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Abstract

As the capture and analysis of single-time-point microar-
ray expression data becomes routine, investigators are turn-
ing to time-series expression data to investigate complex
gene regulation schemes and metabolic pathways. These in-
vestigations are facilitated by algorithms that can extract
and cluster related behaviors from the full population of
time-series behaviors observed. Although traditional clus-
tering techniques have shown to be effective for certain
types of expression analysis, they do not take the biological
nature of the process into account, and therefore are clearly
not optimized for this purpose. Moreover, the current ap-
proaches provide internal comparisons for the experiments
utilized for clustering, but cross-comparisons between clus-
tered results are qualitative and subjective. We present a
combination of current and novel methods for the analy-
sis of time series gene expression data. We focus on an ac-
tual study we have performed for Haemophilus influenzae
which is a major cause of otitis media in children. We first
perform a discretization of the gene expression data that
takes both positive and negative correlations into consid-
eration and then develop a clustering algorithm optimized
for such data that allows elucidation and searching of time-
series patterns. The resulting approach allows time-series
data to be usefully compared across multiple experiments.
We demonstrate the success of our algorithm by showing
some of the genes that it finds to be co-regulated are not de-
tected by current methods. As a result we are able to iden-
tify several signal pathways that initiate competence devel-
opment, and to characterize the transcriptomes of wild-type
and an adenylate cyclase mutant (cya) strains under both
nutrient-limiting and nutrient-complete growth conditions.

1. Introduction

Genes are the code of proteins that are fundamental com-
ponents of all living cells and carry out vital organism func-
tions. Before being translated into protein, this code must be
transcribed from chromosomal DNA into messenger RNA
(mRNA). The rate of transcription by the cell for some
genes can be varied, and therefore the amount of certain
mRNAs in the cell cytoplasm is a measure of the produc-
tion speed of corresponding protein in the cell. Depending
on the environment of the cell (and other factors), different
amounts of some proteins are required; hence different con-
centrations of mRNAs for different genes exist in the cell.
The relationship between the amount of an mRNA observed
under experimental conditions, versus the amount observed
under control conditions is called the expression level. Im-
mobilized DNA microarrays (aka. probe arrays) are a tool
for high-throughput gene expression studies. In microarray
studies, probes (i.e. oligonucleotide sequences) with known
identity are placed on glass or nylon substrates in a grid and
used to determine expression levels through hybridization
to bulk unknown populations of sequences (11). In the re-
sults we see the relative expression levels of genes.

As the capture and analysis of single-time-point microar-
ray expression data becomes routine, investigators have
started examining time-series expression data to investigate
complex gene regulation schemes and metabolic pathways.
The current approach is basically to cluster the time-series
sequences based on common methods such as k-means.
These algorithms provide internal comparisons for the ex-
periments utilized for clustering, but cross-comparisons be-
tween clustered results are qualitative and subjective. In this
paper, we present a combination of current and novel meth-
ods for the analysis of time series gene expression data. We
first perform a discretization of gene expression data that
takes both positive and negative correlations into consid-
eration and then develop a clustering algorithm optimized
for such data that allows both elucidation and searching of



time-series patterns. The resulting approach allows time-
series data to be usefully compared across multiple experi-
ments.

The proposed technique can be used as a decision sup-
port tool for a researcher who is searching for candidate
genes in the process of identifying co-expressed genes,
namely operons and regulons, based on microarray time-
series data. An operon is a group of genes that are co-
localized in the genome, and for which the mRNA is cre-
ated as a single transcriptional event. A regulon is a group
of operons or genes whose expression is coordinately regu-
lated by a global regulatory mechanism (41). This can occur
even though their locations may be unrelated in the genome.
There is an urgent need for a decision support tool that pro-
vides intuitive ways of posing queries to discover meaning-
ful patterns. Even though current methods reveal a signifi-
cant insight into the data, in many cases they either produce
more correlations than necessary and/or classify unrelated
results as similar.

It cannot be strongly enough stated that in microarray
experiments, the fundamental assumption on which all ap-
plications of the technique rely, is that the transcriptional
events observed are related to the experimental conditions.
The implications of this fundamental assumption however,
are rarely brought to bear on the analysis of microarray
expression data. This assumption demands that expression
patterns from an experiment be treated as a completely re-
lated collection of data, and the relationships between all
patterns examined, rather than treated as a collection of data
containing disparate groupings of related patterns. Addi-
tionally, the relationships that might be observed in the data
can occupy several biological axes, and the factors that a
researcher may be interested in on one axis may have no
correlation to values along another. This implies that any
individual distance metric or clustering algorithm is inca-
pable of capturing the full detail of microarray expression
relationships, and also that any clustering algorithm may
capture unique relationships that are unavailable through
other distance/clustering methodologies. In this research we
wished to examine the hypothesis that a distance metric that
captured similarities in the changes of expression level be-
tween expression patterns (as opposed to metrics that cap-
ture similarities in the magnitude of expression), would be
of assistance in clustering genes with coupled regulatory
mechanisms.

Case Study on Haemophilus influenzaeAlthough the
proposed techniques have been implemented and evaluated
for several microarray expression data sets, we have fo-
cused on analyzing our own microarray experiments for
Haemophilus influenzae, a major cause of otitis media in
children.Haemophilus influenzaeis a particularly interest-
ing application since it is known to be capable of natural
DNA transformation, and this capability is strongly con-

trolled by known environmental factors. Many of the re-
quirements and environmental factors that lead to this trans-
formation competent state have been identified, however,
additional signal pathways that initiate competence devel-
opment have yet to be elucidated (27). Induction of com-
petence absolutely requires the catabolite regulator protein
CRP and the cofactor cyclic-AMP (cAMP) (7). This CRP-
cAMP complex binds CRP regulatory elements proximal
to various promoters resulting in the increased transcrip-
tion of those genes. Although, the mechanisms by which
CRP-cAMP binds the CRP site to promote transcription is
fairly well understood, the global nature of competence has
remained elusive due to the one gene at a time approach
used to identify competence genes. Here, using microar-
ray technology and a unique clustering algorithm over dis-
cretized data, we are able to characterize the transcriptomes
of wild-type and an adenylate cyclase mutant(cya) strains
under both nutrient-limiting and nutrient-complete growth
conditions. The details of our biological findings are sum-
marized in the Experiments section.

2. Background

Microarray technology is an evolutionary descendent
of well-known nucleic-acid (NA) hybridization techniques
such as Southern hybridization, scaled to genome-scale
numbers of immobilized probes, and micron-scale inter-
probe spacing on the substrate (34; 35). These scales allow
(potentially) every sequence in an organism to be simulta-
neously used as a probe for hybridization to an unknown
population of NA sequences, in an attempt to determine the
composition of that population. Probes are localized by a
variety of methods into arrays of “spots” with known loca-
tions on a specially treated 1x3 microscope slide. Each slide
can contain on the order of a few tens of thousands of spots
using current technology. For a bacterial genome this allows
several replications of the genome probes to be printed onto
each slide, providing some internal controls and consistency
checks. For human-sized genomes, the whole genome must
be spread over several arrays, preventing the current use of
complete internal controls.

The primary interest in determining population compo-
sitions is in comparing the composition of differing popu-
lations (32; 30). These populations are frequently bulk cel-
lular RNA under differing environmental conditions. How-
ever, applications to other populations are being developed,
such as the analysis of bulk genomic DNA, or the anal-
ysis of mass microbial populations (36; 5; 45). Applica-
tions of microarray technology span the biological gamut
and include: the basic science elucidation of coordinately
regulated genes (38); drug discovery (4; 13); discovery of
functionally related genes (38; 15); determination of organ-
related tissues (9); differential classification of cancers (2);



determination of certain sampling parameters (temporal or-
dering) in uncategorized samples (28); detection of chromo-
somal abnormalities (36; 5); surveying bacterial clones with
random knock-out mutations for the gene locus or loci af-
fected by the mutation1; and even screening for bioterror-
ism agents (45). It is expected to become a critically impor-
tant tool in both clinical diagnostics as well as basic biolog-
ical and health-sciences research (5; 24).

Populations are uniquely labeled and hybridized to the
immobilized probes. Initial data processing involves the re-
duction of each scanned slide image into a table of values
related to the label counts for each spot. Typically these in-
clude raw values, as well as the results of a number of sta-
tistical analysis of the spots themselves. Each spot is typ-
ically subsampled and internal statistics calculated on the
sample values to detect sub-spot imperfections in the sub-
strate and spot-morphology defects that might affect the re-
sults (16).

The primary form of information resolved as a result of
this initial processing is a series of ratios detailing the (prob-
able) relative abundance of the target for each probe, in each
population (8). After ratios are calculated between the in-
ferred experimental and control expression levels (or other
differential effectors), simple questions may be asked, such
as “What genes appear to be up-regulated in the experimen-
tal group as compared to the Control?”. This is commonly
expressed in terms of “fold change” between the experiment
and control. There are however, significant difficulties due
to the character of the data, with producing an unambigu-
ous answer to even such a simple query (12; 26).

The next, and more interesting level of analysis is to ask
the question of what expression behaviors are similar, or
otherwise appear to be related between a set of experiments.
Though some argue that there are fundamental flaws in at-
tempting to use this information to infer global regulatory
networks (10), this question is being asked, and potential
ways of answering it are being proposed in the literature
at an increasing rate. At its simplest, the question is asked
with respect to the replicates in an experiment themselves
(23; 43, and unpublished results). This is an implicit admit-
tance of understanding that the reproducibility of results is
sometimes insufficient for what should be replicate exper-
iments to be statistically detectable as similar. More inter-
esting applications include the detection of individual genes
with behaviors that are similar across a varied set of envi-
ronmental conditions or tissue types, or of groups of genes
that have similar patterns of behavior across some set of
conditions or timepoints in a time series (15).

A number of common statistical methods have been ap-
plied to the discovery of microarray data clusters. Agglom-
erative hierarchical clustering (14) is one of the most com-

1 Personal Correspondance

mon. K-means clustering (18), and Self-Organising Maps
(SOMs) (25) are also popular. Singular Value Decomposi-
tion (1) is applied to generate truncated descriptions of the
entire sample/expression-level matrix and perform cluster-
ing in this lossily-compressed space (19). Their success val-
idates the potential for capturing biologically relevant fea-
tures with a dramatically simplified description. An even
more severe data reduction is successfully applied when
they decrease the expression details to a binary description
of fully expressed or not expressed for each gene (29).

Many of the proposed applications of clustering tech-
niques to microarray data explicitly note that there is a sig-
nificant problem with the clusters that unbiased statistical
methods predict, in that the clusters frequently have sta-
tistical but not biological relevance (39; 31; 3). Keogh et
al obliquely recognize this when they observe that a large
percentage of all statistical clustering studies are critically
flawed due to the size of the variance in the data (20). De-
spite these observations however, few attempt to incorpo-
rate biological biases into the methodology, opting instead
to investigate the performance of different unbiased meth-
ods.

Recently, the possibility of additional complexity on the
time axis has been admitted in some queries, resulting in the
question of groups of genes that have similar behaviors for
an environmental condition, across multiple timepoints. For
example timeseries data is searched for repetitive patterns
to detect periodically expressed genes (44). These questions
lead to additional complexities with respect to pattern scal-
ing and shifting.

Many of the methods for matching (and therefore calcu-
lating distance measures between) timeseries datasets make
use of some sort of lossy compression method for the data,
and actually perform clustering in this reduced data space.
For example in (17) maxima and minima are extracted from
the timeseries data, and each timeseries is described as a
vector of maxima and minima values. Keogh et al reduce
the data to a series of linear approximations of the actual
signal (22) and in a later study to a bitstring (binary vec-
tor) (21).

We therefore propose a data reduction method that re-
duces microarray results into a compact form that can be
used directly for clustering and for specifying search pat-
terns against existing clusters. While any known clustering
method can be applied on this reduced description, we fur-
ther propose a clustering algorithm. It explicitly contains
certain relevant biological biases regarding the manner in
which gene expression levels may cluster.

3. Discretization of Gene Expression Data

Trimming raw data:Minor details in the raw data should
be filtered out because non-biological variability exists in



microarray experiment results. Many factors may contribute
to such non-biological variability, including differences in
the process for obtaining and storing samples; differences in
experimental practices; differences in adjustment of equip-
ment, and so on (11). In addition, there is unavoidable ran-
dom behavior inherent in any biochemical process. We want
to identify the overall movement and the points where sig-
nificant changes have occurred. This can be accomplished
by discretizing the data. The user may set a threshold that
corresponds to a significant change between the consecu-
tive time-points. This threshold also reflects the confidence
in measurement accuracy. Any change below that thresh-
old is considered to be negligible.

Looking at negative correlation:An important point to
take into account is that negative correlation between two
patterns is not zero correlation between the patterns. Neg-
ative regulatory effects exist as well as positive regulatory
effects, and so negative correlations can be a clue to mem-
bers of regulatory networks that are completely overlooked
by methods that can only cluster like-signed trajectories.
Tools using distance metrics such as Euclidean distance or
inner-product techniques that could take correlation values
as measures of similarity do not take this into considera-
tion. Because we do not want to exclude negative regula-
tory events from consideration, we require the capability to
recognize similarity in expression patterns even when ex-
pression level changes are inversely related. As a solution,
we use absolute values of change in expression levels. For
our algorithm this means that any change in expression level
above the positive threshold or below the negative thresh-
old will both be recorded as a “1” (implying “there is sig-
nificant change”) and any change between the positive and
negative thresholds will be recorded as “0” (implying “there
is no significant change”).

In a sense, this is a classification algorithm with bins
for each possible combination of change, or no-change at
a timepoint - that is, a maximum of2(#timepoints) bins. In
theory, there will be no more than N populated bins, where
N is the total number of genes under consideration. In prac-
tice, there are many fewer, as some genes typically display
identical patterns in terms of their expression level changes,
and many genes in most experiments display no interesting
changes in expression, and such transform into a zero vec-
tor.

At this point we have a binary vectors description for
each expression pattern, some of which may be (and proba-
bly are) identical. The next step in our algorithm is to further
cluster these vectors based on an agglomerative method that
combines nearest neighbors based on a Longest-Common-
Subsequence-Length (LCSL)distance measure(40).

Scan through the data, look at each time point and get the
statistics.
T = Threshold for a change between timepoints.
Std = Standard Deviation of Time Point 0
Mul = Number to multiply Std //user defined
Std = standard deviation.
T = (std ∗Mul)
P = TimePoint
Ch = Change between each time point
Find the ones that have changed by given threshold in the
first time point
For (each gene)
{

Ch= P(i)[gene]-P(i-1)[gene]
If ( |Ch| > T )

append value 1
Else append value 0

}
//Output: A binary vector accumulated for each gene by ap-
pending 1s and 0s
Treat the accumulated vector as a bit-string encod-
ing a base-10 number and sort in base-10
//Allows for an efficient, already implemented sort.
//The bit-strings with the same base-10 value are the ones
that match exactly in terms of pattern.

Generation of the bitstring representation of the ex-
pression level time series.

4. Threshold Clustering

Our clustering algorithm, Threshold Clustering, TC, is a
bottom-up approach. The merging criterion is defined by the
user as a similarity value. This threshold defines what the
accepted minimum inner-cluster similarity, as calculated by
LCSL is. When two candidate clusters are considered for a
merge, the distance from all elements in a cluster to all ele-
ments of the other is measured. If there is no element violat-
ing the threshold then the two clusters are merged into one.
This guarantees that everything in the cluster is at least as
similar as the given similarity threshold. It should be noted
that this is costlier than simply comparing the distances be-
tween the centers of clusters. Comparing center similarity
unfortunately leads to error propagation. As new elements
are added into a cluster, the center shifts and this might lead
in later iterations to addition of elements that aren’t similar
to initial entries in the cluster, which causes further shifts
and so on.



4.1. Similarity Distance Function

In order to cluster similar time-series patterns together
we need to define a similarity metric. Some of the patterns
that we wish to capture are the result of regulatory cascades,
wherein the product of one gene influences the rate of tran-
scription for a second, the product of the second influences
the rate of transcription for a third, and so on. These inter-
actions are in fact more interesting from the standpoint of
inferring global regulatory networks than simple first-order
interactions that might be detected by traditional clustering
methods.

To capture the similarity even in the presence of shifts,
we utilize the Longest Common Subsequence as our simi-
larity metric. This allows us to cluster patterns even if there
is a ”shift effect”. Given a pair of timeseries that are identi-
cal except for a temporal offset, none of the popular metrics
such as Manhattan, or Euclidean or other geometry-based
distances would capture the similarity. The LCSL distance
measure is also tolerant of scattered single-bit errors, which
are very common due to the nature of microarray experi-
ments.

4.2. Clustering Algorithm

Our clustering algorithm is incrementally agglomerative,
and builds clusters by successively combining subclusters.
Rather than asking the user for a target number of clusters
to create, we ask for a similarity threshold, and combine
subclusters until none can be grouped under that threshold.
Candidate clusters to possibly be merged are determined
based on the distance calculated between the cluster medi-
ans. Expression patterns in candidate clusters that pass the
threshold cutoff for consideration are then iterated over to
determine whether all members of the potentially combin-
able clusters are consistent with the merge.

To initialize the process, distances are calculated be-
tween all patterns in the initial discretized dataset. The in-
dividual patterns are then treated as single-pattern clusters
and the algorithm enters a recursive stage where nearest-
neighbor clusters are merged until there are no more near-
est neighbors with medians that are closer than the threshold
cutoff. Because the algorithm describes each cluster by its
median, which is a real pattern from the input dataset, and
the inter-pattern distances are all precalculated, inter-cluster
distances are automatically available without further calcu-
lation at each step of the recursion.

To facilitate cluster joining, we maintain a ”merge candi-
date list” (MCL) of clusters that have similarity at or above
the given threshold (ex: if the desired in-cluster similarity is
80%, the list will only hold candidate clusters that have 80%
or higher similarity between their medians). Cluster medi-
ans are assigned such that they have the maximum similar-

ity to the rest of the cluster. During each comparison be-
tween clusters on the MCL we rigorously check the dis-
tance between every pattern pair to determine if the distance
breaks the threshold limit. If there are members of the can-
didate clusters with distances greater than the threshold al-
lows, the clusters are not merged, and are removed from
the MCL. If the distances between all patterns in the merge
candidates are consistent with the merge, every distance re-
garding the two merging clusters is removed from the MCL,
and new distances are entered based on the new cluster. The
MCL is sorted such that clusters with minimum distances
to each other are on the top of the list as candidates for the
next recursive iteration. The process recurses until there are
no candidate clusters remaining in the MCL.

The algorithm below ensures that each cluster holds only
the genes that are at least similar by given threshold, if not
more similar.

As expected the number of resulting clusters does de-
crease when the constraint (similarity threshold) is relaxed
(Figure 1).

While(MCL.size() > 0)
{

MCL.popfront(candidateclusters)
Compare each gene in candidateclusters;
If (if all patterns within threshold)
{

merge
calculate the new median
change the size of total number of clus-
ters
update MCL
MCL.sort()

}
Else abort the merge

}

TC Algorithm

5. Experiments and Biological Findings

To validate our algorithm we applied it to the Stanford
Yeast Database (37). Many expected findings in this dataset
have been characterized by researchers. We observe in our
results many similarities to previously observed relation-
ships in the expression data, but due to the significant differ-
ence in our distance metric and the discretization applied,
we observe a number of differences as well. Because we
treat microarray analysis as a decision support process to
indicate possible areas which are worthy of more directed
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Figure 1. Similarity vs. number of clusters
in The Stanford Yeast Dataset with 24 time-
points based on cdc-15 experiments

biological examination, these differences provide potential
clues to relationships overlooked by other clustering meth-
ods.

5.1. Biological Findings on Haemophilus influen-
zae

Our initial goal was to develop a novel tool for investi-
gatingHaemophilus influenzae, a major cause of otitis
media in children, using microarray expression data. Uti-
lizing the proposed techniques we are able to identify sev-
eral signal pathways that initiate competence development.
The microarray experiments on which this research is based
were performed in the Columbus Children’s Research Insti-
tute Microarray core. Here we summarize our findings on
this using the proposed techniques.

As a result of the proposed time series analysis, a signif-
icant number of genes ( 240) were determined to be tran-
scriptionally regulated in acya mutant strain of H. in-
fluenzaegrown in minimal culture medium upon the addi-
tion of cAMP. This represents approximately 15% of the
transcriptome. In these controlled studies, we were able to
identify four unique genes clusters, three of which con-
tain CRP-cAMP regulated genes that have not previously
been reported. The fact that some of CRP-cAMP regu-
lated genes are parsed into separate clusters is consistent
with the notion that additional factors such as PurR mod-
ulate the expression of some CRP-cAMP regulated genes
(Macfadyen et al., 2001). Indeed, based on the fact that
there are several identifiable expression behaviors (clusters)
suggests that there are probably additional factors other
than PurR and CRP involved in competence. Most sig-

nificantly, one cluster containing nine elements (HI0098,
HI0099, HI0109, HI0113, HI0251, HI0252, HI1432, and
HI1564) was generated based on a late-time point expres-
sion change. Four of these genes encode proteins involved
in iron transport. HI0098 and HI0099, encode ABC iron
transport proteins. Genomic evidence, including gene prox-
imity, direction of transcription, and intergenic spacing be-
tween HI0098 and HI0099, indicates that these genes are
part of the same transcriptional unit (operon). Likewise,
genes HI0251 and HI0252 are apparently part of a sepa-
rate and distinct operon, and encode proteins involved in
iron transport. Both operons lack identifiable CRP regula-
tory sequence elements, yet appear to be regulated by CRP-
cAMP. This indicates that these operons, and perhaps also
the other genes found in this same cluster, might be part of
a yet uncharacterized regulon.

5.2. Findings on Yeast Microarray

We have tested our algorithm on the extensively stud-
ied Stanford Yeast Database (38; 37). As we mentioned ear-
lier, popular distances applied in microarray studies like Eu-
clidean and Manhattan Distances do not allow certain cor-
relations to be detected. Our Distance function based on
LCSL suggests many interesting patterns others reject. For
example in Figures 2, 3 and 4 we see a similar pattern with
a phase difference, in Figure 2 YOR074C (”CDC21”) is
repeating the pattern that YBR202W (”CDC47”) has fol-
lowed, and these two are suggested to be biologically cor-
related in the literature (33). Similarly the genes in Figure 3
have a similarity with phase and scale difference, which is
a clue for a causal relation, and they are also shown to be
related biologically. Another example where TC algorithm
finds a correlation is betweenPH085andPCL2whose co-
regulation is known biologically (42).

Another case where hierarchical clustering misses, but
the TC detects the similarity is depicted in Figure 5. In this
case YDR159W(SAC3) and YPL031C(PH085) are follow-
ing similar patterns after the third time point. Other algo-
rithms reject this pair because of the scale difference and
possibly the level of apparent noise. Microarray clustering
should be an error tolerant process. It should tolerate both
biological variance and non-biological noise as pointed out
in section 3.

In Figure 6 we see two groups of expression patterns
with similar early and late behavior, that follow opposite
patterns in mid time points. Both negative and positive cor-
relation maybe important in recognizing gene regulation.

Figure 7 contains three genes, that don’t appear corre-
lated visually because of the shifts and scales. Typical al-
gorithms don’t cluster them together, while our algorithm
locates them in the same cluster. Yeast GRID (6) suggests
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Figure 2. Expression levels of YOR074C and
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Figure 3. Expression levels of YML021C and
YFR037C

these three genes are involved in protein translation and
translocation.

6. Conclusion and Future Work

We proposed an effective process for time series anal-
ysis of microarray data and applied it to the specific
problem of Haemophilus influenzaecompetence regula-
tion. Since tolerance for error and biological variance is
important when working on microarray experiment re-
sults, we adapted Longest Common Subsequence Length
distance for this purpose. As expected, it detects dis-
tant similarities in sequences with non-matching regions
or shifts. The data reduction technique that we have ap-
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Figure 4. Expression levels of
YBL023C,YDL164C and YKL042W
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Figure 5. Expression levels of YDR159W and
YPL031C

plied to the expression ratios, before applying our clus-
tering algorithm, also helps in ignoring noise. TC has
been shown to have several advantages over other algo-
rithms. First, it does not force the data into an arbitrary and
non-biologically related number of clusters. This is a sig-
nificant advantage over algorithms that subdivide data
into a predefined number of clusters regardless of the ac-
tual patterns found. In our algorithm, the clustering is
decided based on the fact that, everything in a clus-
ter is at least as similar as the given similarity threshold,
which is a natural question for a researcher in biological do-
mains. Since our algorithm is a bottom up approach, it is
similar to Hierarchical Clustering. However in hierarchi-
cal clustering there is only a relative notion of in-class sim-
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Figure 7. Expression levels of
YJL138C,YOR254C and YJL143W

ilarity, whereas our algorithm guarantees an objective and
measurable similarity. An examination of published ex-
perimental findings indicates that many clusters that were
found by TC, and not predicted by other clustering algo-
rithms, have been verified byin vivoexperiments. Our find-
ings suggest that inH. influenzaethere are a significant
number of CRP-regulated genes that have insufficient pro-
moter and regulator homology to known members of the
CRP regulon to be detected by sequence searches. Ongo-
ing experiments in CCRI’s microarray core lab have ver-
ified a number of these predictions, demonstrating the
applicability of our algorithm to detecting non-trivial regu-
latory relationships.
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