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ABSTRACT

A new classi�cation algorithm, called CFI (for Clas-
si�cation on Feature Intervals), is developed and ap-
plied to problem of detecting abnormal ECG signals.
The domain contains records of patients with known
diagnosis. Given a training set of such records the
CFI learns how to detect arrhythmia. CFI represents
a concept in the form of feature intervals on each fea-
ture dimension separately. Classi�cation in the CFI
algorithm is based on a real-valued voting. A ge-
netic algorithm is used to select the set of relevant
features. Each selected feature equally participates
in the voting process and the class that receives the
maximum amount of votes is declared to be the pre-
dicted class. The performance of the CFI classi�er
is evaluated empirically in terms of classi�cation ac-
curacy and running time.

Keywords: ECG, Arrhythmia detection, machine
learning, feature selection, voting feature intervals.

1. INTRODUCTION

Researchers working on arti�cial intelligence have
created many algorithms that successfully learn straight-
forward abilities. If the context is well-de�ned and
the bounds of the problem can be correctly encoded
for the computer, then these algorithms can often
pick up a pattern and learn to predict it successfully.
Inductive learning is a well-known approach to au-
tomatic knowledge acquisition of such patterns and
classi�cation knowledge from examples.

In several medical domains the inductive learning
systems were actually applied; for example, two clas-
si�cation systems are used in the localization of pri-
mary tumor, the prognostics of recurrence of breast
cancer, the diagnosis of thyroid diseases, and in rheu-
matology [13]. The CRLS is a system for learning
categorical decision criteria in biomedical domains
[19]. The case-based BOLERO system learns both
plans and goal states, with the aim of improving the
performance of a rule-based system by adapting the
rule-based system behavior to the most recent infor-
mation available about a patient [17]. The DIAGAID
is a program that uses the connectionist approach to
determine the diagnostic value of clinical data [8].

Classi�cation learning algorithms are composed of
two components; namely, the training and the predic-

tion (classi�cation). The training phase, using some
induction algorithms, forms a model of the domain
from the training examples encoding some previous
experiences. The classi�cation phase, on the other
hand, uses this model to predict the class that a new
instance (case) belongs to.

The main requirement for such a system is to achieve
a high prediction accuracy. Furthermore, a clas-
si�cation learning algorithm is expected to have a
short training and prediction times. Such a system
should be robust to noisy training instances. Also, in
some real-world domains, both training and test in-
stances may contain some missing values. Features
(attributes) that are used to encode instances may
have di�erent levels of relevancy to the domain. A
classi�cation learning system should be able to learn
and/or incorporate information about the weights of
the features. Another requirement might be the com-
prehensibility of the learned knowledge by human
experts. The advantage of this trait is two folded.
Firstly, the human experts can check and verify the
learned classi�cation knowledge before it is put to
use in real-world domains. Secondly, some previ-
ously unknown facts and patterns may be brought
to the attention of human experts, leading to inter-
esting discoveries in the �eld.

Previously developed machine learning algorithms
usually possess some of these characteristics, yet fail
to satisfy the others. For example, some algorithms,
(e.g., the nearest neighbor and the instance based
learning algorithms [1, 5]) develop a model of the
domain quickly, but it may take quite a long time to
make a prediction using this model. On the other
hand, some algorithms (e.g., the neural networks)
can make a fast prediction, however the knowledge
they learn is hard to understand and verify for hu-
mans.

Success of a classi�cation learning algorithm, in terms
of the criteria mentioned above, is directly related
to the scheme used for representing the classi�ca-
tion knowledge learned. In this paper we present a
knowledge representation technique called classi�ca-

tion on feature intervals (CFI, for short). The repre-
sentation in CFI is based on Feature Projections that
has been used previously in CFP [11] and k-NNFP
[2]. The CFI, which is a non-incremental and super-
vised learning algorithm, is applied to the detection



Training set:

<1,0,B,1>
<3,0,B,1>
<4,5,A,2>
<4,0,C,2>
<4,6,A,2>
<7,1,C,3>
<5,3,?,3>

Feature intervals:

1 2 3 4 5 6 7

0 1 2 3 4 5 6

A B C

f
1

f
2

f
3

(linear)

(linear)

(nominal)

<1,3,1,0,0> <4,4,0,1,0> <5,7,0,0,1>

<0,0,0.75,0.25,0> <1,3,0,0,1> <5,6,0,1,0>

<A,A,0,1,0> <B,B,1,0,0> <C,C,0,0.4,0.6>

Figure 1: An example training set and the feature
intervals constructed by CFI.

of arrhythmia in ECG (electrocardiogram) signals.
Here, we show that CFI algorithm results in highly
accurate predictions, has short training and classi�-
cation times, is robust to noisy training instances and
missing feature values, can use instances with miss-
ing feature values, and produces a human readable
model of the classi�cation knowledge.

The rationale behind knowledge representation based
on feature intervals is that human experts maintain
knowledge in this form, especially in medical do-
mains. The input to CFI training algorithm is a
set of training instances that are the descriptions of
subjects with known diagnoses. Learning from these
training examples, CFI constructs a representation
of the classi�cation knowledge inherent in these ex-
amples. This knowledge is represented as the pro-
jections of the training dataset by feature intervals

on each feature dimension separately. Then, for each
feature dimension, projection points with similar char-
acteristics are grouped into intervals. Therefore, an
interval represents a set of feature values that yield
the same classi�cations.

When diagnosing a new subject, each feature partici-
pates in the voting process and the diagnosis (abnor-
mal or normal) that receives the maximum amount
of votes is predicted as the diagnosis of that subject.
Since each feature participates independently of the
others, both in learning and classi�cation, CFI en-
ables an easy and natural way of handling missing
feature values by simply ignoring them. That is, fea-
tures whose values are unknown do not participate
in the voting.

The next section will describe the CFI algorithm in
detail. Section 3 describes the genetic algorithm used
for feature selection. In Section 4, the problem of ar-
rhythmia detection is explained. Application of the
CFI algorithm to this domain is discussed in Sec-
tion 5. Finally, the last section concludes with some
remarks and plans for future work.

2. THE CFI ALGORITHM

The CFI classi�cation algorithm is an improved ver-
sion of the early FIL, VF1 and VFI5 algorithms [3,
7, 10]. Here, the CFI algorithm is described in detail
and explained through an example.

Knowledge Representation

The CFI classi�cation algorithm represents a con-
cept description by a set of feature intervals. The

classi�cation of a new instance is based on a voting
among the classi�cations made based on the value
of each feature separately. Each training example
is represented as a vector of nominal (discrete) or
linear (continuous) feature values plus a label that
represents its associated class. The CFI algorithm
�rst projects all training instances on each feature
separately. Using the projections of the training ex-
amples, it constructs a set of intervals for each fea-
ture. An interval is either a range or a point interval.
A range interval is a set of consecutive values of a
given feature with the same class value, whereas a
point interval is de�ned as a single feature value. For
range intervals, lower and upper bounds of the range
value, its class value and the vote are maintained.
For point intervals, on the other hand, the lower and
upper values are the same, but there may be several
class values. Therefore, an interval is represented as
a vector, whose �rst two elements store the lower
and upper bounds and the remaining elements cor-
respond to the votes for each class, as shown below:

< lb; ub; V1; V2; : : : Vk > :

Here, k is the number of classes in the domain, and
Vi represents the vote of the interval for class Ci.

An example training data set and the corresponding
feature intervals constructed by the CFI algorithms
is shown in Figure 1. The example domain consists
of three features, namely f1, f2, and f3, the �rst two
of which are linear and the last one is a nominal fea-
ture. The nominal feature can take values from the
set fA;B;Cg. The class labels are C1, C2, and C3.
There are seven training instances in this example.

Training

The training process in the CFI algorithm is shown
in Figure 2. For each feature f , �rst all training in-
stances are sorted with respect to their values for f ,
forming their projections on f . A point interval is
constructed for each projection. The lower and up-
per bounds of the interval are equal to the f value of
the corresponding training instance. Its vote for the
class of the training instance is the reciprocal of the
number of times that class occurs in the all training
set. This normalization is to eliminate the e�ects of
uneven class distributions in the training set. The
votes for the other classes is 0. If the f value of
a training instance is unknown (represented by \?"
in Figure 1), it is simply ignored for f . Then, if
there are several point intervals at the same f value,
then they are combined into one, by adding the class
votes. So that, at the end of point interval construc-
tion, there is exactly one point interval for each dis-
tinct value of f in the training set. For example,
the �rst interval for f2 in Figure 1 is h0; 0; 1; 1=3; 0i.
The second and third point intervals are h1; 1; 0; 0; 1i,
and h3; 3; 0; 0; 1i, respectively. Then, only for linear
features, CFI tries to generalize the point intervals.
Consecutive point intervals whose highest votes are
for the same class are merged forming range inter-



train(TrainingSet):
begin

for each feature f
/* sort TrainingSet with respect to f */
sort (f , TrainingSet)
/* construct a list of point intervals using

feature values and class labels */
interval list  make intervals (f , TrainingSet)

if f is linear
/* join adjacent point intervals

to form range intervals */
interval list  generalize (interval list)

intervals[f ]  normalize votes (interval list)
end.

generalize (interval list)
begin

I = �rst interval in interval list
while I is not empty do

I 0 is the interval after I
if majority class(I) = majority class(I 0)
/* majority class of an interval

is the class with the highest votes */
then merge I 0 into I
else I  I 0

end.

Figure 2: Training in the CFI algorithm.

vals. In the example above, the second and third
point intervals of f2 are merged into the range in-
terval h1; 3; 0; 0; 1i. In the last step of the training
process, the votes of each interval are normalized so
that the total votes of the interval for all classes is
1. So, following the example in Figure 1, the �rst
interval on f2 becomes h0; 0; 0:75; 0:25; 0i.

Classi�cation

The classi�cation (querying) process in the CFI algo-
rithm is given in Figure 3. The classi�cation in CFI
involves a voting scheme where each feature casts its
vote. The process starts by initializing the votes of
each class to zero. If the value of the query instance
for a feature f is unknown (missing), then that fea-
ture does not involve in the voting. That is the fea-
tures containing missing values are simply ignored.
If the qf value is known, the interval I into which
ef falls is searched. If the qf value does not fall in
any interval on f , then again the feature f does not
participate in the voting. If an interval I is found
that includes the qf value, then the votes of I are
the votes that f casts in the voting. Since the sum
of the votes of an interval is normalized to 1, during
the training, each feature has an equal power in the
voting. Once all the features have completed cast-
ing their votes, the class that received the highest
amount of votes is predicted to be the class of the
query instance.

classify(q): /* q: query instance to be classi�ed */
begin

for each class c /* initialize total votes */
vote[c] = 0

for each feature f
if qf value is known
I = search interval(f; qf )
for each class c

vote[c] = vote[c] + interval vote(I; c)
return the class c with the highest vote[c];

end.

Figure 3: Classi�cation in the CFI algorithm.

This implementation of the CFI algorithm is a cat-

egorical classi�er, since it returns a unique class for
a query instance [14]. A unique class is predicted
for the query instance in order to compare this pre-
dicted class with the actual class of the query in-
stance. This enables us to measure the performance
of our classi�ers according to the most commonly
used metric, which is the the percentage of correctly
classi�ed query instances over all query instances.
On the other hand,

vote[Cj ]
Pk

i=1 vote[Ci]

can be used as the probability of class Cj which
makes the CFI algorithm a more general classi�er.
In that case, the CFI algorithm returns a predicted
probability distribution over all classes. Although a
class is returned as the prediction of the query in-
stance as an output of the CFI classi�er , the votes
received by each class is also available as an output
to the user providing him/her with the level of con-
�dence in the prediction.

Continuing with the example in Figure 1, let the
query instance be h6; ?; Ci. Since the f2 value of
the query instance is unknown, the feature f2 does
not participate in the voting. The votes of f1 and f3
are h0; 0; 1i and h0; 0:4; 0:6i, respectively. The total
votes of the classes are h0; 0:4; 1:6i. Since the class
C3 has received the highest amount of votes, 1.6, the
class of the query instance is predicted to C3. The
con�dence of this prediction is 1.6/2 = 80%.

3. FEATURE SELECTION USING A

GENETIC ALGORITHM

Practical classi�cation problems require the selection
of a subset of features from a much larger set to rep-
resent the knowledge to be used in the classi�cation.
This is due to the fact that the performance of the
classi�er and the cost of classi�cation are sensitive to
the choice of the features used in the construction of
the classi�er. With the reduced set of features, the
time needed for learning the classi�cation knowledge
and the time required for classi�cation is reduced.



Further, by the extraction of relevant features and
therefore the elimination of the irrelevant ones, the
accuracy of the classi�er can be increased [4, 16].

Exhaustive evaluation of possible feature subsets is
usually infeasible in practice since it requires large
amount of computational e�ort. Genetic Algorithms
(GAs) o�er an attractive approach to �nd near-optimal
solutions to such optimization problems [6, 15, 20].
GAs are randomized search and optimization tech-
niques guided by the principles of evolution and nat-
ural genetics, with a large amount of implicit par-
allelism [9]. In GAs, the parameters of the search
space are encoded in the form of strings, called chro-

mosomes. A collection of such strings is called a pop-
ulation. In the case of feature selection problem, each
chromosome represents a subset of features selected.
The size of a chromosome is equal to the number of
features. Each element of the chromosome string is
either 1 or 0, where 1 indicates that the correspond-
ing feature is selected, and 0 otherwise. The goal
of the search, in this case, is to �nd a chromosome
that represents a set of features that lead to highest
accuracy. In the case of several feature subsets with
the same best accuracy, the one with the smallest
cardinality is the desired one.

Initially a random population is created, represent-
ing di�erent points in the search space. Each of the
initial population are evaluated according to the �t-
ness function. In the GA used in the experiments,
the cube of the �ve-fold cross-validation accuracy is
used as the �tness value of a chromosome. Then,
until a maximum number of generations is reached,
the following three operations are executed in order
at each generation of the GA search: reproduction,
crossover, and mutation. The GA used here em-
ploys the roulette-wheel selection in the reproduction
step. As the crossover operation two-point crossover
is used. After the generation of a new population, all
the chromosomes created or mutated are evaluated
again. The best chromosome is always copied to the
next generation (elitism) by passing the reproduc-
tion step. The best chromosome is the one with the
highest �tness value. Among the chromosomes that
have the same �tness value, the one with the small-
est number of features is chosen. The values for the
parameters of the GA used in experimentations are
given in Section 5.

4. ARRHYTHMIA DETECTION

The dataset used here consists of 533 ECG records
recorded from 452 subjects (203 males with age 48�
17; 249 females with age 46� 16). Each record con-
sists of a set of clinical parameters measured on rest
ECG signals (Figure 4) automatically by a commer-
cially available system1, and some personal informa-
tion about the subjects. There are 279 parameters
(features) in a single record.

1KardiosisTM system of TEPA A.S�., Ankara, Turkey
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Figure 4: Time interval measurements done on a
heart beat.

The patient population is divided into two groups
based on the investigation of an expert cardiologist
as Normal and Abnormal, represented by classes C1

and C2, respectively. The cardiologist was provided
with the graphical plots of the ECG waveforms and
the available personal information about the patient,
i.e. age, height, weight and sex. There are 245 cases
in the normal group and 288 cases in the abnormal
group. The abnormal group consists of the following
abnormalities: Ischemic Changes, Old Anterior My-
ocardial Infarction, Old Inferior Myocardial Infarc-
tion, Sinus Tachycardy, Sinus Bradycardy, Ventric-
ular Premature Contraction(PVC), Supraventricular
Premature Contraction, Left Bundle Branch Block,
Right Bundle Branch Block, Left Ventricule Hyper-
trophy, Atrial Fibrillation and Flutter.

Out of 279 features 206 of them are continuous val-
ued (linear) and 73 features are boolean valued (nom-
inal). The �rst four features (f1 � � � f4) are age, sex,
height and weight, respectively. The feature f5 is
the average QRS duration in milliseconds, while f6
is the average time interval between the onset of P
and Q waves. The features f10 to f14 are the vector
angles in degrees on the front plane of QRS (f10), T
(f11), P (f12), QRST (f13), and J (f14), respectively.
The feature f15 represents the heart rate in terms
of beats per minute. The next 11 features (f16-f27)
are measured in lead DI: f16: Average duration of
Q wave; f17: Average duration of R wave; f18: Av-
erage duration of S wave; f19: Average duration of
R' wave (the small amplitude positive de
ection just
after the R wave, which is observed in some record-
ings); f20: Average duration of S' wave (the small
amplitude negative de
ection just after the S wave,
which is observed in some recordings); f21: Intrin-
sic de
ection time (i.e. the ventricular activation
time). Features f22 through f27 are nominal valued.
The last 12 features are also measured on lead DII
(f28-f39), DIII (f40-f51), AVR (f52-f63), AVL (f64-
f75), AVF (f76-f87), V1 (f88-f99), V2 (f100-f111),



Table 1: Classi�cations when all features are used.

Predicted as
Actual Abnormal Normal
Abnormal 195 93
Normal 47 198

V3 (f112-f123), V4 (f124-f135), V5 (f136-f147), V6
(f148-f159). In addition to the time domain measure-
ments de�ned above, the following amplitude mea-
surements are also done: f160: J point depression on
DI in mV.; f161: Q wave amplitude on DI in mV.;
f162: R wave amplitude on DI in mV.; f163: S wave
amplitude on DI in mV.; f164: Amplitude of R' on
DI in mV.; f165: Amplitude of S' on DI in mV.; f166:
P wave amplitude on DI in mV.; f167: T wave am-
plitude on DI in mV.; f168: QRS Area (Sum of areas
of all segments divided by 10. The area of a seg-
ment is de�ned as the product of its time duration
and amplitude divided by 2); f169: QRST Area (=
QRS Area+0:5�T duration�0:1�T amplitude).
These last 10 features are also measured on other
leads in the same order (f170-f279).

In the dataset used in the experiments 0.33% of the
feature values are missing. However, as explained in
Section 2, the CFI algorithm is capable of handling
such a missing data set.

5. EXPERIMENTS ON THE

ARRHYTHMIA DATASET

In order to determine the set of relevant features we
used a GA as explained in Section 3. In this ex-
periment, the GA had 500 chromosomes, and each
chromosome had 279 binary valued (0 and 1) genes,
one for each feature. The value 1 represented the
fact that the corresponding feature is selected, and
vice versa. The GA used two-point crossover, with
the probability of crossover pc = 0:8. The probabil-
ity of mutation was pm = 5:10�5. The GA was run
for 1000 generations.

As the �tness function, the cube of the 5-fold cross-
validation accuracy of the CFI algorithm using the
set of features selected by the corresponding chromo-
some is used. The reason for using the cube function
is to expand the gap between the �tness values for
chromosomes with above the default accuracy.

The cost of misclassi�cation is not symmetric be-
tween the two classes, normal and abnormal, in the
case of arrhythmia detection. That is, the cost of
misclassifying an abnormal patient as normal has a
higher cost then misclassifying a normal patient as
abnormal. Considering this fact we have de�ned the
accuracy of CFI as

accuracy =
aa + nn � an

aa + an + na + nn

here, aa denotes the number of abnormal cases pre-
dicted as abnormal, while an denotes the number of
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Figure 5: (a) The �tness and (b) the number of fea-
tures selected for the best chromosomes.

Table 2: Classi�cations when only selected features
are used.

Predicted as
Actual Abnormal Normal
Abnormal 244 44
Normal 29 216

abnormal cases predicted as normal. Similarly, na
and nn are the number of normal cases classi�ed as
abnormal and normal, respectively.

In order to compute the 5-fold cross-validation accu-
racy, the whole dataset is partitioned into �ve equal
size subsets. The four of the subsets is used as the
training set, and the �fth one is used as the test
set. This process is repeated �ve times, once for
each subset being the test set. The �nal accuracy is
the average of the accuracies obtained in these �ve
runs. This technique ensures that each case is used
exactly once in the test set.

We �rst experimented with the CFI on the arrhyth-
mia dataset using all features (no feature selection).
The CFI algorithm achieved 56.29% accuracy. The
training time for each fold was 208 msec, while the
testing time was 37 msec. The classi�cation table for
all features is given in Table 1.

Then, we ran the GA speci�ed above to �nd a good
set of relevant features, so that the accuracy of CFI
can be increased. The best �tness values and the
number of features selected for the best chromosomes
through out the execution of the GA are shown in
Figure 5. At the end of the 1000th generation of the
GA, the best chromosome contains only 105 features
out of 279. The accuracy of the CFI algorithm with
this set of features is 78.05%. Using only these 105
relevant features, the training time for each fold was
80 msec, while the testing time was 16 msec. The
classi�cation table for selected features is given in
Table 2. Using this set of features 86.3% of all cases
are classi�ed correctly.

6. CONCLUSIONS

In this paper, a new classi�cation algorithm called
CFI is developed and applied to the detection of
abnormal ECG recordings. Since CFI treats each
feature, the missing feature values that may appear



both in the training and test instances are simply
ignored. In other classi�cation algorithms, such as
decision tree inductive learning algorithms, the miss-
ing values require extra care [18]. This problem has
been overcome by simply omitting the feature with
the missing value in the voting process of CFI. Also
note that the CFI algorithm is applicable to con-
cepts where each feature, independent of other fea-
tures, can be used in the classi�cation of the con-
cept. One might think that this requirement may
limit the applicability of the CFI, since in some do-
mains the features might be dependent on each other.
Holte has pointed out that the most datasets in the
UCI repository are such that, for classi�cation, their
attributes can be considered independently of each
other [12]. Also Kononenko claimed that in the data
used by human experts there are no strong dependen-
cies between features because features are properly
de�ned [13]. Another advantage of the CFI classi�er
is that instead of a categorical classi�cation, a more
general probabilistic classi�cation where the classi-
�er returns a probability distribution over all classes
is possible to implement with CFI.

The original data set of ECG recordings that we used
contained 279 features. In order to select and use
only the relevant features, we developed a genetic al-
gorithm. We found that only 105 features are suÆ-
cient for the detection of abnormal cases. Using only
the revelant features increased the accuracy and de-
creased both the training and the prediction times of
the CFI algorithm.
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