
An Algorithm for Mining Association Rules
Using Perfect Hashing and Database Pruning

���������	�
 and H. Altay Güvenir

Bilkent University, Department of Computer Engineering,
Ankara, Turkey.

{selma, guvenir}@cs.bilkent.edu.tr

ABSTRACT

In this paper, we propose an algorithm for finding frequent itemsets in transaction databases. The
basic idea of our algorithm is inspired from the Direct Hashing and Pruning (DHP) algorithm,
which is in fact a variation of the well-known Apriori algorithm. In the DHP algorithm, a hash
table is used in order to reduce the size of the candidate k+1 itemsets generated at each step. The
difference of our algorithm is that, it uses perfect hashing in order to create a hash table for the
candidate k+1 itemsets. As perfect hashing is used, the hash table contains the actual counts of the
candidate k+1 itemsets. Hence we do not need to make extra processing to count the occurrences
of candidate k+1 itemsets as in the DHP algorithm. The algorithm also prunes the database at
each step in order to reduce the search space. We also tested our algorithm with real datasets
obtained from a large retailing company and observed that our algorithm performs better than the
Apriori algorithm.

I. INTRODUCTION

Data mining has been considered as a promising field in the intersection of databases, artificial
intelligence, and machine learning [1, 2]. Association rule mining has been one of the most
popular data mining subjects, which can be simply defined as finding interesting rules from large
collections of data. Association rule mining has a wide range of applicability. When the
association rule mining was first introduced, it was developed for finding significant association
rules between items in the huge sized point of sale transaction databases in order to provide
valuable information to the management of the retail store such as what to put on sale, how to
design coupons, how to place merchandise on shelves to maximize profit, etc. [3, 4]. Today, it is
also used for building statistical thesaurus from the text databases [5], finding web access
patterns from web log files [6], and also discovering associated images from huge sized image
databases [7].

In the sale transaction databases domain, an example association rule may be that 90% of
transactions that purchase bread and butter also purchase milk. The following is a formal
statement of association rule mining for transaction databases [2, 4]: Let { }miiiI ,...,, 21= be a set

of items and D be a set of transactions, where each transaction T is a set of items such that
IT ⊆ . Each transaction has a unique transaction identifier called its TID. We say that a

transaction T contains X if TX ⊆ , where X is a set of some items in I. An association rule is an
implication of the form YX ⇒ , where X and Y are sets of some items in I such that they are
disjoint. The rule YX ⇒ holds in the database D with confidence c, if c% of transactions in D
that contain X also contain Y. The rule YX ⇒ has support s in the transaction set D, if s% of
transactions in D contain YX ∪ . Given the database D, the problem of mining association rules
involves the generation of all association rules that have support and confidence greater than or
equal to the user-specified minimum support and minimum confidence.

The discovery of association rules for a given dataset D, involves two main steps [5]: The first
step is to find each set of items, called as itemsets, such that the co-occurrence rate of these items
is above the minimum support, and these itemsets are called as large itemsets or frequent
itemsets. The size of an itemset represents the number of items in that set. If the size of an
itemset is equal to k, then this itemset is called as the k-itemset. The second step is to find
association rules from the frequent itemsets that are generated in the first step. The second step
of the generation of association rules is straightforward. In that step, for every frequent itemset f,
all non-empty subsets of f are found. Then for every such subset a, a rule of the form

()afa −⇒ is generated if the ratio of support(f - a) to support(a) is greater than or equal to the
minimum confidence.

However the first step of association rule mining, finding the frequent itemsets, is very resource
consuming task and for that reason, it has been one of the most popular research field in data
mining. Several algorithms, AIS [3], SETM [8], Apriori [4], Direct Hashing and Pruning [5, 9],
Partition [10], Sampling [11], and some other parallel algorithms [12] have been developed. In
this study, a fast algorithm based on Direct Hashing and Pruning (DHP) algorithm is proposed.
The DHP algorithm is described in Section II, our algorithm (Perfect Hashing and Pruning -
PHP) is explained in Section III, and the results of the performance analysis are discussed in
Section IV. As the experimental results show, the proposed algorithm (PHP) demonstrates
significantly better performance than Apriori and DHP algorithms, when the number of distinct
items in the database is not too large.

II. DIRECT HASHING AND PRUNING (DHP) ALGORITHM

The Direct Hashing and Pruning (DHP) algorithm is in fact, a variation of Apriori algorithm.
Both algorithms generate candidate k+1-itemsets from large k-itemsets, and large k+1-itemsets
are found by counting the occurrences of candidate k+1-itemsets in the database. The difference
of the DHP algorithm is that, it uses a hashing technique to filter out unnecessary itemsets for the
generation of the next set of candidate itemsets [5].

In [9] it has been showed that, the initial candidate set generation, especially for the large 2-
itemsets, is the key issue to improve the performance of data mining, since in each pass, the set
of large k-itemsets (kL) is used to form the set of candidate k+1-itemsets (1+kC) by joining kL

with itself on k-1 common items for the next pass. In general, the more itemsets in 1+kC , the

higher the processing cost of determining 1+kL will be. In Apriori algorithm, 





=

2
1

2

L
C , so the

step of determining 2L from 2C by scanning the whole database and testing each transaction

against 2C is very expensive. By constructing a significantly smaller sized 2C , the DHP

algorithm performs the counting of 2C much faster than Apriori.

In the DHP algorithm, during the support count of kC , by scanning the database, the algorithm

also accumulates information about candidate k+1 itemsets in advance in such a way that, all
possible k+1 subsets of items of each transaction after some pruning are hashed to a hash table.
Each entry in the hash table consists of a number of itemsets that have been hashed to this entry
thus far. Then, this hash table is used to determine the 1+kC . In order to find 1+kC , the algorithm

generates all possible k+1 itemsets from kL as in the case of Apriori, then the algorithm adds a

k+1 itemset into 1+kC only if that k+1 itemset passes the hash filtering, i.e. that the entry for k+1

itemset in the hash table is greater than or equal to the minimum support. As it has been showed
in [9], such hash filtering drastically reduces the size of 1+kC .

The DHP algorithm is as follows [5]:

Input: Database
Output: Frequent k-itemset
/* Database = set of transactions;
 Items = set of items;
 transaction = <TID, {x ∈ Items}>;
 1F is a set of frequent l-itemsets */

 φ=1F ;

 /* 2H is the hash table for 2-itemsets

 Read the transactions, and count the
 occurrences of each item, and
 generate 2H */

for each transaction t ∈ Database do begin
 for each item x in t do
 x.count + +;
 for each 2-itemset y in t do
);(.2 yaddH

end
//Form the set of frequent 1-itemsets

for each item i ∈ Items do
 if supmin/. ≥Databasecounti

 then iFF ∪= 11 ;

end

/*Remove the hash values without the
 minimum support */

sup);(min.2 pruneH

/*Find kF , the set of frequent k-

 itemsets, where 2≥k */

for each ()++≠= − kFk k ;;2: 1 φ do begin

 // kC is the set of candidate k-itemsets

 ;φ=kC

/* 11 * −− kk FF is a natural join of

 1−kF and 1−kF on the first k - 2 items

 kH is the hash table for k-itemsets */

 for each { }11 * −−∈ kk FFx do

 if)(. xhassupportH k

 then ;xCC kk ∪=

 end
 /*Scan the transactions to count candidate k-
 itemsets and generate 1+kH */

 for each transaction t ∈ Database do begin
 for each k-itemset x in t do
 if kCx ∈

 then x.count + +;
 for each (k + 1)-itemset y in t do
 if ykzz ofsubset | −=¬∃

 ()zhassupportH k .¬∧

 then ();.1 yaddH k+

 end
 // kF is the set of frequent k-itemsets

 ;φ=kF

 for each kCx ∈ do

 if supmin/. ≥Databasecountx

 then ;xFF kk ∪=

 end

 /* Remove the hash values without the
 minimum support from 1+kH */

 sup);(min.1 pruneH k+

end
Answer = ;kk F∪

In the initial pass, while counting the occurrences of 1-itemsets, the occurrences of the hash
values of the 2-itemsets in each transaction are also counted. Then the candidate itemsets are
removed if their hash entries are less than the minimum support. A k+1 itemset in a transaction is
added to the hash table 1+kH if the hash entries of all the k-subsets of the k+1 itemset have the

minimum support in kH . Also the DHP algorithm proposed in [9] prunes the transactions, which

do not have any frequent items, from the database, and trims the non-frequent items from
transactions at each step.

Figure 1. The Direct Hashing and Pruning Algorithm

The efficiency of the DHP algorithm in reduction of the number of candidate itemsets depends
on the number of false positives [5]. The false positives are generated when the hash values are
identical for a group of candidate itemsets whose individual frequency is less than the minimum
support, but their hash entry is greater than or equal to the minimum support. The number of
candidate itemsets that have the same hash value is directly related with the size of the hash
table. The drawback of the DHP algorithm is that, the hash table is in competition for memory
space with the hash tree used to hold the counts for the itemsets.

Experiments performed in [5] and [9] have showed that as the size of the database grows, the
DHP algorithm significantly outperforms the Apriori algorithm. However, the performance of
the DHP algorithm highly depends on the hash table size.

III. PERFECT HASHING AND PRUNING (PHP) ALGORITHM

In the DHP algorithm, if we can define a large hash table such that each different itemsets is
mapped to different locations in the hash table, then the entries of the hash table gives the actual
count of each itemset in the database. In that case, we do not have any false positives and as a
result of this, an extra processing for counting the occurrences of each itemset is eliminated.

In [9], it has also been showed that, the amount of data that has to be scanned during the large
itemset discovery is another performance-related issue. Reducing the number of transactions to
be scanned and trimming the number of items in each transaction improves the data mining
efficiency in later stages.

The proposed algorithm uses perfect hashing for the hash table generated at each pass and also,
reduces the size of the database by pruning the transactions that do not contain any frequent item.
So we call the algorithm as Perfect Hashing and Pruning (PHP) and the algorithm is as follows:
During the first pass of our algorithm, a hash table with size equal to the distinct items in the
database is created. Each distinct item in the database is mapped to different location in the hash
table, and this method is called as perfect hashing. The add method of the hash table adds a new
entry if an entry for item x does not exist in the hash table and initializes its count to 1, otherwise
it increments the count of x in the table by 1. After the first pass, the hash table contains the exact
number of occurrences of each item in the database. By only making one pass over the hash
table, which is in memory, the algorithm easily generates the frequent 1-itemsets. After that
operation, the prune method of the hash table prunes all the entries whose support is less than the
minimum support.

In the subsequent passes, the algorithm prunes the database by discarding the transactions, which
have no items from frequent itemsets, and also trims the items that are not frequent from the
transactions. At the same time, it generates candidate k-itemsets and counts the occurrences of k-
itemsets. At the end of the pass, Dk contains the pruned database, Hk contains the occurrences of
candidate k-itemsets, and Fk is the set of frequent k-itemsets. This process continues until no new
Fk is found. The pseudo-code of our algorithm is provided in Figure 2.

This algorithm is apparently better than the DHP algorithm, since after forming the hash table, it
does not need to count the occurrences of the candidate k- itemsets as in the case of the DHP
algorithm. Also, the proposed algorithm performs better than the Apriori algorithm, since, at
each iteration, the size of the database is reduced, and this provides high performance to the
algorithm when the size of the database is huge and the number of frequent itemsets is relatively
small.

Input: Database
Output: Frequent k-itemset
/* Database = set of transactions;
 Items = set of items;
 transaction = <TID, {x ∈ Items}>;
 1F is a set of frequent l-itemsets */

φ=1F ;

/* 1H is the hash table for 1-itemsets

 Read the transactions, and count the occurrences of
each item, and generate 1H */

for each transaction t ∈ Database do begin
 for each item x in t do
);(.1 xaddH

end;

// Form the set of frequent 1-itemset

for each itemset y in 1H do

 if)(.1 yhassupportH

 then yFF ∪= 11

end

/* Remove the hash values without the minimum
 support */

sup);(min.1 pruneH

DatabaseD =1 ;

// kD is the pruned database

/* Find kF , the set of frequent k-itemsets, where 2≥k

and prune the database */

k = 2;
repeat
 ;φ=kD

 ;φ=kF

 for each transaction 1−∈ kDt do begin

 // w is k-1 subset of items in t
 if 1| −∉∀ kFww

 then skip t;
 else

 items φ= ;

 for each k -itemset y in t do
 if y kzz ofsubset 1| −=¬∃

 ()zhassupportH 1-k .¬∧

 then ();. yaddHk

 items=items ;y∪
 end
 tDD kk ∪= // such that t contains

 // items only in the set items
 end

 for each itemset y in kH do

 if)(. yhassupportHk

 then yFF kk ∪=

 end

 /* Remove the hash values without the minimum
 support from kH */

 sup);(min.pruneHk

 k++;
until ;1 φ=−kF

Answer = ;kk F∪

Additionally, after each iteration, the database kD contains transactions with frequent items

only. The algorithm forms all k-subsets of items in each transaction and inserts the ones whose
all k-1 subsets are large to the hash table. For that reason the algorithm does not miss any
frequent itemset. Since the algorithm makes a pruning during the insertion of the candidate k-
itemsets to the Hk, the size of the hash table is not large and fits into memory.

IV. EXPERIMENTAL RESULTS

The algorithm proposed in Section III, the PHP algorithm, is implemented in Perl5, and the
hashing facility of Perl5 is used in order to implement the hash table. The algorithm is run on
Sun workstation and over the sales record data obtained from Begendik Corporation. The dataset
contains the transactions that are recorded for a week, and it consists of 11,512 transactions and
around 5,000 different items. A larger dataset would yield more meaningful results but it was not
possible to obtain a large real dataset because of the security reasons of Begendik Corporation.

Figure 2. The Perfect Hashing and Pruning Algorithm

Experimentation is done to compare our algorithm with Apriori. Given that our algorithm does
not produce any false positives during the candidate itemset generation, it does not perform extra
processing for counting the occurrences of each itemset. For that reason, our algorithm has less
number of steps than the DHP algorithm, and we do not compare it with the DHP algorithm. In
our experimentation, since we could not obtain the original implementation of the Apriori
algorithm [3, 4], we used an implementation of Apriori algorithm in Perl. Experimental results
are shown in Table 1 and Figure 3. Both Apriori and PHP algorithms are run over the same data
set, and the frequent itemsets found by the two algorithms are the same. The number of frequent
itemsets for different minimum supports is given in Table 1.

Table 1. Number of Frequent Itemsets for Different Support Values

Minimum support
1F 2F 3F 4F Total number of large itemsets

2.0 61 10 1 0 72
1.5 93 25 3 0 121
1.0 148 76 17 0 243
0.5 364 327 121 23 835

As it can be seen from the table, the number of large itemsets is inversely proportional to the
minimum support. When the minimum support is decreased, the number of large itemsets found
increases as we expect.

The memory requirement of the algorithm depends only on the number of distinct items in the
database and the minimum support, so it is independent from the size of the database. The
memory requirement of the algorithm decreases as the minimum support increases. When the
minimum support increases, the number of frequent itemsets decreases, and as a result of this,
the size of the hash table generated decreases.

���

���

���

��
��

�� �� ��
�

���

���

���

���

���

���

� �� � � �� �

0 LQ LP XP 6XS S R U W �� �

7
LP

H
�V
H
F
R
Q
G
V
�

$ S U LR U L

3+3

Figure 3. Performance of Apriori and PHP Algorithms

Figure 3 shows the running time comparison of the Apriori and the PHP algorithms. Figure 3
shows that our algorithm, for all minimum support values, performs better than the Apriori
algorithm. As the minimum support decreases, the efficiency of our algorithm increases with
respect to the Apriori algorithm, since PHP generates much smaller sized C2 than that is
generated by Apriori, and also at each step our algorithm searches on smaller sized (pruned)
database and this increases run time efficiency significantly. The running time of Apriori
algorithm drastically increases when the minimum support is decreased below 1.0%. For 2.0%
minimum support, Apriori algorithm runs in 76 seconds, however when the minimum support
decreased to 0.5%, the running time increases to 516 seconds, which is nearly 9 times slower
than our algorithm. Also, as the minimum support decreases, the running time of our algorithm
increases slowly.

V. CONCLUSIONS AND FUTURE WORK

In this work, we studied the problem of finding frequent itemsets for association rule mining. An
algorithm called Direct Hashing and Pruning (DHP) is discussed in detail, and by using the ideas
in the DHP algorithm, we propose a new algorithm PHP that employs the hashing facility of
Perl5 in order to keep the actual count of occurrences of each candidate itemset of the transaction
database. The proposed algorithm also prunes the transactions, which do not contain any
frequent items, and trims the non-frequent items from the transactions at each step. Since our
algorithm has less number of steps than the DHP algorithm, we did not compare the performance
of these two algorithms. In order to test the performance of our algorithm, we compared it
against an implementation of Apriori algorithm over the real dataset that was obtained from the
Begendik Corporation. As the experimentation has showed, our algorithm performs better than
the Apriori algorithm since at each step it reduces the database size to be scanned, and it
generates much smaller sized C2 at the initial step. As future work, our algorithm may be run
over larger sets of data, and experimentation on memory requirement of the algorithm may be
performed.

REFERENCES

1. H. Mannila, H. Toivonen, and A. I. Verkamo, “Efficient Algorithms for Discovering

Association Rules”, Proceedings of the AAAI Workshop on Knowledge Discovery in
Databases, Usama M. Fayyad and Ramasamy Uthurusamy (Eds.), Washington, pp. 181-192,
(July 1994).

2. R. Srikant and R. Agrawal, “ Mining Generalized Association Rules”, Proc. of the 21st
VLDB Conference, Zurich, Switzerland, (1995).

3. R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules between Sets of Items
in Large Databases”, Proc. of the ACM-SIGMOD 1993 Int'l Conference on Management of
Data, Washington D.C., pp. 207-216, (May 1993).

4. R. Agrawal, and R. Srikant, “Fast Algorithms for Mining Association Rules”, Proc. of the
20th Int'l Conference on Very Large Databases, Santiago, Chile, (Sept. 1994).

5. J. D. Holt, and S. M. Chung, “Efficient Mining of Association Rules in Text Databases”
CIKM'99, Kansas City, USA, pp. 234-242, (Nov. 1999).

6. B. Mobasher, N. Jain, E.-H. Han, and J. Srivastava, “Web Mining: Pattern Discovery from
World Wide Web Transactions” Department of Computer Science, University of Minnesota,
Technical Report TR96-050, (March, 1996).

7. C. Ordonez, and E. Omiecinski, “Discovering Association Rules Based on Image Content”
IEEE Advances in Digital Libraries (ADL'99), (1999).

8. M. Houtsma and A. Swami, “Set-Oriented Mining of Association Rules”, Research Report
RJ 9567, IBM Almaden Research Center, San Jose, California, (Oct. 1993).

9. J. S. Park, M. S. Chen and P. S. Yu, “Using a Hash-Based Method with Transaction
Trimming for Mining Association Rules”, IEEE Transactions on Knowledge and Data
Engineering, Vol. 9, No. 5, (Sept./Oct. 1997).

10. A. Savasere, E. Omiecincki, and S. Navathe, “An Efficient Algorithm for Mining
Association Rules in Large Databases”, Proc. of the 21st VLDB Conf., pp. 432-444, (1995).

11. E. M. Voorhees and D. K. Harmon (editors), The Fifth Text Retrieval Conference, National
Institute of Standards and Technology, (1997).

12. M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “New Algorithms for Fast Discovery of
Association Rules”, Technical Report 651, Computer Science Department, University of
Rochester, (July 1997).

