sentence, or it can
produce a translation for any given sentence. This is a
direct consequence of the complexity and inherent am-
biguity of natural languages. Since natural languages
are dynamic, new words enter the language, or new
meanings are assigned to old words in time. For the
case of English, the word “Internet” is a new addition
and the word “web” has a new meaning. In addition, the
words and sentences would be interpreted differently
depending on their context. The best way to cope with
such issues is to have a translation system that can learn
and adapt itself to the changes in the language and the
context. The TTL algorithms presented in this paper
achieve this by learning new templates, corresponding
to the new meaning of the words and interpretation of
the sentences from new translation examples.

As a whole, our system can be seen as a human-
assisted example-based machine translation system.
Our system suggests possible translations (top trans-
lation results, and possibly these results contain the
correct translation) for a sentence, and a human expert
chooses the correct translation just looking at the re-
sults given. The coverage of our system depends on
the coverage of the given training sets and how much
our learning algorithms learn from these training sets.
When the size of training sets is increased, the coverage
of our system also increases. Although we cannot say
that our learning algorithms can extract all available
information in training sets, they can extract the most
of the available information as translation templates.
When someone measures the correctness of our sys-
tem, he should look at whether top results contain the
correct translation or not. To increase the correctness,
we used the specifty order on the translation templates,
and assigned confidence factors to them. This will help
the correct translation to be among the top results. The
general performance of our system and other example-
based machine translation systems depend on the qual-
ity of bilingual corpora used in them because they the
source of the information, and how the available infor-
mation in the corpora is used in the translation process.

8. Limitations of Learning Heuristics

The preconditions in the definition of the match se-
quence may look like very strong, and they may restrict
the practical usage of our learning algorithms. These
preconditions are stated as explicitly, and strongly as
they could be to reduce the number of the useless trans-
lation templates which can be learned from match se-
quences.

Let us consider the following translation examples
between American and British English:

1.The other day, the president
analyzed the state of the union ↔

The other day, the president
analysed the state of the union

2.Recently, the president analyzed
the state of the union ↔ Recently,
the president analysed the state of
the union

3.Recently, the president analyzed
the union ↔ Recently, the president
analysed the union

Although these three examples have very similar
structures, our learning heuristics will not learn any
translation templates from these examples. The reason
for this is that the lexical item "the"will end up in both
a similarity and a difference in a match sequence of any
two of these examples. Since this is not allowed, any
pair of these examples cannot have a match sequence.
As a result, our system will not be able to translate
the following sentence to British English when these
examples are given.

The other day, the president analyzed
the union (a)

So, our learning algorithms can only learn if there is
a match sequence between the examples. On the other
hand, if we supply two more examples as follows:

4.He analyzed today’s situation ↔
He analysed today’s situation

5.Recently, the president analyzed
today’s situation ↔ Recently,
the president analysed today’s
situation

Our learning algorithms will be able learn the required
translation templates from the examples 1–5. Some of

74 Cicekli and Güvenir

the learned templates will be as follows:

X1 analyzed X2 ↔ Y1 analysed Y2

if X1 ↔ Y1 and X2 ↔ Y2

today’s situation ↔ today’s situation
He analyzed ↔ He analysed
Recently, the president analyzed

↔ Recently, the president analysed
The other day, the president

↔ The other day, the president
Recently, the president ↔ Recently,
the president

the union ↔ the union
the state of the union ↔ the state
of the union

analyzed ↔ analysed
He ↔ He

These templates will be enough to translate the sen-
tence (a) to British English.

We could have relaxed the conditions for the defi-
nition of the match sequence. If we let a lexical item
appear in a similarity and a difference of a match se-
quence, we will not have a unique match sequence for
any two strings and there will be more than one match
sequence for those strings. For instance, examples 2
and 3 above will have 25 different match sequences
because there will 5 match sequences for each side of
those sentences in this situation. Since only one of these
match sequences will be the correct one, we may learn
a lot of useless (wrong) templates from the rest of these
match sequences. This is the main reason for insisting
on the strong preconditions on the match sequences.

Our learning algorithms may still learn useless
wrong translation templates. For example, let us con-
sider the following two examples.

• I know hardly anybody ↔ Hemen hemen
hiç kimseyi tanımam

• You know almost everything ↔ Hemen
hemen her şeyi bilirsin

From these examples, the correspondence of "know"
and "hemen hemen" will be inferred, even though
it is wrong. The reason is that Turkish differentiates
between the two meanings "know" ("tanımak" and
"bilmek" in Turkish), and hardly and almost map
to the same Turkish phrase ("hemen hemen"). There
can be other situations in which wrong translation tem-
plates can be inferred. In order to reduce the effect of
these wrong translations, we have also incorporated
some statistical methods in our system [26].

9. Conclusion

In this paper, we have presented a model for learn-
ing translation templates between two languages. The
model is based on a simple pattern matcher. We in-
tegrated this model with an example-based transla-
tion model into Generalized Exemplar-Based Machine
Translation. We have implemented this model as the
TTL (Translation Template Learner) algorithms.

The TTL algorithms are illustrated in learning trans-
lation templates between Turkish and English. We be-
lieve that the approach is applicable to many pairs of
natural languages (at least for western languages such
as English, French, Spanish). Of course, we assume
that we have sets of morphologically tagged bilingual
examples for these two natural languages. We test this
claim by applying our algorithms to morphologically
tagged training sets between English and French, the
results were similar to the results between English and
Turkish. We only deal with the translation on written
text, we do not deal with translation in spoken lan-
guages.

The major contribution of this paper is that the pro-
posed TTL algorithm eliminates the need for manually
encoding the translation templates, which is a difficult
task. The TTL algorithm can work directly on surface
level representation of sentences. However, in order to
generate useful translation patterns, it is helpful to use
the lexical level representations. It is usually trivial, at
least for English and Turkish, to obtain the lexical level
representations of words.

Our main motivation was that the underlying infer-
ence mechanism is compatible with one of the ways
humans learn languages, i.e. learning from examples.
We believe that in everyday usage, humans learn gen-
eral sentence patterns, using the similarities and differ-
ences between many different example sentences that
they are exposed to. This observation led us to the idea
that a computer can be trained similarly, using analogy
within a corpus of example translations.

The technique presented here can be used in an in-
cremental manner. Initially a set of translation tem-
plates can be inferred from a set of translation exam-
ples, then extra templates can be learned from another
set with the help of the previously learned translation
templates. In other words, the templates learned from
previous examples help in learning new templates from
new examples, as in the case of natural language learn-
ing by humans. This incremental approach allows us
to incorporate existing translation templates when new

Learning Translation Templates 75

translation examples becomes available, instead of re-
running previous sets of examples along with the new
set of examples.

The learning and translation times on the small train-
ing set are quite reasonable, and that indicates the pro-
gram will scale up real large training corpora. Note that
this algorithm is not specific to English and Turkish lan-
guages, but should be applicable to the task of learning
machine translation between many pairs of languages.
Although the learning process on a large corpus will
take a considerable amount of time, it is only a one
time job. After learning the translation templates, the
translation process is fast.

The model that we have proposed in this paper may
be integrated with other systems as a Natural Language
Front-end, where a small subset of a natural language
is used. This algorithm can be used to learn to translate
user queries to the language of the underlying system.

This model may also be integrated with an intelli-
gent tutoring system (ITS) for second language learn-
ing. The template representation in our model provides
a level of information that may help in error diagnosis
and student modeling tasks of an ITS. The model may
also be used in tuning the teaching strategy according
to the needs of the student by analyzing the student
answers analogically with the closest cases in the cor-
pus. Specific corpora may be designed to concentrate
on certain topics that will help in student’s acquisition
of the target language. The work presented in this paper
provides an opportunity to evaluate this possibility as
a future work.

Acknowledgment

This research has been supported in part by NATO
Science for Stability Program Grant TU-LANGUAGE
and The Scientific and Technical Council of Turkey
(TÜBİTAK) Grant EEEAG-244.

Note

1. In the lexical level representation of Turkish words appearing
in the examples, we used following notations which are sim-
ilar to the notations used in phrase structure grammar papers
[24, 25]: 1SG, 2SG, 3SG, 1PL, 2PL and 3PL for agreement
morphemes; AOR, PAST and PROG for aorist, progressive and
past tense morphemes, respectively; ABL for ablative morpheme;
ACC for accusative morpheme; LOC for locative morpheme; DAT
for dative morpheme; P1SG, P2SG, P3SG, P1PL, P2PL, and P3PL
for possessive markers; ConvNoun = DHk for a morpheme (DHk)
which used to convert a verb into a noun. The following notations

are used in the lexical level representations of English words ap-
pearing in the examples: PAST and PROG for past and progres-
sive tense morphemes (for ed and ing suffixes); 3SG for the third
person agreement morpheme (for s suffix) in the verbs. Surface
level realizations of these morphemes are determined according
to vowel and consonant harmony rules. Surface level realization
of PAST morpheme for English verbs is also depends on whether
that verb is regular or irregular.

References

1. K. Goodman and S. Nirenburg, KBMT-89: A Case Study in
Knowledge Based Machine Translation, Morgan Kaufmann: San
Mateo, CA, 1992.

2. T. Mitumura and E. Nyberg, “The KANT system: Fast, accurate,
high-quality translation in practical domains, in Proceedings of
COLING-92, Nantes, France, 1992, pp. 1069–1073.

3. D. Lonsdale, T. Mitamura, and E. Nyberg, Acquisition of Large
Lexicons for Practical Knowledge-Based MT, Machine Trans-
lation, vol 9, no. 3, Kluwer Academic Publishers, Dordrecht,
1994, pp. 251–283.

4. M.A. Nagao, “Framework of a mechanical translation between
Japanese and English by analogy principle,” in Artificial and
Human Intelligence, edited by A. Elithorn and R Banerji, NATO
Publications: North-Holland, Edinburg, 1984, pp. 173–180.

5. O. Furuse and H. Iida, “Cooperation between transfer and anal-
ysis in example-based framework,” in Proceedings of COLING-
92, Nantes, France, 1992, pp. 645–651.

6. H. Kitano, “A comprehensive and practical model of memory-
based machine translation,” in Proceedings of the Thir-
teenth International Joint Conference on Artificial Intelligence,
Morgan Kaufmann, 1993, pp. 1276–1282.

7. S. Sato and M. Nagao, “The memory-based translation,” in Pro-
ceedings of COLING-90, 1990.

8. S. Sato, “MBT2: A method for combining fragments of examples
in example-based translation,” Artificial Intelligence, vol. 75,
Elsevier Science, MA, 1995, pp. 31–50.

9. F. Smadja, K.R. McKeown, and V. Hatzivassiloglou, Translat-
ing Collocation for Bilingual Lexicons: A Statistical Approach,
Computational Linguistics, vol. 22, no. 1, The MIT Press:
Cambridge, MA, 1996, pp. 1–38.

10. E. Sumita and H. Iida, “Experiments and prospects of example-
based machine translation,” in Proceedings of the 29th Annual
Meeting of the Association for Computational Linguistics, 1991.

11. R.D. Brown, “Automated dictionary extraction for “knowledge-
free” example-based translation,” in Proceedings of TMI’97,
1997.

12. D. Wu and X. Xia, Large-Scale Automatic Extraction of an
English-Chinese Translation Lexicon, Machine Translation,
vol. 9, Kluwer Academic Publishers, Dordrecht, 1995, pp. 285–
313.

13. C. Brona and C. Padraig, “Translating software documentation
by example: An EBMT approach to machine translation,” in Pro-
ceedings of Int. ECAI Workshop: Multilinguality in the Software
Industry, 1996.

14. R.D. Brown, “Example-based machine translation in the Pan-
gloss system,” in Proceedings of COLING-96, 1996.

15. S. Nirenburg, S. Beale, and C. Domashnev, “A full-text exper-
iment in example-based machine translation,” in Proceedings

76 Cicekli and Güvenir

of the International Conference on New Methods in Language
Processing, NeMLap, Manchester, UK, 1994, pp. 78–87.

16. H. Kaji, Y. Kida, and Y. Morimoto, “Learning translation tem-
plates from bilingual text,” in Proceedings of COLING-92, 1992,
pp. 672–678.

17. H.A. Güvenir and A. Tunç, “Corpus-based learning of general-
ized parse tree rules for translation,” in New Directions in Artifi-
cial Intelligence: Proceedings of the 11th Biennial Conference of
the Canadian Society for Computational Studies of Intelligence,
edited by G. McCalla LNCS 1081, Toronto, Ontario, Canada,
May 1996, Springer Verlag, pp. 121–131.

18. D.L. Medin and M.M. Schaffer, “Context theory of classification
learning,” Psychological Review, vol. 85, pp. 207–238, 1978,.

19. K.J. Hammond, (Ed.), Proceedings: Second Case-Based Rea-
soning Workshop, Pensacola Beach, FL, Morgan Kaufmann, MA
1989.

20. J.L. Kolodner, (Ed.), in Proceedings of a Workshop on Case-
Based Reasoning, Clearwater Beach, FL, Morgan Kaufmann,
1988.

21. A. Ram, “Indexing, elaboration and refinement: Incremental
learning of explanatory cases, in Case-Based Learning, edited
by Janet L. Kolodner, Kluwer Academic Publishers: Dordrecht,
1993.

22. I. Cicekli and H.A. Güvenir, “Learning translation rules from a
bilingual corpus,” in Proceedings of the 2nd International Con-
ference on New Methods in Language Processing (NeMLaP-2),
Ankara, Turkey, September 1996, pp. 90–97.

23. H.A. Güvenir and I. Cicekli, “Learning translation templates
from examples,” Information Systems, vol. 23, no. 6, pp. 353–
363, 1998.

24. G. Gazdar, E. Klein, G.K. Pullum, and I.A. Sag, Generalized
Phrase Structure Grammar, Blackweell: Cambridge, Mass.,
1985.

25. I.A. Sag and C. Pollard, “Head-driven phrase structure gram-
mar: An informal synopsis,” CSLI Technical Report CSLI-87-
79, Stanford, 1987.

26. Z. Öz and I. Cicekli, Ordering Translation Templates by Assign-
ing Confidence Factors, in Proceedings of AMTA’98, Langhorne,
PA, Lecture Notes in Computer Science 1529, Springer Verlag,
1998, pp. 51–61.

Ilyas Cicekli is currently an assitant professor of the Department
of Computer Engineering at Bilkent University, Ankara, Turkey. He
recieved his Ph.D. degree in Computer and Information Science from
Syracuse University in 1991. Dr. Cicekli recieved his M.S. degree
in Computer Science from Syracuse University in 1985, and his
B.S. degree in Computer Engineering from Middle East Technical
University, Turkey in 1982. His research interests include natural
language processing, machine translation, and logic programming.
He is a member of ACL, ALP and AMTA.

H. Altay Güvenir is currently an associate professor of the De-
partment of Computer Engineering at Bilkent University, Ankara,
Turkey. He received his Ph.D. in 1988 from Case Western Reserve
University. He received his MS and BS from Instanbul Technical Uni-
versity in 1981 and 1979, respectively, all in electrical engineering.
He is a member of ACM and AAAI. Dr. Guvenir’s research interests
include machine learning, data mining, natural language processing
and learning problem solving strategies. He has (co-)authored over
70 articles in conference proceedings, edited books and journals.

