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Abstract. This paper presents a new form of exemplar-based learning. based on a represeatation scheme called
Jeature partiionmg, and a particelar implerentation of this technique called CFP (for Classification by Feaure
FPartiioning). Leaming in CKFP is accomplished by storing the objects separately in each f{eature dimension
as disjoint sets of values called segments. A segment s expanded through peneralization ar specialized by
dividing it intn <ob-cegments. Clagsification it based on a weighted voting among the individual predictions of
the features, which are simply the class values of the segments corresponding to the values of a test instance
for each feature. An empirical evaluation of CFP and its comparison with two other classification wechniques
that consider each featare separately are given

Keywords: Incremental learing, exemplar-based learning, voung, feature partitioning

1. Introduction

Concept learning from examples has been one of the primary paradigms of machine
learming rescarch since the early days of artificial intelligence. Concept learning tackles
the problem of learning concept definirions. A definition 18 usually a formal deseription
in terms of @ set of attribute-value pairs. Several different representation techniques,
including decision irees, connectionist archileclures, representative instances, and hy-
perrectangles. have appeared wn the literature. These approaches construct concept de-
seriptions by examining a series of examples, cach of which is categonzed as either an
example of the concept or a countercxample.

One of the widely used representation techniques 1s the exemplar-based representation.
According to Medin and Schaffer (1978), who originally proposed excmplar-hased learn-
ing as a model of human learning, cxamples are stored in memory witheul any change
n the representation. All of the exemplar-based learning models thar have appearcd in
the hiterature share the property that they use verbatim examples as the basis of lcarning.
Tor example, instance-based learming technigues (Aha ot al., 1991; Cost & Salzberg,
1993 Stanfill & Walty 10R6) retain examplas in memory ag a set of relerence pointg,
and never change their representation. Two of the mportant decisions (¢ be made are
what points o store and how to measare similarity between examples (Salzberg, 199 Th;
Zhang, 1992 Aha et al. {1091 have developed several variants of this model, and they
are experimenting with how far they can go with a strict point-storage model Another
cxample 1s the nested-generalized cxemplars model of Salzberg (1991). This model pro-
vides an alternative o the point storage model of the instance-based learning. 1t retaing

examples in the memory as axis-parallel hyperrectangies 1o atlow generalization.
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Previous implementations of the exemplar-based model usually extend the nearest
neighbor algonthm in which some kind of similarity (or distance) metric is used for pre-
diction. Hence, prediction complexity of such algorithms is propoertional to the product
of the number of instances (or objects) stored and the number of features (or attributes).

This paper presents another [orm of exemplac-based learning, based on a representa-
ton scheme called feature pariitioning and a paruicular implementation of this technique
called CFP It partitions each feature dimension into segments cotresponding 10 concepts.
Therefore, the concept description learned by CFP is a collection of feature scgments.
In other words, CEP learns a projection of the concept on cach feature diroension. ‘The
CFEP algorithm makes several significant improvements over other exemplar-based learn-
ing algorithms. For example, IBL (Instance-Based Learning) algorithms learn a set of
instances which 18 a representative subset of all non-typical training examples, while
EACH (Exemplar-Aided Constructor of Hyperrectangles) learns a set of hyperrectangles
of the examples, On the other hand, the CFP algorithm stores the instances as factored
out by thetr feature valucs.

Since CHP learns projections of the concepts, 1t does not use any similarity (or distance)
metric for classtfication. Classification in CFP is based on a weighted voting among the
individual predictions of the [catures. Each feature makes a prediction on the basis ol
its local knowledge. Since u {cature segment can be represented by a sorted list of Line
segments, the prediction by a feature is simply a search for the scgment carresponding o
the test instance on that sorted list. Therefore, the CFP algorithin reduces the prediction
complexily over other exemplar-based techniques. The impact of a feature's prediction in
the voting process 1s determined by the weight of that feature. Assigning variable weights
to the features cnabtes CFP 10 determine the importance of each feawre to reflect its
relevance tor classification. This scheme allows smooth performance degradation when
the data set conwains nrrelevant features.

The 1ssue of unknown attribute values is an unfortunate fact of real-world datasets, that
data clten contam missing atiribute values. Most learning systems usually overcome this
problem by erther filling 1n missing attribute values (with the most probable value or a
value determined by exploiting interreiationships among the values of different attributes)
or by looking at the probability distribution of known valucs of that attribute. Most
common approaches are compared in {Quintan, 1993), leading to a general conclusion
thal some approaches are clearly inferior bul no one approach is uniformly superior
to others. fn contrast, CFP solves this problem very naturally. Since CFP treats cach
atiribute value separately. in the case of an unknown attribute value. it sitply leaves the
partitioning of that feature ntact. That is, the unknown values of an instance are 1gnored
while only the known values are used. This approach is also used by the naive Bayesian
classifier

In the next section some of the previous exemplar-based models are presented. Section
3 discusses the characteristics of CEP and gives the precise details of the algorithm, The
processes of partitroning of feature dimensions and classifying test insiances are ilustrated
through cxamples. An cxtension of CFP which uses genetic algorithms (o determine a
best setting of domain dependent parameters of CEFP is also described. Section 4 presents
an empincal evaluation of the CFP algorithm. Performance of CEP on real-world and
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Figure I. Classification of excmplar-based leaming algorithms.

artificial datasets along with its comparison with other similar techniques are presented.
The final section discusses the applicability of CFP and concludes with general remarks
about the algorithm.

2. Exemplar-Based Models

Exemplar-based fearning is a kind of concept learning methodology in which the concept
definition is construcled from the examples themselves, using the same representation
language. There are twe main types of exemplar-hased learning methodologics in the [it-
erature, namcly mstance-based lcarning and exemplar-based generalization (sce Figure 1.
Instance-based learning retains cxamples in memory as points in feature space and never
changes their representation. However, in exemplar-based generalization techniques the
point-storage model is slightly modified to support generaltzation.

An nstance-based concept description mncludes a set of stored instances along with
some information concerning their past performance during the training process. The
simifarity and classiflication functions determine how the set of saved instances in the
concept deseription are used to predict values for the category attribute. Therefore, IBL
concept descripaens contam these two functions along with the set of stored instances.

The nstance-based learning lechrique (Aha et al., 1991) was first implomented in three
different algorithms, namely 1B1. IB2, and IB3. IBI stores ali the training mstances,
IB2 stores only the tnstances for which the prediction was wrong.  Neither IB1 nor
IB2 remove any instance from concept deseription alter i had heen stored  TR3 is the
noise tolerant version of the 1B2 algonthm. It employs a significance test to determing
which instances are good classifiers and which ones are believed to be noisy. Later Aha
{(1992) implemented two extendions ta these algorithms, called [B4, and IR5. IR4 learns
a separate set ol attribute weights for each concept, which are then used in the similarity
function. IB3. which is an cxaension of [B4, can cope with novel attributes by updating
an attrihule’s weight ondy when its value 1s known for bath the instance being classified
and the instance chosen to classity i

IBL algorithms assume that instances which have high simitarity values according
to the similarity function have sitilar classifications.  This leads to their local bias
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for classilying novel instances according to their most simifar neighbor’s classification.
They also assume that without prior knowledge attributes will have cqual relevance for
Classilication decisions (i.e., cach feature has equal weight in the similarity function).
This assumption may lead to significant performance degradation if the data set contains
many irrelevant fealures.

In Nested Generalized Exemplars (NGE) theory, learning is accomplished by storing
ohjects in Euclidean n-space. £, as hyperrectangles (Salzberg, 1991a). NGE adds
generalization on top of the «imple exemplar-hased learning. It adopts the position that
excmplars, once stored, should be generalized. The learner compares a new cxample
1o these it has scen before and finds the most similar, according to a similarity metric
which 1< inversely related to the distance mewrie (Ruclidean distance im n-space) Vhe
term exemplur (or hyperrectangle) is used to denote an example stored in memory. Over
time, exemplars may be enlarged by generalization. This is similar to the generalizations
of segments in the CEP algonsthm,  Once a theory moves from a symbolic space to
Euclidean space, it becomes possible 10 nest one generalization inside the other. lts
generalizations, which take the form of hyperreciangles in E™, can be nested 1o an
arhitrary depth, where inner rectangles act as exceptions to the ocuter ones.

EACH (Exemplar-Aided Constructor of Hyperrectangles) is a particular implementation
of the NGIE techmique, where an exemplar is represented by a hyperrectangle. TACH
uses numeric slots for featwe values of every exemplar, The generalizations in EACH
take the torm of hyperrectangles in Enclidean n-space, where the space is defined by the
feature values for each example. Thercfore, the gencralization process simply replaces
the slot values with more general values {i.e., replacing the range [@, 6] with another
range [c, o), where ¢ < q and b <0 d). EACH compares the clags of a new example
with the most similar (shortest distance) exemplar in memory. The distance between
an example and an exemplar 18 computed similarly to the similarity function of 1B,
algorithins, but exemplars and features also have weights in this computation and the
result 18 the distance.

Wettschercck (1994) has recently implemented a hybrid k-nearest-neighbor (kNN) and
batch nearest-hyperrectangle (BNGE) algorithm, called KBNGE. This hybrid system uses
BNGE if in arcas that clearly belong to une output cluss and kNN othetwise,

3. Learning with Feature Partitions

This sechon discusses a new incremental learning technigue, based on feature pariition-
ing. The description of CFP s presented first. The process of partitioning of a feature
dimension 1s flusirated by an cxample. An extension of CFP, called GA-CFP, which
uscs genctic algorithms to determine a best serting of domain dependent parameters of
CFP is also deseribed. TFinally, the limitations ol CET are discussed.
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3.1, Basic Characteristics of CFP

In order to characterize the feature parbitioning method, we will identify several properties
of machine learning methods, and show how CFP differs from, or is similar to the others.

Knowledge Representation Schemes: One of the most useful and interesting dimensions
in classifying machime learning (ML) methods 1s the way they represent the knowledge
they acquire. Many systems acquire rufes, which arc often expressed in logical form, but
also in other forms such as schemata. Other knowledge representation techniques include
the use of a set of representative instances (Aha et al., 1991), hyperrectangles (Rendcll,
1983; Salzberg, 1991a), and dectsion trees, as in ID3 (Quinlan, 1986a). Decision trees
have low classification complexity and can be used in the implementation of very efficient
classifiers. A monothetic! decision tree is global for each atiribute, in other words, each
non-leaf decision node may specify some test on any one of the attributes. On the other
hand, in the CFP algorithm, a segiment 1s the basic unit of representation, The CFP
algorithm can be seen to produce a spectal kind of decision trees. While CFP considers
projections of the whole problem space, D3, when selecting the best attribute, only
considers a subregion corresponding to the current path: in the tree. Learning in CEP
1s accomphished by storing objects separately in each feature dimension as partitions of
the set of values that it can take. Another unportant difference is that the classification
performance of CFP does not depend critically on any small part of the model; in
contrast, decision trees are much more susceptible (0 small alterations in the model
{Quinlan, 1993).

Underlying Learning Strategies: Most systems tall mto one of two main categorics
according to their learning strategies; namety, incremental and non-incremental. Systems
that employ an incremental learning strategy altempt to improve an mnternal model {what-
ever the representanen 1s) with each example they process. However, systems employing
non-incremental strategics must sec all the training examples before constructing a model
of the domain. Incremental learning strategies enable the integration of new knowledge
with what is already known. The characterisiic deficiency of these systems is that their
pertormance is sensitive to the order of the instances (examples) they process. The CEP
algorithin falls into the incremental learning category, which means that CFP’s hehavior
15 also sensitive o the order of exaraples.

Domain Independent Learning: Some learning methodologies, e.g., explanation-based
learning (EBL). require considerable amounts of domain specific knowledge to construct
explanations. Lixemplar-based learming. on the other hand, incomorates new esxamples
into its current experience by storing them verbatim in memory. Since it docs not convert
examples into a ditferent representational form, an exemplar-hased learning system does
not need any domain knowledge to cxplain what conversions are tlegal, ar even what the
representation means. Interpretation is left to the user or domain experts. Conscquently,
exemplar-based systems like CTP can be quickly adapted to new domains, with a minimal
amount of programming

Multiple Concept Learning: Machine learning methods have gradually increased the
number of concepts that they can learn and the number of variables they could process.
Many early programs could learn exactly one concept from positive and ncgative in-
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stances of a concept. Most systerms (e.g., CEP) that can handle multi-class concepts need
to be told exactly how many classes they are to learn.

Type of Attribmte Valpey, Ouc shorcoming of many Jearning sysiems is that thoy
can handle only binary variables, or only continuous variables, but not both. Catlert
{1991) presented a method for changing continuous-valued attributes inte ordered diserete
auributes for sysweius that can vnly wse disciete ateibutes. The CI'FP algorithm handles
variables which take on any number of values, from two (binary) to infinity (continaous).
In general, CEP is most suitable for domains where feature values are linearly ordered,
since generalization of segments is possible only on s type of values.

Problem Domain Characteristics: In addition to charactlerizing the dimensions along
which the CFP system offers advantages over similar methods, it is worthwhile to con-
sider the sorts of problem domains it may or may oot handic. Although CEE Js doan
independent, there arc some domains in which the target concepts are very difficult for
cxemplar-based learning, and other learning techniques will perform better. In general,
excmplar-based learning is best sujted for domains in which the excimplars we clusiers
in featurc space. The CEFP algarithm, in particular, is applicable to concepts where zach
feature, independent of other features, can be used in the classification of the concepl.
If concept boundaries are noarecianguiar, or projectien of the cuncepts o a feature
dimension overlap, the performance of CFP degrades.

Noise Tolerance: The ability to form a general concept description on the basis ol
particutar examples is an essential ingredient of ineligent bolavior. If examples contain
errors, the task of useful gencralization becomes harder. The cause of these errors or
“noise” may be either systematic or random. Noise, in general, can be classified as (1)
classification noise, and (2} arrribule noive (Quinlan, [980b, Angluin & Taird 1988).
Classification noisc involves corruption of the class value, while attribute noise involves
distortion of an attribute value of an instance. Missing attribute values are also treated
as arribute noise.

Applicability of a learning algorithm depends highly on its capability for handling noisy
instances (Louras & Bisson, 1993 Therefore, most learning algorithms iry 1o cope wilh
noisy data. Tor example, the [B3 algorithm uulizes classification porformance of stored
instances to cope with noisy data. 1t removes instances from the concept description
that are believed to be noisy (Aha ot al, 1991). EACH also utilizes the classification
performance of hyperrecrangles. However, il docs nut remove any hypeirectangle from
the concept description (Salzberg, 1991a). Decision tree algorithms utihize statistical
measurements and tree pruning o cope with noisy data (Quinlan, 1986a; Quinian, 1993).
CFP utilizes representativencss values of SCZments, along with a voting sclhieme, 0 cope
with noisy data. Unknown attribute values are simply ignored in CFP.

3.2, The CFP Algorithm

This section deseribes the details of the feature partitioning algorithm used by CFP
I.carning in CFP is accomphshed by storing the objects separately i cach feawre di-
mension as disjoint segments of values. A scgment is the basic unit of representation
in the CEFP algorithm. Although it is not a requiremnent Lor CEP, for the time being, let
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us assume that the sel of values that a feature can take are hinearly ordered. For cach
scgment, fower and upper bounds of the feature values, the associated ctass, and the
number of mslances it represents are maintained. The class valoe of a segment may be
undetermined. An cxample (instance) 1s defined as a vector of feature values plus a label
that represents the class of the example.

Trutially, a segment covers the entire range of the feature dimension. that is. {{ - o0, +oo).
undetermaned, 0}, Here, the first element of the triple indicates the range of the segment
with lower and upper limits, the sccond its class. and 1he third, called the representa-
tiveness value, the number of examples represented by the segment. Suppose that the
first example ey of class €7y 1s given during the training phase (Figure 2a). 1f the value
of ¢ for feature § 18 ). that is erp — ox, then the set of possible values for feature f
will be partitioned inlo three segments: ({—oc. oz . undetermined. 0) (v v O 1)
and (g, o) wndetermined, 05, A segment whose lower and upper limits are equal is
called a point segment.

A segment can be extended through generalization with other neighboring points in
the same feature dimension. The CFP algorithm pays attention to the disjointness of
the segments to aveid overgeneralization. In order 0 gencralize a segmenl in feature
F 1o cover a point. the distance between them musi be fess than a given generalization
tinit (D} Otherwise, the new example s stored as another point (trivial) scoment in
the feature dimension [ Asseme that the sccond cxample ep (with 2, < 9) 15 close
1o e (e | rol < Dpyvan fewture foand also belongs to the same clase. In that
case the CFP atgorithm will gencralize the segment for o) into an exiended segment

{1 0s. €L 230 which now represents two examples (see Figure 2b) Generalization of
a range segment i lustrated in Figure 2c.

It the featurc value of a training cxample falls 10 2 segment of the same class, then
simply the representativeness value (number representing the examples in the segment)
15 incremented by one. On the other hand, H the new traumng cxample (alls in a scgment
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train(TrainingSel, A, DY
begin
foreach feature f, w, =]
foreach ¢ 1n TramingSet
foreach feature f
if e; value is known
it proediction_on_feature(f o) = e.aes
then Wy = (l -+ A)U}f
else wy - (L — Dy
update  feature — partibionang(f.ep, Dy)
end

Figure 3. Training algorithm of CFP. The process of updating a partition 1s described in the text.

with a chfferent class than that of the example, CFP specializes the existing segment by
dividing it into two sub-segments and inserting a point segment (corresponding o the
new example) In between them (see Figure 2d). When a segment is divided into two
segmenls, CFP distributes the representativeness of the old segment among the new ones
in proportion 1o thelr sizes.

Segments may have common boundaries. [f an example (ulls on a common boundary,
the representativencss values of the segments are used to determine the predicted class
value. For cxampie, in Figure 2d at f -+ @y, lwo classes ) and € are possible, but
since the total representativeness of the class € is 3 and that of class O 15 1, the
prediction for the feature fis &)

CIP does not apply generalization to nominal valuced features. This 1s done by setting
their geperahzation limil to zero. Therefore, the partition of a normnal feature 1S just a
scl of point segments.

The tramming process in the CT°P algorithm has rwo steps: learning the fealure weights
and learning the feature partitions (Figure 3). The sct ol wraining mstances, global weight
adiustment rate (A), and the veclor ol generatization tunirs (D) are the arguments of the
training procedure. For each training example, the prediction of each feature is compared
with the actual class (eau.) Of the example  The prediction_on_feature(fep) is
the class of the segment([ ) The segment for a feature [ and a value r, that is
segment( £, x), is defined as the segment on feature f with the fighest representativeness
value that mncludes the value . For exainple. assuming thal 'z - g, o= lwa — xq] 10
Freure 24,

f(x :r'l'i.-u,'mff‘?’c::“mz‘m.ru". 0y Af v <y

; -~ : o - )
N el Croryy (S A SN 1
segment{ [y = : n

R -

o) Clorsg if g <7 Ty

ey, oa) undetervrme d AV 11 @y <o

[f the prediction on a feature f is correct. then the weight of that teature, wy 18 mere-
mented by wy - A, where A is a global feature weight adjustment rate; otherwise, s 1%
deeremented by the same amount.
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classifieation(e):
begin
foreach class ¢, vote, = 0
toreach feature f
if e value iy known
¢ = prediction_on_feature(f e )
if ¢ # wndelermined
vote.. wote. + wy
return class ¢ witlt highest vote,..
end

Figure 4. Classification in CFP

The classification in CEP is based on a vote taken among the predictions made by
each fealurc scparately, For a given instance e, the prediction based on a feature f is
determined by ey, the value of « lor feature f. as the class of segmeni(f ;). The
effect of the prediction of a feature in the voting 15 proportional to the weight ol that
feature. All feature weights are tutialized o one helore the training process begins. The
predicted class of a given instance is the one which receives the highest amount of votes
among all feature predictions. The classification algorithm of CEFP is given in Figure 4.
[f the predictions of all the features are undetermined for a test instance, then the final
prediction will be undetermined, as well,

Figure 5 shows an example of the classification process of CFP on a domain with four
features and two classes. Assume that the test example ¢ has a class value ) and features
values are . 2o, xa, and xy, vespectuvely  The prediction of the first feature is €7,
that 1s 1t voles for ¢lass €'y, The sceond feature predicls undeterniined as a class value
{abstention}. The third teature votes for €75, The fourth featere value x of ¢ falls mteo the
border of two sepments. Tn thig case the representativenass values are nsed 1o delermine
the predicted class value. Since the segment of class (7, has a representativencss value of
12, which is greater than the representativeness of the scgment of class €, the prediction
the fourth feature is €. The final prediction of CFP depends on the vares of cach featore
and their weighis (2e,7s). The class which receives the highest weight of voles is the

predicted class. If ) o= (3 + wq) then CEP will classify ¢ as a member of class ¢
which 15 a correct prediction. Otherwise. 1t predicis the class of ¢ as (7, which would
be a wrong prediction.

The second step i the training process is 10 update the partitioning of cach feature
using the given training example. It the feature value of o raning example (alls 0 a
segment of the same class, then its representativencss value s simply meremented. [
the new feature value falls 10 a point segment of a different class 1o that of the example
and it s a polnt segment, then o new point segment (corresponding o the new feature
value) is inserled in addition to the old one. Otherwise, il the class of the segment is nol
undetermined, then the CFP algorithm speciahzes the existng segment by dividing it into

Uwo sub segments and inserting a point segment (corresponding to the new teature valuc)
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Figure 5. An cxample of classification in CFP. Here, light gray refers to class ) and dark grav to class Oz

between them. On the other hand, if the cxample falls into an undetermined segment,
then the CEFP algorithm tries to generalize the nearcst segment of the same class with the
new point. If the nearest segment 1o the feft or right 1s closer than 1), distance, and 13
of the same class as the training instance, than that segment is generalized to cover the
training nstance. Otherwise, a new point segment that corresponds to the new feature
value 15 nserted.

[n order 1o illustrate the form of the resulting concept descriptions learned by the CEFP
algorithim, consider a domain with two features f1 and f, Assumce that during the training
phase, positive (33 instances with fi values i [z, 7] and J3 values 1o [ras, @24], and
negative (03 instances with fy values m {zyy,ry and fo values in @y, zps) are given.
The resulting concept description is shown in Figure 6. This concept 18 represented 1n
CFP by 10 segments (5 segments per feature) incleding the scgments with undetermined
class value. Note that these 10 segments implicitly represent 25 rectangles. In general,
CEP represents a concepl m ni-dimensional space using S-‘?,, (). which implhicitly
represents | [ .., s(f) hyperrectangles, where s{f) represents the number of segments
formed on feature f.

For test mstances which fall into the region { . r11) % Tys. raa], for example,
feature f) has no prediction, while feature fo predicts class 00 Therefore, any instance
falling tn this region will be classified as . On the other hand, lor instances lalling mto
the region {{- . x), (—oo, wa )}, Tor example. the CFP algorithm does not commit
nsell 10 any prediction. For these instances the predicied class will be underermined.

If both features have cqual weight (i = wy) then the description of the concept

corresponding Lo the class D shown in Figure 6 can be written in 3-DNF ac:

class = (o) = fL & fy
(o = fL & fy




CLASSIFICATION BY FEATURE PARTITIONING 57

B X
Neh ®
W \\\X

P . JC:, b

W

%

o

o7 _
XI}) ‘ X/ i G e ’:\\\ i W -----

.
. //
H \;,,, ” » p [ f1 R T (l(.".. d .Ay fl
R b . ~ 7 ES E

e i s @ e oS

Training instances Concept description

EEd® EZZ2 [ 1 Undetermaned
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wa = fo & fo Lo & fy <o) or

{
(s < fo & fo Cwag & f1 > x4
More compactly:

class =3 [ =7 fy Ty} & (fo 7 woy OF xup < )] or
[{ros < fo < maa) & (fi << rzor ;g < f1)

Since CFP uses a weighted majority voting. ties are broken in favor ot the prediction
of the feature with a higher weight. Continuing with the previous example, if wy > wy
then the ties will be broken in favor of ) duning the voting process. In that case the
concept deseription of the class @ will be as follows,

class ¢ x| % f1 < g or
oy < fo < oxag) & (L < gy ormpg < £,

CFP does not assign any classification to an instance 1f 1t could not determine the
appropriate class value for that wnstance.  This may occur if the prediction on each
feature 1s undetermined. Tn this case, CTP returns wnderermined as the classification.

Nole that poimnt segments formed by splitting existing range scgments with known
class values remain as point segments, regardless of how close they are to other same
class point segments. This type ol Iragmentation can be prevented by keeping the
generalizaton limat fow. On the other hand, keeping the generalization limit too fow
precludes the formation of pure range segments. This situation ocours cspectally in

noisy domaine However, the nse of the representatvencss valhies i determining the
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predictions on features reduces the effects of these point segments. This type of unplicit
pruning of point segments helps CFP avoid over-fitting the training data.

The CEP algorithm, in its current implementation, 18 a categorical classificr, since it
returns a unique class for a given query (Kononenko & Bratko, 1991). Although we
have not implemented it, it 1s possible o assign levels of confidence to decistons. The
level of confidence for a decision can be computed by simply normalizing the voles that
cach class receives, as

wvolbe,

Yo voley

where ¢ is the class assigned to a query. Tn that case, CFP retumns a probability distribution
over all classes, as i ASSISTANT (Cestnik ot al, 1987).

3.3 Learmng the Domain Dependent Parameters for CFP

[.carning the domain dependent parameters Tor CFP can be seen as a parameter ophimizi-
uon problem. The goal is to determine the values of the domain dependent parameters
that maximize the accuracy of the CFP algorithm. Genetic algorithms (GA) have been
used successtully n parameter optimization tasks. For example. the GA WEKNN algo-
vithm (Kelly & Davis, 1991) combines the optimization capabilities of 4 genetie algorithm
with the classification capabilities of the WKNN {weighted k nearest reighbor) algorithm
The goal of the GA-WEKNN algorithm 18 to learn an attribute weight vector that nimproves
the WKNN classification performance. Chromosomes are vectors of real-valued weighis.

Following the same approach we developed the GA-CFP toe! which s a hybrid syster
that comhines a genetic algorithm with CFP. The GA-CEP delermines a setiing of the
domain dependent parameters Tor CFP which maximizes the accuracy (Giivenir & Sirin,
1993a).

A chromosome in GA-CFP 15 a vector of real values representing the domain depen-
dent parameters of CFP, ie.. A and D)y dor cach feature. Therefore. the length of the
chromosome is cqual te the number of features plus one. GA-CEFP employs the standard
operators of genetic algorithms, namely reproduction, crossover and mutation. alosg with
the clitist approach, where the best chromosome s always copied 1o the next genora-
tion (Goldberg, 1989} GA-CEFP uses uniform crossover, where two alleles of a pair of
chremosomes undergoing the crossover operation are swapped with probability of 0.5
Mutatior on an allele is obtained by multaplying its value by a random number from
[(25,1.5].

[n setting the imtal populaton for the genctic algorithm, the A wvalues are randomly
selected [rom the set [0, 0.1, The intial 7y valoes for linear type atnbutes are randemly
selected from the sct [0.05 rongel ), 015 range! [, where range( [) 13 the difference
between the maximum and minimum values for feature f. The I3y values for nomunal
atiributes arc set 1o zero, and remain zero through the genclic operators,

As the fitness function for the genetic algorithro, GA-CTP uses two- Told cross-validation

accuracy of the CFP on the waining set with the paramcters encoded ina chromaosome.
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Figure 7. Domaing where projections of concepts into a feature dimension are overlapping.

Although it 15 possible 1o use the leave-one-out accuracy as the fitness value, our cxperi-
mental results indicate that iwo-fold cross-validation accuracy gives a good approximation
to determine the hest settings of the domain dependent parameters

3.4, Limitations of CFP

Classification in CFP is based on a weighted voting among wmdividual predictions per-
tormed on cach teature using only their local knowledge. Therelore, CHFP s best ap-
plicable o concepts where cach feature, independent of other [eatures, can centribute
to the classificaiion of the concepl. However, as is shown in the rest of this seclion,
CFEP is robust and performs reasonably well even in many domains that do not have this
property,

The CFP algorithm has been tesled on the three artificially generated two-dimensional
domains shown in Figure 7. In each domain, data set contains cqual number of instances
of two classes, represented by 75 and .

Fach segment represents two (one, il lower and upper values of the segment are equal)
parallel surfaces (hyperplancs} in the description space: these are orthogonal 1o the axis
of the segment and parallel to all other axes. Conscequently, the regions constructed by
CFP are disjoint hyperrectangles, except for their boundaries. When actual class regions
are nol hyperrectangles, the best that CEP can do s te approximate the regions by sinall
hyperrectangles. This situation is iltustrated in Figure 7a. The feature weights are Tearned
as w = 1.1494 and 20, = 10822 Since the instances are symmetrically distributed 1 the
feature space, the weights of the features are close to cach other as expected. Segments
for higher values of £ are labeled as class =, while segments for hugher values of f,
are labeled as class 230 Therefore. for higher values of f) class 7 will be predicted,
whereas for higher values of [ class o3 will be predicted, However, since ;s slighily
more than i, few o the [ class instances near the border might be classificd as .
mistakenly.
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[f the projections of concepts on featurc dimensions do not overlap, then CEP will
classify an nstance with a high confidence. However, in some ¢ircumstanies, c.g., in
nested concept descriptions, this may not hold. "T'hs case 15 illustrated in Figure 7b. The
feature weights are determined by CFP as wy = 10607 and w3 = 1.0512. The projections
of the rectangle on the axes are represented mostly by O segments, while the remaining
pertions are represented by only & segments. Therefore, all instances falling outside of
the rectangle will be classified correctly, while instances falling into the rectangle will
be correctly identified only with high confidence. Only a few of the instances in the
rectangle will he misclassitied.

In some cases, even when concepts descriptions are not nested, the projection of the
concepl descriptions may overlap, as shown in Figure 7¢. The feature weights are
determined by CEP as wy = L0186 and wy = 1.0190. In this domain the instances we
evenly distributed in the feature space and the weights of the {eatures are close to each
other as expected. Therefore, only this domain represents a difficult concept for CFP 1o
learn.

There are two aspects of the CFP algorithm which may be considered as limitations,
[t two or more segments share a common point, then the classification predicted at the
boundary is simpiy the segment with the largest number ol representatives. Although it
helps to everride a point segment caused by a noisy raining instance, it alse implics that
a legitimare point segment (say of class €77), formed hy splitfing a large segment (say
of class ), will nof he able 10 classify future examples correctly uni) the number of
futare instances ol the former class () is sufficiently large,

The second aspect is that once a large scgment 15 formed thoere is no way o generalize
the puint segments that [all in that segment. In order to avord over-gencralized seg-
ments we kecp the generalization limits as small as possible, but large epough 10 form

homogencous segments,

4.  Evaluation of CFP

A theareiical analy<is of the CEP algortthm with re<pect to PAC - learming theory (Valiant,
1994 1s given m {Guvenir & Sirin, 1993b). It is clear that lor » features and 97 training
mstances CFP gencrates at most s segments (for Ly — 0} Stonee the search for the
prediction on 4 featare can take at most log 1 steps (using a hinary scarch) on the averape,
the classificaiion tume complexity of the CFP algorithm s ({1 log m ). The training time
complexity can be shown to be O(mri log ). However, n this implementation of the
CEP algorithm, we used linear search due to its simplicity. Therefore, this implementation
has O] classification® and ({nm?) training complexity.

The rest of this scetion presents an cmpirical analysis of the CEP algorithm.  We
lested the CHP algorithm on some of the datasels that are publicalty available in the UCH
repository, and compared ity accuracy with twao other basic classification algornthms. [n
order to evaluate the robustness ol the algorithm i the presence of irrelevant attributes
we also tested it on artificially generated data.
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4.1, Evaluation of CFP on Real-World Data

This section presents the experimental results of the CFP algorithm on some of the widely
used real-world datasets from the UCI repository. The use of real-world data in these
tests provided a measure of the system’s accuracy on noisy and incomplete datasere, aned
alsc allowed comparisons between CEP and other similar systems.

From the viewpoint of empirical research, one of the main difficulties in comparing
various algorithims which leain from cxamples is the fuck of a formally specified model
on which the algorithms may be evaluated. Typically, different learning algorithms and
theories are given together with examples of their performance, but without a precise
definition of learnafiliry it is difficult to chaacterize the scope ol the applicability of un
algorithm or 1o analyze the success of different approaches and technigues. Recently,
there have been attempts 10 devise empirical evaluation criteria for comparing classifiers’
performance (¢.g, Kononenko & Bratko, 1991, Waiss & Kapouloas, 1989). Since CFP is
more suitable o domains where the attribute values are linearly ordered, we chose to test
1t on the daasets that have this property, mstead of a general benchmark sct as given by
Zheng (1993). We chose W test the CEFP algorithun on the following datasels that have
numerical atributes from the UCT repository: Breast cancer (Wisconsin). Cleveland,
Diabetes, Glass, Horse-colic, Hunganan, Tonosphere, Iris, Musk and Wine,

The Breast cancer (Wisconcin) dataset contains nine numeric valued features: there are
6 missing atinibule values. The Cleveland and Hungarian datasets are described by 13
features, 5 of which take linear values. Both of these datasets contain missing attribute
values. The Pima Indians Diabetes dataset containg eight numeric valued features, with
no missing values. The Glass dataset has nine attributes, all of which are continuous:
there are no missing atiribute valucs. The Horse colic dataset has 22 features (feamres V3,
V25, V26, V27, and V28 are deleted from the original datasct). Scven of these features
lake continuous values. About 30% of the attribute values are missing. Allribuie V24
ts used as the class. The [onosphere dataset contains 34 continvous features, with no
missing values. The Inis Flowers dataset consists of four integer valued attributes, with
no missing values. The Musk {cleanl) dataset has 166 linear valued features, with no
missing values. The Wine datasct conlamns thirteen attributes all of which lake continuous
values, without uny missing attrihute values,

We compared CIFP with two other classification algorithms that consider cach teature
separately. viz, the Naive Rayvesian Classifier (NBC) and the Nearest Neighbor on Feature
Projections (NNFP) classifiers. Here, NBC 1s the Bayes classifier with the assumpiion
that the attribules are independent (Duda & Hart, 1973). This method is well known and
will nost be discussed in detall. We have implemented a new version of the NN (KNN.
with k=1) classifier to be used for comparisons with CFP. Similar 1o the CFP algorithmn,
the NNEP classtficr considers each feature separately. Given a test instance, for each
teature, 1t selects the training instance whose projection on that feature 18 the nearest.
The prediction of & feature 1s the class of the nearest neighbor for that feaiure. Then,
the class of a test instance s predicted through a vote among the individual predictions
ol the features. The features with missing values are simply ignored, as in CEP Fach
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Figure 8 A good setiing of domain dependem parameters can be learned by GA-CFP usmmg a small portion
of the dataser.

feature has the same weight in the voting. Thercfore, the prediction for a query is the
class that occurs most often m this set of individual feature predictions.

The empirical compatisons of CEP with NBC and NNEP are shown in Table | In
these comparisons we used leave one-out cross-validation, which involves removing
exactly one example from the data and training the algorithm on the remaining examples
and measuring the accuracy by using that single instance as the test mstance. “The test
is repeated for cvery example in the dataset and accuracy 1s measured as the average
accuracy across all examples Bach training time given below is the average tme to
train CEP with a number ol instances one less than the data size. The lesting tfime is the
average time to classify the single test mstance.

In these expenments the values of the domain dependent parametcrs for the CEP
algorithm were determined with the help of the GA-CFP program. For cach datascl the
GA-CFP was tained with a dataset comprising only a randomly sclected 20% of the
instances from the actual dataset.

We have observed that the portion of the training data used by the GA CFP did not have
much effect on the leave-one-out classification accuracy of the CFP wath the resulting
domain dependent parameters. This fact is aflustrated on the iris domain in Figure 8.
As shown in this graph, the accuracy obtained by CFP with the parameters learned by
GA-CFP using only 20% of the data is only 1.33 poits below the case where 100% of
the data usead

The fitness value of a chromosome is the two-told cross-validation accuracy of CFP on
that training datasct. The popuolation size was 100 In these experiments, the probability
of crossover was 0.7 and the probability of mutaton was 0.1 The dnman dependent pa-
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Table 1. Companson ol leave-one-out cross-validation accuracy (%) of CEP, NBC and NNFP on several real-
world datasets. Training and testing dmes of CFP con these datasers are also given to indicate their dependence
on the number ol features, instances and scgments. Note C: Classes, F: Features, I [nstances

NBC NNFP GA-CFP CFP

Number of Accuracy Accuracy Train Accuracy  No. of  Train  Test
Dratusel T F 1 (%) (56 (8e¢) (%) segments (msce) (msec)
Breast cancer 2 G 699 9742 79.54 197 96.28 205 253 012
Cleveland 2013 808G 80.20 146 84.49 609 189 019
Diabetes 2 8 768 73.05 65450 502 71.61 1470 10 .43
Cilass d 4 214 57.48 45.33 Rl 56.54 1347 159 044
Horse colic 2 22 368 &1.25 63.04 280 81.532 678 328 045
Hungarian 213 294 79.59 63.95 100 81.29 467 1) 019
Tonesphere 2 34 35) 80,06 8803 464 88.00 4224 /4 176
Iris 2 4 150 9313 92 67 23 95.33 133 29 Ol
Musk 2 166 476 66.17 7185 4011 78.36 29252 9571 1211
Wine 3

13 178 H3.26 78.65 149 91.01 1299 149 031

rameters represented by the chromosome with the highest ftness value in 50 generations
were used by CFP 1o measure the leave-one-out classification accuracy.

The comparison of leave-one-out cross-validation accuracies of CFP with NBC and
NNFP arc given i Table 1. Meusured training (with all dataset exceptl onc instance)
and lesting times {with a single test instance) for leave-one-out cross-validation of CFP
on these datasets are also given to indicate their dependence on the number of leatures,
instances and total number of segments formed on all features after training. As seen in
this table, the waring time is approximately proportional to the product of number of
features and the square of number of instances. Also the classification (testing) time is
proportional to the product of the number of Teatures and number of segments.

These results indicate that the CFP algorithm 13 competitive with the two alternative
atgorithms on standard datasets where most of the features take continucus values. Holwe
(1992) has implemented a simple classifier, catted 1R (for 1 rules), that classifics an
imstance on the basis of a single attribute, independent of other attributes. In this respect,
CEP also produces a singie rule for cach feature, but applies a weighted voling scheme
among these tules (o determine the final classification. Holle has pointed out that the
most datasets in the UCT reposttory are such that, {or classitication, their attributes can be
considered independently of cach other, which explains the success of the CHP algorithm
on these datascts.

4.2, Evaluation of CFP on Irrelevant Atiributes

In many practical apphications, 1 s often not knowno exactly which inpul auributes are
relevant. The natural response of users is to include all attributes that they believe could
possibly be relevant and let the learning algontthm determine which features are in tact
worthiwhile.
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Figure 9 Accuracy. memory requireiments. training and testing times of CFP on inereasing number of irrelevant
attributes.

In order to assess the robustiness of the CFP against trrelevant attributes in the domain,
we have performed an experiment on an artifictally generated datasets, In this experiment
we defined three classes as hyperrectangles over four dimensions; they were (0,5 x
10,20540, 2] % [0.0], [4.6] % 4.8 x [5. 7] %4, 6] and [7,10] x {7, 10] =12, 4] > [2,45]. That
is, the concepts have similar shape o the one shown in Figure 7h. The dataset contained
100 instances ol cach class. where attributes take on values from the set [(110] We have
performed cleven cxperiments. in each of which we added an extra irrclevant attribote
with randomly generated valucs. The first experiment does nol contain any irrclevant
attribute, while the last experiment contains ten wrelevant attributes (fourteen attributes
in total). The results of these expenments are shown in Figure 9. The results given in
this figure arc average of leave-one-out tests. The traimng time is the tme required o
train with 299 instances, while the wsting time 15 the time to classily o test instance.

In these experiments the A was sot to 0.05 and the generalization Limits were 1.0 Tor
cach attribute  As shown in Figere 9, the accuracy of the CFP algorithm is independent
of the number of attributes in the dataset. However, the total number of scgments
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constructed increases linearly with the number of irrclevant attributes, since the number
of segments in each irrelevant attribute is roughly equal to the number of instances. Since
we used simple linear search on each feature partition for classification, the training and
testing times are lincarly proportional to the total number of segments. The total number
of segments on four relevant attributes 1s 338 on the average, while for fourteen attributes
itis 3990, Also in these experiments the weights of the relevant attributes are found
to be more than 100, while the weights of the irrelevant attributes are less than 0.1
These experiments show that the CFP algorithm is robust against irrelevant attributes in
a domain,

& Conclusion

In this paper we have presented a new cxemplar-based generalization method of learning
based on feature partitioning, catled CFP. It is an inductive, incremental and supervised
learning method. CEPP learns a partittoning of values for each feature of the application
domain. The CFP algorithm is applicable to domains where cach feature, independent
of other features, can be used to classify the instances. CTT makes significant modifica-
tions to the exemplar-based learning algorithms. It treats feature values independently,
altowing their gencralization in the form of feature segments.

This approach is a variant of algorithms that loarn by projecting into one feature dimon-
sion at a time. The novelty of CFP is that it retains a [cature-by-feature representation
and uses a voung scheme in categorization, CFP lcarns by projecting inio one feature
dimension at a time. Therefore, it loses the n dimensional information of the description
space. This weakness is compensated with a weighted voting scheme.

Another mmportant improvement is the natural handling of unknown attribute values.
Most inductive learning systems use ad hoc methods for handling unknown attribute
values. Since the value of each attribute is handied scparately, attributes with unknown
valucs are sitmply ignored by CFP.

CFP will ciearty fail in some cases. For example, if the projections of concepts on an
axis overlap cach other, the CFP construcls many segments of different classes next to
cach other. fn that case, the accuracy of classification depends on the observed frequency
of the concepts.

CFP uses feature weights to cope with irrelevant atinbutes. Introducing feature weights
protects the algorithm’s performance when an application domain has trrelevant attributes.
The featare weights are dynamically adjusted according to the global weight adjustment
rate (A). which 15 an important parameter for the predictive accuracy of the algorithm.
Another important component of CEFP is the generalization hmit for each atiribute, which
controls the gencralivation process.

The use of feature weights enables the CEFP algorithin o cope with the irrelevant
atinibutes that may cxist in the dataset. Existence ol irrclevant attributes do not affect
the accuracy of the algorithm. However the memory teguircuwents and training and
classification tines hinearly inorease with the number of irrelevant attributes.

The weight adjustment rate and generalization Himits are domain dependent parameters
of CI'F, and then selection allects the perfurmance ol the algorithm. Determining the
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best values for these parameters is an optimization problem for a given domain. In GA-
CFP a genenic algorithm is used to find a good setting of these parameters. The GA-CFP
is a liybnid systemn, which combines the optimization capability of genctic algorithms
with classification capability of the CFP algenthm. The genetic algorithm is used fo
determine the domain dependent parameters for CFF, that is, weight adjustment rate and
generalization limits. Then, the CEP algorithim can be used with scltings that are learned
by the genetic algorithm.

A segment is the basic unit ol representation in the CFP algorithm. Hach scpment
represents a region hetween two parallel surfaces (hyperplancs} in feawure space, that are
orthogonal to the axis of the scgment and parallet to all other axes. Consequently, the
regions constructed by CEFP are disjoint hyperrectangles. Since CEP retains u [eature-
by-feature representation, projection of concepls will dewrmine the applicalnlity of the
CFP to a given domain. CFP is not applicable to domains where all of the concept
projections overlap, or domains in which concept descriptions are nested. In other words,
CFP is applicable to domains where each feature can contibute 1w the classification
independently of others. This claim has been supported by an empirical cvaluation of
the CFP algorithm on commonly used datasets that have continuous feature values.
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Notes

I Polytheiic decision trecs can use more thuan one attobofe in rhe Tests ar thetr mternal nodes.
2 The classification time is o - n o =/n - e s where . 0s 2 constant, and s << e is the wial aumber
of sepments.
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