
Categorization In A Hierarchically Structured Text

Database

Ferhat Kutlu and H. Altay G�uvenir

Computer Engineering Department

Bilkent University Ankara, Turkey

ffkutlu,guvenirg@cs.bilkent.edu.tr
ABSTRACT

This paper describes a new categorization learning algorithm, called
Categorization In A Hierarchically Structured Text Database (CHSD),
for exploiting the built-in hierarchy of a text database. CHSD has two
phases called learning phase and categorization phase. At the former,
it exclusively learns the hierarchy and constructs an index tree repre-
senting the hierarchy with a node for each di�erent level. At the latter,
using this index-tree, it categorizes a given news text into its relevant
categories. Index-tree is constructed by an agglomerative bottom-up
hierarchical approach and categorization is done by a supervised over-
lapping approach. Speed is the main criterion in CHSD keeping the cost
of accuracy in a tolerable level. It tries to ignore most of the redundant
parts of the data in learning and similarity calculations in categorization
by the help of hierarchical structure. The k Nearest Neighbor catego-
rization algorithm is used to assess the loss in accuracy, since it has a
very high categorization accuracy. A Usenet news database is compiled
and used to test CHSD since it has such a built-in hierarchy with many
text based documents appropriate for the requirements of CHSD.
Keywords: learning, categorization, hierarchy, Usenet, index-tree.

I Introduction

Amount of on-line information is growing at an ever-increasing rate and the needs for con-

cepts to help manage this huge size of information are rising each day. One of these concepts

is the categorization of every kind of data which makes data parts with similar contents to be

in the same category. To date there have been many categorization algorithms implemented.

In this paper, we investigate the bene�ts of built-in hierarchical structures in text databases.

We used a sample database downloaded from Usenet newsgroups system because it has such

a built-in hierarchical structure in itself which makes us able to run our algorithm without

a pre-arrangement of the input data, and postings are grouped together by category, so

initiating a supervised learning is very easy. In addition, Usenet is a source of large number

of documents and there is always new data available for training and testing [10]. Most of

the news are text-based and there is no need to worry about removing HTML commands

or interpreting image �les, and there is a large variety of subjects covered, so it is possible

to study a particular area or more general topics. The algorithm presented here is called

Categorization in a Hierarchically Structured Text Database (CHSD in short). CHSD takes

as input a collection of Usenet messages. Then it constructs an index tree which is as high

as the longest hierarchy in the database such that each node of the tree contains di�erent

number of features inherited from its children. Finally a new document/a set of documents

travel(s) down the tree by the guidance of a similarity measure and a threshold value of this

similarity measure to �nd its/their related category/categories. In Section II, we present the

pseudocodes of CHSD, explain them in details. In Section III, we do complexity analysis

and empirical evaluation of our algorithm, present our test results, and compare results of

our algorithm with the results of k Nearest Neighbor categorization algorithm (KNN) [5, 9]

which we ran over the same sample database. At the end of Section III we give the results

of a scalability test that we did with as many documents as we could collect. Finally we give

our conclusions and determine the future work.

II CHSD Algorithm

CHSD algorithm is similar to the other categorization learning algorithms [10, 4, 8]. First

of all, it executes a learning phase which takes more time than the others, but after such a

heavy work it achieves the capability of doing faster categorization. Because an index tree

is constructed to the cost of many data replications in the learning phase but this makes it

easier and faster to categorize new documents.

CHSD operates on a sample space of m categories in which each category consists of n doc-

uments. Each category is represented by a three-row vector in which rows contain words,

frequencies and norm-scaling values respectively. Beginning with m vectors an agglomera-

tive, bottom-up hierarchical approach is applied that ends up with a single node at root

and an index tree with nodes that have di�erent numbers of children.

At learning phase CHSD begins with raw data and takes in a database which consists of

multiple groups such that each group has multiple documents and a group name which is

a concatenation of multiple names implying the hierarchy of database. First of all Init-

Tree function which is given in Figure 1 takes database as input and passes it to Process-

Data(Figure 2).

InitTree (DB) /* DB: database of newsgroups */

[1] GroupNo ProcessData(DB)

[2] Create RootNode[GroupNo]

[3] for each groupi 2 DB do

[4] Create NewNode /* a node with a name and a words array */

[5] NewNode.name groupi.name

[6] for each wordk 2 groupi do

[7] NewNode.words[k].name wordk.name

[8] NewNode.words[k].frequency wordk.frequency

[9] NewNode.words[k].scale wordk.scale

[10] RootNode[i] NewNode

[11]BuildTree(RootNode, 1)

Figure 1: InitTree Function

ProcessData deals with each word of each document in each group in lines 5-17. In lines

10-14 frequency table is �lled up and in lines 15-17 denominator of the norm-scaling formula

(equation 1) is calculated for each word. Hash function mentioned in line 8 could be any

hash function which generates a de�nitely distinct number for each di�erent word in the

database.

After all documents are processed in the current group, norm-scaling values are calculated

and a vector �le is written out for each group which contains names, frequencies and norm-

scaling values of words (line 21). The if check in line 19 prevents zero values to be written out

thereby CHSD deals with only non-zero values. After all groups are processed ProcessData

returns the number of groups in the database.

We scale the word frequencies by norm-scaling method [2, 6] which is given by equation:

di =
TFiqP
j TF

2

j

(1)

where di stands for the relative frequency of word i, TFi stands for the total frequency of

word i, and TFj stands for the frequency of word i in particular document j. By this scaling

unimportant words for similarity calculation gain lower values while important words gain

higher values.

In line 2 of InitTree a root node is created which has enough number of pointers for leaf

nodes. For each newsgroup in the database a new node is created such that each node

keeps the name of the group and a word vector to include leaf vector of the current group.

Initialization is done after all nodes get �lled up and joined to the root.

ProcessData (DB)

[1] StopList /* list of words to be ignored */

[2] SubDictionary /* list of words in current group under DB */

[3] Frequency /* keeps frequency of each word in SubDictionary */

[4] Scale /* keeps normal scale value of each word in SubDictionary */

[5] for each groupi 2 DB do

[6] for each documentj 2 groupi do

[7] for each wordk 2 documentj do

[8] hashValue Hash(wordk)

[9] /* Hash function returns a bucket number for current word */

[10] if wordk =2 StopList and wordk =2 SubDictionary then

[11] SubDictionary[hashValue] wordk
[12] Frequency[hashValue] Frequency[hashValue]+1

[13] if wordk =2 StopList and wordk 2 SubDictionary then

[14] Frequency[hashValue] Frequency[hashValue]+1

[15] for each wordk 2 SubDictionary do

[16] if Frequency[k] 6= 0 then

[17] Scale[k] Scale[k] + Frequency[k] * Frequency[k]

[18] for each wordk 2 SubDictionary do

[19] if Frequency[k] 6= 0 then

[20] Scale[k] Frequency[k] /
q
Scale[k]

[21] WriteToFile(SubDictionary[k], Frequency[k], Scale[k])

[22] SubDictionary[k] NULL /* reset arrays */

[23] Frequency[k] 0

[24] Scale[k] 0

[25] return i

Figure 2: ProcessData Function

At the next step, InitTree calls BuildTree (Figure 3) by passing the root and number 1 to

it. Number 1 stands for the �rst parts of the hierarchical names mentioned above. Thus,

BuildTree begins to construct the index tree by merging the leaf nodes with similar �rst

names at its �rst recursion.

BuildTree (Node, key)

[1] for each Groupi in the children of Node

[2] such that �rst key many parts of their names are similar do

[3] Create NewNode /* a node with a name, a words array, child pointers */

[4] NewNode.name (concatenation of key many similar parts detected)

[5] wordCounter 0

[6] childCounter 0

[7] for each nodej 2 Groupi do

[8] for each wordk 2 nodej do

[9] if nodej.words[k].scale �
p
2 then /* eliminate ignorable words */

[10] NewNode.words[wordCounter].name nodej.words[k].name

[11] NewNode.words[wordCounter].frequency nodej.words[k].frequency

[12] NewNode.words[wordCounter].scale nodej.words[k].scale

[13] wordCounter wordCounter + 1

[14] NewNode[childCounter] nodej
[15] childCounter childCounter + 1

[16]Node[i] NewNode

[17]BuildTree(NewNode, key+1) /* go on recursively */

Figure 3: BuildTree Function

BuildTree takes in a node and a key value as input. It detects the groups which have similar

�rst key many name parts. In other words siblings are found �rst and a new node is created

for each sibling group. Each new node takes concatenation of those key many names as its

name (line 4). Then BuildTree �lls in the words vector of new node with the words of its

children as shown in lines 7 through 14 of Figure 3.

One of the most crucial points in BuildTree function is to sieve the words of leaf nodes. In

our experiments we determined
p
2 as the threshold of norm-scaling value for a word

to be copied up to the nodes over the leaf level. That is, the words with norm-scaling values

less than
p
2 will be present only in leaf nodes. The if check in line 9 of BuildTree function

does this work. Purpose of such an elimination is to get rid of ignorable words and to lessen

the number of words in the vectors of nodes that are higher than the leaf level. So that

categorization phase becomes faster and the negative e�ect of noisy data is prevented to

some extent.

Recursion of BuildTree stops when there are no siblings to be merged by a new parent

node. That is, all hierarchies of the database are constructed and the index tree is ready for

categorization phase.

FindCategories takes a text document and a threshold value of similarity as input (Fig-

ure 4). First of all it creates a new node for this document and �lls in the words vector of this

new node from the document as shown in the lines 3-8. At this step it is a must to process

data with the same functions used in ProcessData (Figure 2) for consistency. Otherwise

accuracy decreases too much. After the new node gets �lled up it is passed to Hierarchi-

calSearch (Figure 5) in line 9 to make it travel down the tree and to get its FoundCategories

array �lled up with the names of the leaf nodes visited.

HierarchicalSearch is a recursive function which takes in a node, a threshold value and an

empty array as input as shown in Figure 5. Beginning by the root's children it calculates the

similarity value between the new node and the nodes of index tree by our Similarity function

(Figure 6) and it gives way to recursion through the nodes which has similarity to new node

higher than the threshold value of similarity. Actually the threshold value of similarity is

an option of user which
oats between 0 - 1. It acts as a measure which determines the

sensitivity of the algorithm. If we use 0 as a threshold value then the new node will visit

all other nodes in the index tree and we will get the names of all leaf nodes as a result of

our categorization request and because of this the query will take much time. If we use 1 as

a threshold then we will most probably get no result of our categorization request and the

query will take very short time.

Similarity function given in Figure 6 takes in two word vectors - containing words and their

frequencies - as input and calculates similarity between them according to the equation 2 :

Sim(v1; v2) =

P
t wt;v1 :wt;v2qP

t w
2
t;v1 :
qP

t w
2
t;v2

(2)

where wt;x stands for the frequency of word t in vector x, and the result is the similarity

between vectors v1 and v2 such that 1 for identical vectors and 0 for the vectors with no

common terms. We only deal with the common words of both vectors in this formula.

Finally in line 6, HierarchicalSearch �lls in the FoundCategories array with the names of

visited leaf nodes by the help of Insert function which is given in Figure 7. Insert function

takes in an array of category names, a new category name and a similarity value belonging

to that new category name as input as shown in Figure 7. It inserts the new name according

to its similarity value in the array, so that the input array is kept sorted by similarity values

in non-increasing order. So the �rst category name in FoundCategories array is the best

match for the new document.

After all recursions are popped up in HierarchicalSearch, control returns to FindCategories

and FoundCategories array becomes �lled up with the category names determined by CHSD

FindCategories (document, threshold)

[1] StopList /* list of words to be ignored */

[2] FoundCategories /* keeps names of categories found */

[3] Create NewNode /* a node with a words array only */

[4] for each wordk 2 document do

[5] if wordk =2 StopList and wordk =2 NewNode.words then

[6] NewNode.words[k] wordk
[7] if wordk =2 StopList and wordk 2 NewNode.words then

[8] NewNode.words[k].frequency NewNode.words[k].frequency+1

[9] HierarchicalSearch(NewNode, RootNode, threshold, FoundCategories)

[10] return FoundCategories

Figure 4: FindCategories Function

HierarchicalSearch (NewNode, Node, threshold, FoundCategories)

[1] i 0

[2] while Node.childi 6= NULL do

[3] sim Similarity(NewNode.words, Node.childi.words)

[4] if sim � threshold then

[5] if Node.childi.child = NULL then /* if NewNode met a leaf node */

[6] Insert(FoundCategories, Node.childi.name, sim)

[7] else

[8] HierarchicalSearch (NewNode, Node.childi, threshold, FoundCategories)

[9] i i+1

Figure 5: HierarchicalSearch Function

and then it is returned as the result of the query (line 10).

III Evaluation

i Time Complexity Analysis

Notations given in Table 1 are used to explain complexity analysis. Actually these notations

are abbreviations retrieved by concatenating initial letters of the input data features such

as numbers of words, documents and newsgroups.

Time complexities of each function of CHSD are given in Figure 8. As explained in Section II

ProcessData, InitTree and BuildTree are implemented sequentially in the learning phase.

Thus the time complexity of learning phase is O(tgodb � tdog � twog).
FindCategories is the main function of the categorization phase. It calls HierarchicalSearch

and HierarchicalSearch calls auxiliary functions Similarity and Insert. Since Hierarchi-

calSearch and Similarity functions are the most time consuming functions, time complexity

of categorization phase goes to O(h � log tcon � twon2).

Similarity (guest, host)

[1] number 0 /* upper part of formula */

[2] divisor1 0 /* �rst part of divisor */

[3] divisor2 0 /* second part of divisor */

[4] for each wordk 2 guest do

[5] for each wordm 2 host do

[6] if wordk = wordm then

[7] number number + wordk.frequency * wordm.frequency

[8] divisor1 divisor1 + wordm.frequency * wordm.frequency

[9] divisor2 divisor2 + wordk.frequency * wordk.frequency

[10] return (number / (
p
divisor1 *

p
divisor2))

Figure 6: Similarity Function

NOTATION MEANING NOTATION MEANING

twon total words of node twod total words of a document
tcon total children of a node tgodb total groups of database
tdog total documents of a group twog total words of a group
tcf total categories found h height of the index tree

Table 1: Notations Used in Complexity Analysis Formulations

As for the overall time complexity of CHSD, learning phase is so dominant that time com-

plexity of CHSD is O(tgodb � tdog � twog). Because main goal of CHSD is to learn the built-in

hierarchy in the database and to make the categorization phase easier and faster. Brie
y,

the time complexity of CHSD grows by the number of groups in the database, the number

of documents in the groups and the number of words in the documents.

ii Space Complexity Analysis

An algorithm which requires only constant memory space such that the memory required is

independent on input size is called as in-place algorithm. CHSD is not an in-place algorithm

because its space complexity is O(now � non) in the worst case where now is the number of

words in the global dictionary of the database and non is the number of nodes in the index

tree. That is each word occurs in all documents and copied to all nodes in the index tree.

However it is not possible for this worst case to be realized since CHSD eliminates the words

according to their norm-scaling values as explained in Section 2.

iii Performance Measures

While a number of di�erent accuracy measures have been used in evaluating text categoriza-

tion in the past, almost all have been based on the same model of decision making by the

Insert (FoundCategories, category, sim)

[1] i 0

[2] while FoundCategories[i].sim � sim do

[3] i i+1 /* �nd the right place in sorted order */

[3] temp FoundCategories[i]

[4] FoundCategories[i] category

[5] i i+1

[6] j i

[7] while FoundCategories[j] do

[8] j j+1 /* go to the end of FoundCategories */

[9] j j+1

[10] while j � i do /* one right shift until i'th element */

[11] FoundCategories[j] FoundCategories[j - 1]

[12] j j - 1

[13] FoundCategories[j] temp

Figure 7: Insert Function

FUNCTION TIME COMPLEXITY

|||||||{ |||||||||||||||||||

ProcessData O(tgodb � tdog � twog)
InitTree O(tgodb � tdog � twog)
BuildTree O(h � log tgodb � twog)
Insert O(tcf)

Similarity O(twon2) (O(twon � log twon) when Binary Search is used)

HierarchicalSearch O(h � log tcon � twon2)

FindCategories O(h � log tcon � twon2)

Figure 8: Time Complexities of Functions

categorization system [3]. Some of these measures are recall and precision, accuracy or er-

ror, break-even point, micro average, macro average and 11-point average precision [11]. For

the evaluation of our test results of CHSD and KNN we used interpolated 11-point average

precision measure method which is especially designed for category ranking.

iv Data Set

For the evaluation tests of CHSD a sample database of 2000 documents is collected from

Usenet top-level groups called comp and bionet. Each newsgroup under comp contains

100 documents and each newsgroup under bionet contains di�erent number of documents.

This is done on purpose to test robustness of CHSD. Because in real life it is not possible

to �nd a balanced database such that each group contains equal number of documents. In

fact categorization algorithm has to prevent the e�ect of di�erent data sizes and irrelevant

features on results [1]. This database does not include all newsgroups of comp but we

collected all news in all newsgroups of under the top-level bionet.

v Test Results

Three measures taken for the evaluation of test results. Train time is the time spent during

learning phase but does not include the time spent for processing raw data, test time is the

time spent during categorization of query documents, and accuracy is the value calculated

by interpolated 11-point average precision method which takes in the real labels and the

labels found by the running algorithm.

10-fold cross validation technique [7] is used in the experiments. Therefore, the accuracy of

algorithms on data set is computed as the average of 10 runs in each of which a disjoint set

of 1=10 of the data set is used in the querying, and the remaining 9=10 in the training phase.

Firstly we ran 1 CHSD over the database of 2000 documents for 16 times with di�erent

threshold values
oating between 0.5 - 0.875. At each run we increased the threshold value

by 0.025 to determine the best threshold value which gives the highest accuracy.

The results are given in Table 2. The best accuracy value that we found is 0.87 with

threshold value 0.825 at the 14th run which took 4724 msec. train time and 6173 msec.

test time. We accept these values as the representative values of CHSD to compare it with

1We used a computer with 64 MB memory and an Intel Celeron 333 Mhz. processor in our experiments.

KNN. We did not run CHSD with further more threshold values since accuracy began to

decrease after 0.825.

Since we shu�ed data at the beginning of each run of CHSD, the train time changed spo-

radically. However the test time decreased as the threshold value increased because number

of unvisited nodes becomes higher by the increase in threshold value. That is, as threshold

value approaches to 1 test time approaches to 0.

Next we ran KNN over the same database with k parameter as 10 and got 0.93 accuracy,

in 205492 msec. train time and 27196800 msec. test time. In other words, for each data

fold KNN spent nearly 3.5 minutes to train and 454 minutes to test the data.

As compared with KNN, CHSD resulted in 0.06 less accuracy even with the most optimal

threshold value as shown in Table 2. Nevertheless this is not an intolerable loss of accuracy as

we consider the speed di�erence between them. According to the results of this experiment

CHSD was faster than KNN 43 times in the training time and for 4405 times in the test

time.

vi Scalability Test

The database used in previous experiment is expanded to the size of 5000 documents by

adding a database of 30 newsgroups with 100 news in each. We took the threshold value

of similarity as 0.825 since it was found to be the most optimal value in the previous test.

Accuracy is calculated as 0.892 in 21922 msec. train time and 48656 msec. test time.

Naturally train and test times increased but not beyond the considerable limits. Fortunately

accuracy increased by 0.022 as compared to 0.87 in previous test. The main reason of this

increase is the e�ect of larger data such that the more learning brought out the better results.

By this results we conclude that it is de�nitely scalable.

IV Conclusion

As compared with KNN, CHSD results in less accuracy even with the most optimal threshold

value. But this is not an intolerable di�erence. However a query takes shorter time by CHSD

No. Threshold Train(msec.) Test(msec.) Accuracy

1 0.5 4707 6721 0.22
2 0.525 4657 6679 0.29
3 0.55 4602 6610 0.33
4 0.575 4658 6551 0.38
5 0.6 4687 6509 0.42
6 0.625 4668 6454 0.46
7 0.65 4671 6406 0.48
8 0.675 4642 6392 0.51
9 0.7 4635 6350 0.55
10 0.725 4606 6305 0.59
11 0.75 4721 6289 0.63
12 0.775 4604 6237 0.72
13 0.8 4664 6191 0.81
14 0.825 4724 6173 0.87

15 0.85 4623 6122 0.79
16 0.875 4723 6099 0.65

Table 2: Results of CHSD on the Database Given in Table 4.2

than it does by KNN. For instance in the experiment of 2000 documents and 6495 words

CHSD is 2514 times faster than KNN at the average of total train and test time. We conclude

that time scalability of an algorithm is so important because amount of data is getting bigger

each day thereby CHSD accomplishes its mission.

The advantages of CHSD: Robust against the di�erences among data sizes of groups to

some considerable extent, faster than the most of the traditional categorization algorithms,

scalable to larger databases in terms of time and space complexities, easy to implement, use

and improve since it is a combination of components which are open to modi�cations and

improvements, height of the index tree is limited by the depth of the hierarchy in database,

and it has two useful measures to play with for better results which are called threshold of

norm-scaling value and threshold of similarity.

The disadvantages of CHSD: Vulnerable to the spamming in the database, necessarily most

of the initial data is replicated in the inner nodes of index tree to construct the hierarchy in

the memory, the source database that the initial data is produced from must be maintained

periodically to keep index-tree updated in long term, and the optimal threshold value of

similarity that controls down-travel of a query vector should be determined beforehand by

experimentation since it varies according to the types and sizes of databases.

As for the future work, CHSD might have a dynamic structure such that it continues its

learning phase while responding to queries and receiving newly posted news from server and

updates its index. Some of the newsgroups no longer have message traÆc and CHSD can

detect these groups and eradicate them from its index.

REFERENCES

[1]G�uvenir H. A. A classi�cation learning algorithm robust to irrelevant features. In Proceedings
of AIMSA'98, Giunchiglia F. (Ed.), volume AIMSA'98, pages 281{290, Sozopol, Bulgaria,
September 1998.

[2]Boley D. Principal direction divisive partitioning. Technical Report TR-97-06, Department of
Computer Science, University of Minnesota, Minneapolis, USA, June 1997.

[3]Lewis D.D. Evaluating text categorization. In Proceedings of the Speech and Natural Language
Workshop, pages 312{318, Morgan Kaufman, San Mateo, CA, February 1991.

[4]Han E., Boley D., Gomno M., Gross R., Hastings K., Karypis G., Kumar V., Mobasher B.,
and Moore J. Webace: A web agent for document categorization and exploration. Technical
Report TR-97-049, Department of Computer Science and Engineering, University of Minnesota,
Minneapolis, USA, 1997.

[5]Demir�oz G. and G�uvenir H. A. Genetic algorithms to learn feature weights for the nearest
neighbor algorithm. In Proceedings of the 6th Belgian-Dutch Conference on Machine Learn-
ing, H. J. van den Herik and T. Weijters (Eds.), volume BENELEARN-96, pages 117{126,
Universiteit Maastricht, The Netherlands, 1996.

[6]Salton G. and McGill M.J. Introduction to Modern Information Retrieval. McGraw Hill, 1983.

[7]H. A. G�uvenir and _I. S�irin. Classi�cation by feature partitioning. Machine Learning, 23:47{67,
1996.

[8]Yavuz T. and G�uvenir H. A. Application of k-nearest neighbor on feature projections classi�er
to text categorization. In Proceedings of the 13th International Symposium on Computer and
Information Sciences, G�ud�ukbay U., Dayar T., G�ursoy A., Gelenbe E. (Eds.), volume ISCIS'98,
pages 135{142, Antalya, Turkey, October 1998.

[9]Mitchell T.M. Machine Learning. McGraw Hill, 1997.

[10]Scott A. Weiss, Simon Kasif, and Eric Brill. Text classi�cation in usenet newsgroups: A progress
report. In Proceedings of the AAAI Spring Symposium on Machine Learning in Information
Access, pages 11{13, Bulgaria, September 1996.

[11]Yiming Yang. An Evaluation of Statistical Approaches to Text Categorization. Kluwer Academic
Publishers, 1999.

