
Noname manuscript No.
(will be inserted by the editor)

Distributed Block Formation and Layout for
Disk-based Management of Large-Scale Graphs

Abdurrahman Yaşar · Buğra Gedik ·
Hakan Ferhatosmanoğlu

Received: date / Accepted: date

Abstract We are witnessing an enormous growth in social networks as well
as in the volume of data generated by them. An important portion of this
data is in the form of graphs. In recent years, several graph processing and
management systems emerged to handle large-scale graphs. The primary goal
of these systems is to run graph algorithms and queries in an efficient and
scalable manner. Unlike relational data, graphs are semi-structured in nature.
Thus, storing and accessing graph data using secondary storage requires new
solutions that can provide locality of access for graph processing workloads.
In this work, we propose a scalable block formation and layout technique for
graphs, which aims at reducing the I/O cost of disk-based graph processing
algorithms. To achieve this, we designed a scalable MapReduce-style method
called ICBL, which can divide the graph into a series of disk blocks that
contain sub-graphs with high locality. Furthermore, ICBL can order the re-
sulting blocks on disk to further reduce non-local accesses. We experimentally
evaluated ICBL to showcase its scalability, layout quality, as well as the ef-
fectiveness of automatic parameter tuning for ICBL. We deployed the graph
layouts generated by ICBL on the Neo4j [neo4j(2015)] graph database man-
agement system. Our results show that the layout generated by ICBL reduces
the query running times over Neo4j more than 2× compared to the default
layout.

A. Yaşar
College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
E-mail: ayasar@gatech.edu

B. Gedik
Department of Computer Engineering, Bilkent University, Bilkent, Ankara 06800, Turkey.
E-mail: bgedik@cs.bilkent.edu.tr.

H. Ferhatosmanoğlu
Department of Computer Engineering, Bilkent University, Bilkent, Ankara 06800, Turkey.
E-mail: hakan@cs.bilkent.edu.tr.

2 Abdurrahman Yaşar et al.

1 Introduction

We are witnessing an enormous growth in social networks and the volume of
data generated by them. An important portion of this data is in the form
of graphs, which are popular data structures used to represent relationships
between entities. For instance, the graph structure may represent the rela-
tionships in a social network, where finding communities in the graph [For-
tunato(2009)] can facilitate targeted advertising. In the telco (telecommu-
nications) domain, CDRs (call details reports) can be used to capture the
call relationships between people [Nanavati et al(2006)Nanavati, Siva, Das,
Chakraborty, Dasgupta, Mukherjea, and Joshi], and locating closely connected
groups of people can be used for generating promotions.

With the rise in the availability and volume of graph data, several graph
processing and management systems have been introduced to handle large-
scale graphs [Malewicz et al(2010)Malewicz, Austern, Bik, Dehnert, Horn,
Leiser, and Czajkowski], [Shao et al(2013)Shao, Wang, and Li], [Mondal and
Deshpande(2012)], [Kang et al(2011)Kang, Tong, Sun, Lin, and Faloutsos],
[Yan et al(2014)Yan, Cheng, Lu, and Ng], [Low et al(2012)Low, Bickson,
Gonzalez, Guestrin, Kyrola, and Hellerstein], [Kyrola et al(2012)Kyrola, Blel-
loch, and Guestrin], [Gonzalez et al(2012)Gonzalez, Low, Gu, Bickson, and
Guestrin]. The primary goal of these systems is to manage large graphs and
execute graph algorithms on them in an efficient and scalable manner. In this
work, we focus on disk-based graph management systems [neo4j(2015)], [Kang
et al(2011)Kang, Tong, Sun, Lin, and Faloutsos], and propose the first paral-
lel and scalable MapReduce based block formation and layout technique for
graphs. Unlike relational data, graphs are semi-structured in nature. Thus,
storing and accessing graph data using secondary storage requires new solu-
tions that can provide locality of access for graph processing workloads.

Many graph algorithms rely on the fundamental operation of traversal and
exhibit high access locality [Steinhaus(2011)]. Given that a vertex is visited
during a traversal, it is quite likely that the neighbors of this vertex will be
visited shortly after. For instance, an n-hop breadth first search around a
vertex exhibits high locality. This observation has motivated block-based disk
layouts where the neighbor lists of vertices that are highly connected (e.g., form
a community) are placed into the same disk block [Hoque and Gupta(2012)].
This reduces the number of blocks read, which reduces I/O. It also avoids the
costly disk seeks, since chasing blocks requires seeking to different areas of the
disk.

In this paper, we propose a novel distributed block formation and layout
technique for large-scale graphs, which aims at reducing the I/O cost of disk-
based graph processing algorithms. To achieve this goal, we designed a scalable
MapReduce style method called ICBL, which can divide the graph into a
series of disk blocks that contain sub-graphs with high locality, as well as
order these blocks on disk to create a layout that reduces non-local accesses.
In this paper, we describe the ICBL method, including the challenges that

Title Suppressed Due to Excessive Length 3

arose in applying ICBL in practice, the solutions applied, and an experimental
evaluation showcasing its effectiveness.

Identifying vertices that are ‘close’ with respect to locality of access during
execution of graph algorithms is a challenging problem. Although neighbor lists
of vertices and their similarity give some information about locality, it is not
sufficient. To illustrate, we can think two hop neighbors of a vertex. Although
the neighbor lists of these vertices may have very few common neighbors, in a
large graph we can certainly define them as close vertices. Accordingly, there
should be a diffusion factor for each vertex, which can vary based on the graph
size. In this work, we use random walks to produce diffusion sets of vertices.
The idea behind building diffusion sets is simple: for each vertex, do some
number of random walks and assign weights to vertices visited during the
random walks. The resulting weighted sets of vertices can be used to define
closeness between the originating vertices. At this point, we run into another
challenge, namely defining the number of random walks and their lengths,
based on the graph characteristics. We address this challenge by automatically
tuning ICBL parameters.

Once the closeness between vertices is defined, we can use it to form disk
blocks by co-locating close vertices within the same blocks. This could be
achieved by using bottom-up methods from the literature, such as hierarchical
clustering. Yet, these methods have high computational complexity, leading
to prohibitive costs for large-scale graphs. Thus, forming the disk blocks in
a scalable manner is a challenging problem. In this work, we use a coarse
partitioning algorithm to divide the large graph to in-memory processable sub-
graphs. This coarse partitioning gives us the ability to apply a computationally
heavier block formation algorithm on these sub-graphs, in parallel.

Since the size of the disk blocks are relatively small compared to the graph
size, the generated blocks are expected to contain many connections to other
blocks. Therefore, to better benefit from locality of access, they need to be
ordered on disk by taking into account the inter block connections. In this
work, we solve the problem of graph block ranking using a label-based lay-
out algorithm that is piggybacked on block formation. The layout algorithm
orders the blocks based on their labels, which are generated as part of the
block formation stage, roughly capturing the position of the blocks within the
similarity based hierarchical merge process.

In the literature, block formation and layout for graphs has been considered
[Hoque and Gupta(2012)], yet the solutions are not parallel or scalable. When
considering the size of social media graphs and big data workloads, performing
block formation and layout in a scalable manner becomes an important task.
In this work, we achieve scalability by implementing all parts of our proposed
ICBL solution as MapReduce (MR) jobs. While our solution is tailored towards
disk-based graph management systems that rely on block-based organization
of data, it can also be applied to recent vertex programming systems with
block/sub-graph based parallel processing [Yan et al(2014)Yan, Cheng, Lu,
and Ng], [Tian et al(2013)Tian, Balmin, Corsten, Tatikonda, and McPherson],
[Simmhan et al(2015)Simmhan, Kumbhare, and et al.].

4 Abdurrahman Yaşar et al.

In summary, we make the following contributions:
•We propose a block formation and layout technique called ICBL for large-

scale graphs. ICBL is aimed at increasing the performance of disk-based graph
management systems by improving the access locality of I/O.
• We develop MapReduce-based algorithms to implement ICBL, making

the process scalable, so that large-scale graphs can be divided into disk blocks
and laid out on the disk using distributed processing.
• We propose evaluation metrics for measuring the efficacy of the ICBL

technique and present an experimental evaluation showcasing its disk layout
quality and running time scalability.
•We deploy the graph layouts generated by ICBL on the Neo4j [neo4j(2015)]

graph database management system to understand the impact of the layouts
generated by ICBL on the performance of query evaluation.

Our experimental results show that the layout generated by ICBL reduces
the query running times over Neo4j by more than 2× compared to the default
layout.

2 Problem Definition

Most graph analytics require graph traversals, where vertex access patterns
follow the connectivity structure of the graph. If the graph is laid out on the
disk without considering these patterns, the traversal operations may cause
too many I/O operations. This can create a bottleneck for graph processing
and management systems. Therefore, storing and accessing graph data using
secondary storage requires new solutions that can provide locality of access
for graph processing workloads.

Locality of access for graph analytics executing on disk-based graph pro-
cessing systems can be increased by locating graph vertices that are ‘close’ with
respect to connectivity structure of the graph close on the disk as well. Fig-
ure 1 illustrates this. In the figure, we have a graph with 18 vertices stored on
6 blocks. Storing vertices in blocks aims to put close vertices together and in-
creasing the locality of access. However, after generating locality-aware blocks,
we still need to order these blocks on disk because of the inter-block edges.
In summary, our problem is composed by two sub-problems: (i) locality-aware
block generation, and (ii) ranking and ordering these block on disk.

Illustrative Example. Assume that as part of a graph analytics task we need
to access all vertices that are within 2-hop distance of vertex 0. 2-hop neigh-
borhood of vertex 0 contains 4 vertices: 1, 2, 3, and 7. In the first scenario, we
consider that the assignment of vertices to blocks is being done randomly. In
this case, the four vertices could have been assigned to different blocks, which
would result in 4 block accesses with a total of 12 vertex reads, resulting in
42% success rate (number of vertices used per vertex read). However, if we
consider the block structure that is given in Figure 1, we end up with 2 block
accesses with a total of 4 vertex reads, resulting in 83% percent success rate.
As we can see in this example, locality-aware block generation decreases the
number of block accesses and increases I/O efficiency.

Title Suppressed Due to Excessive Length 5

0 1

2

3

4

6

5

7

8

9

11

12
10

1315

16 17 14

0 : 2, 3
2 : 0, 1
1 : 2, 3

Block 0

4 : 6
5 : 3, 6, 7, 8
6 : 3, 4, 5, 8

Block 1

3 : 0, 1, 7
7 : 3, 8
8 : 5, 6, 7, 9

Block 2

12 : 10, 11, 13
13 : 12, 14, 15, 16 ,17
14 : 10, 13

Block 3

9 : 8, 11
10 : 11, 12, 14
11 : 9, 10, 12

Block 4

15 : 13, 16
16 : 13, 15, 17
17 : 13, 16

Block 5

Block 0 Block 2 Block 1 Block 4 Block 3 Block 5

disk

write

layout of blocks

Fig. 1: Toy graph illustrating block formation and ranking.

Locality-aware block generation is highly critical in decreasing the number
of reads from disk, and ultimately, in optimizing the efficiency of the graph
database system. However, if our secondary storage is a hard disk, seek time
becomes important as well. In our running example, we need to access a num-
ber of blocks and if these blocks are randomly scattered on the disk, then to
read a relatively small number of blocks, we would spend too much seek time.
For instance, let us assume that blocks are ordered randomly on the disk as
follows: 5, 2, 3, 4, 0, and 1. We need to access all vertices that are in 2-hop
distance from vertex 0. To start, we need to access block 0, which is in the
5th position. Later, we must access block 2, which is in the 2nd position. This
means that the disk needs to first seek to position 5 and then seek around
back to position 2. However, if we use the layout that we defined in Figure 1,
that is 0, 2, 1, 4, 3, and 5, we would avoid the additional seek. Since blocks 0
and 2 are sequential, accessing these two blocks requires only a single seek. In
conclusion, with a smart ordering seek time can be decreased to improve I/O
efficiency.

2.1 Notation

An undirected graph G = (V,E) consists of a set of vertices V and a set of
edges E. An edge is denoted as e = (u, v) = (v, u) ∈ E, where u 6= v and
u, v ∈ V . The neighbor list of a vertex u ∈ V is denoted as Nu, and defined as

6 Abdurrahman Yaşar et al.

Nu = {v ∈ E : (u, v) ∈ E}. N represents the set of all neighbor lists, that is
N = {Nv : v ∈ V }. For instance, if we consider Figure 1, the neighbor list of
vertex 0 is N0 = {2, 3} and N is {N0, N1, · · · , N6}.

Given a graph, we generate a set of blocks, denoted by B. Each block
B ∈ B contains at least one vertex and its neighbor list. Thus we can view
a block as a non-empty subset of the set of all vertex-neighbor list pairs.
Formally, ∀B ∈ B, B ⊂ {(u,Nu) : u ∈ V } and |B| > 0. Blocks do not share
their elements, that is ∀{B,B′}⊂B, B ∩ B′ = ∅. We denote the set of vertices
in a block B as VB = {u : (u,Nu) ∈ B} and the set of neighbor lists as
NB = {Nu : (u,Nu) ∈ B}. The set of blocks cover the entire graph G, that is
V =

⋃
B∈B VB . Finally, each block is limited in size by a block size threshold

denoted by S. Let s : B → N be a function that assigns a size to a block, then
we have ∀B ∈ B, s(B) ≤ S.

We assume that blocks are laid out on the disk sequentially. The place of
a block B on the disk is determined by its rank, denoted by r(B). The rank of
a block is simply the number of blocks that have been written before it. We
have 0 ≤ r(B) < |B|, and ∀{B,B′}⊂B, r(B) 6= r(B′). Similarly, rank of a vertex
u, r(u); is equal to the rank of the block B where u ∈ B. Finally, we define
a function d : B × B → N that represents the distance between two blocks on
the disk. We have d(B,B′) = |r(B)− r(B′)|.
2.2 Problem Formulation

Our problem has two aspects, namely block formation and block ranking. In
the block formation problem, the aim is to generate blocks with high locality.
We define the locality of a block B using a metric that measures how well con-
nected the vertices within the block are and how well separated they are from
the vertices in other blocks, denoted by L(B). Thus, the goal is to maximize
the total locality over all blocks, denoted by L =

∑
B∈B L(B).

In the block ranking problem, the aim is to assign close ranks to blocks
that have many edges connecting them, so that they are close on the disk.
We define the ranking locality of a block B using a metric that measures the
on-disk distance of B to other blocks it has edges into, denoted by R(B).
Thus, the goal is to maximize the total locality over all blocks, denoted by
R =

∑
B∈B R(B).

2.3 Locality Measures

Evaluation of our proposed system depends on the definition of block and
block ranking localities. We now formally define these localities.

2.3.1 Block Locality

Locality of a block can be defined using two concepts: conductance and cohe-
siveness. Conductance is commonly used for graph partitioning. In our context
it is defined as the ratio of the number of edge cuts to the total number of
edges in a block. An edge {u, v} of a block B is considered as an edge cut if
the destination vertex is not contained within block B. Formal definition of
conductance is as follows:

Title Suppressed Due to Excessive Length 7

Cd(B) =
|{(u, v) ∈ E : |{u, v} ∩ VB | = 1}|
|{(u, v) ∈ E : |{u, v} ∩ VB | > 0}|

(1)

For example conductance of Block 0 in Figure 1 is Cd(B0) = 2/4 = 0.5.
Because, out of the four edges in the block, two are going out: (0, 3) and (1, 3).

Conductance of a block is not sufficient to determine the locality of a block.
What is missing is the cohesiveness of the block. Cohesiveness is generally used
for finding highly connected regions or communities in graphs. In this work we
define cohesiveness of a block as the number of vertex pairs that are connected
to each other via an edge in the block, divided by the total number of vertex
pairs. Denoted by Ch, cohesiveness is formally defined as follows:

Ch(B) =
|{(u, v) ∈ E : u, v ∈ VB}|
|B| · (|B| − 1)/2

(2)

Again, if we consider Block 0 in Figure 1, cohesiveness of the block becomes
Ch(B0) = 2/3 = 0.66. Because in block there are 2 connected pairs of vertices,
out of 3 possible connections.

These two metrics are complementary. Impact of dangling edges is captured
by conductance and connectivity within a block is captured by cohesiveness. To
obtain a high locality block, we need to increase cohesiveness, while decreasing
conductance.

As a result, we define the locality of a block B, denoted by L(B), as the
geometric mean of cohesiveness and one minus the conductance. That is:

L(B) =
√
Ch(B)× (1− Cd(B)) (3)

Finally, if we apply this formula to Block 0, we obtain:

L(B0) =
√

0.33× (1− 0.5) = 0.41

.

2.3.2 Ranking Locality

We define ranking locality in terms of the distance between blocks of neigh-
boring vertices. Let us denote the ranking distance a vertex u ∈ V has to its
neighbor vertices by R(u). Formally, we have:

R(u) =
∑
v∈Nu

d(r(u), r(v)) (4)

Then the ranking locality for a block B is defined as:

R(B) = 1−
∑

u∈VB
R(u)

dmax ×
∑

u∈VB
|Nu|

(5)

Illustrative Example. Assume that as part of our evaluation we are comput-
ing ranking locality of the block B0, which is given in Figure1. This block has

8 Abdurrahman Yaşar et al.

vertices 0, 1 and 2. For instance R(0) = d(r(0), r(2))+d(r(0), r(3)) = 0+1 = 1.
Using the same formula, we obtain R(1) = 1 and R(2) = 0. After computing
rankings of all vertices in that block, we can compute the ranking of the block
B0 as follows: R(B0) = 1 − 1+1+0

5∗(2+2+2) = 1 − 2
30 = 0.93. In this example, the

maximum distance between blocks is dmax = 5.
In this formula, dmax represents the maximum possible distance in the

layout. We have: dmax = maxu,v∈V d(r(v), r(u)). When there are no edges
going outside of a block, the ranking locality is 1. This is the ideal scenario.
The ranking locality is in the range [0, 1].

3 Solution Overview

In this section, we give an overview of our solution to scalable layout of large-
scale graphs. Our approach, named ICBL1, consists of a multi-stage process,
where each stage can be implemented in a scalable manner using MapReduce
style parallelism.

3.1 General Approach

ICBL has four major stages. The first stage identifies the diffusion sets of ver-
tices. The second stage performs coarse partitioning of the graph based on
locality. It uses the diffusion sets from the first stage to guide the partition-
ing. The last two stages are used to form blocks and rank them. The forming
of blocks and their ranking are implemented in an integrated manner to re-
duce the overhead of having an extra stage in the MapReduce flow. Figure 2
illustrates these stages.

3.1.1 Identifying Diffusion Sets

Diffusion set of a vertex is a summarized representation of its neighborhood
in the graph, not limited to single-hop neighbors. It can be used to define
closeness between vertices. To identify the diffusion set of a vertex, we perform
random walks starting from the vertex and record the vertices visited, together
with the number of times they have been visited, during the random walks.
The end result is a weighted set of vertices. We perform t random walks, each
of length l. If we choose small values for l and t, then the neighborhoods will
be sparse and thus similarities among neighborhoods of close vertices will be
low. Conversely, if we choose large values for l and t, then many neighborhoods
will end up looking similar, even if the vertices are not close. Also, large values
will increase the computation time significantly, as diffusion sets are computed
for each vertex. We address tuning of l and t in Section 4.1.

3.1.2 Coarse Partitioning

After identifying diffusion sets for each vertex in the graph, we divide the
graph into k vertex-disjoint sub-graphs. Vertices that are close based on the
similarity of their diffusion sets are co-located on the same sub-graphs, as much
as possible. The goal of the coarse partitioning is to create sub-graphs that
can fit into the memory available on a single machine. Furthermore, coarse

1 Acronym is formed by the initial letters of the four solution stages.

Title Suppressed Due to Excessive Length 9

Identifying Diffusion Sets Coarse Partitioning

Block Formation

 Layout

Fig. 2: Solution overview.

partitioning also helps us create sufficiently small sub-graphs that are suitable
for executing computationally more expensive block formation algorithms in-
spired by hierarchical clustering. Naturally, as the input graph becomes larger
in size, the number of partitions we need to create, that is k, increases as well.
We address the tuning of k in Section 4.2.

3.1.3 Block Formation

Block formation is performed in a bottom-up fashion. Initially, each vertex is
in a partition by itself. Then we successively merge pairs of partitions to create
bigger partitions. Among possible pairs, we pick the one that minimizes the
distance between the diffusion sets of the vertices in the partitions. We further
detail this in Section 4.3. If a partition exceeds the block size threshold, a
block is formed. The block formation completes when all vertices are assigned
to a block.

3.1.4 Layout

Layout is performed in an integrated manner as part of block formation. When
the block formation algorithm finalizes a block, the layout algorithm assigns
a rank label to the block. This rank label is a multi-segment string that ap-
proximates the location of the block within the hierarchical merge-tree of the
vertices. Ordering the resulting blocks based on their rank labels gives their
rank. The base layout algorithm only orders blocks within the same coarse
partition, as the layout is performed independently for different partitions. A
post-layout algorithm applies the same logic to order the coarse partitions, to
achieve the final global ranking.

10 Abdurrahman Yaşar et al.

3.2 Scalability

Since our aim is to perform locality-aware block formation and layout for large-
scale graphs, scalability is a primary concern. Therefore, ICBL is designed to
be run as a series of MapReduce (MR) tasks.

First, an MR task transforms the input graph given in the form of an edge
list into an adjacency list formatted graph. This step is not needed if the input
graph is already in the adjacency list format.

Second, we use two MR tasks to form the diffusion sets. The first task is
responsible for performing l random walks and forming the vertex visit lists.
The second job uses these lists to assign weights to vertices and form the final
diffusion sets.

Third, we run a series of MR tasks to perform the coarse partitioning.
The coarse partitioning is implemented as a variation of iterative k-means
clustering. A first MR task is used to form initial partition centroids and the
remaining tasks are used to perform a single iteration of a k-means clustering
algorithm.

Last, we use an MR task to run the block formation and layout for each
one of the coarse partitions we have created in the earlier stage.

4 Scalable Block Formation & Layout

In this section, we discuss the details of the four stages comprising ICBL.
For each stage, we describe parameter tuning and scalable implementation
techniques.

4.1 Identifying Diffusion Sets

Diffusion set of a vertex v, denoted by Dv, is used to capture the close vertices
around v based on the vertices visited during random walks that start from v.
To find Dv, we apply t random walks around v, each of length l. We compute
the diffusion sets for all vertices in the graph and implement it in a scalable
manner using MR. An important and challenging aspect of identifying diffusion
sets is tuning the parameters k and l based on the graph size and structure,
which we discuss next.

Choosing t. Number of random walks (t) is critically important because if
we set a too small t value, then the diffusion sets of vertices become very
sparse and defining similarity of vertices using these sets becomes ineffective.
Otherwise, if we set a too large t value, then the computation cost significantly
increases without any benefit in terms of creating a diffusion set that can
capture vertex similarity.

For a given graph, we define f as a cumulative distribution function of
degrees, such that for x ∈ N f(x) = P (d ≤ x). In other words, f(x) is the
fraction of vertices that have a degree d less than or equal to x. Then we choose
t as follows:

t = min{x : f ′(x) ≤ ε} (6)

Here, f ′ is the function which gives the slope between x and x+1. In effect,
we pick the smallest degree for which the distribution function’s slope reaches

Title Suppressed Due to Excessive Length 11

ε. Our experimental evaluation has shown that choosing ε = 1 gives robust
results for varying graph sizes.

Choosing l. Vertex similarities are directly related to the setting of l. With
large l values, the number of unique vertices that appear in diffusion sets
increase and all vertices become similar. On the other hand, with small l
values, the effectiveness of diffusion sets decreases as they become dissimilar
even for close vertices.

In order to decide l, the first thing we should know is the diameter of the
graph. Since social graphs exhibit small world phenomenon, their diameter
can be estimated as the natural logarithm of the number of vertices they have,
that is ln(|V |) [Watts and Strogatz(1998)]. Accordingly, l should be at most
ln(|V |). Recall that after finding diffusion sets, we apply a coarse partitioning
algorithm to divide the graph into k sub-graphs. Therefore, we choose l so as
to cover the space within a sub-graph, as follows:

l = 1 + dln(|V |)/ke (7)

MR Implementation. t-l random walks are implemented via l repeated
MR jobs, each one producing the vertices visited during the next hop of the
random walks, followed by a final MR job for creating the diffusion sets. During
the first iteration, the mapper takes the entire graph as input in the form of
a series of vertex to neighbor list mappings. For each vertex, it chooses t
random nodes from the neighbor list and sends each vertex, neighbor pair
to the reducer. The reducer is an identity reducer in the first iteration. The
result is a file that contains the initiator vertex as the key, and the visited
vertex as the value. After the first iteration, l − 1 identical MR jobs are run.
In these iterations, the mapper takes the original graph and the output from
the previous step as input. If a key/value pair comes from the original graph,
then the mapper sends this pair directly to the reducer. If not, it switches
the initiator with the visited and sends the resulting pair to the reducer. This
swapping enables joining the visited vertex with its neighbor list, so that the
next vertex to visit can be determined at the reducer side. For each visited
vertex, the reducer collects the initiator vertices plus the neighbor list of the
visited vertex. For each initiator, it determines the next visited vertex using
the neighbor list of the current one, and outputs an initiator, next visited
vertex pair. Algorithms 1 and 2 give the pseudo-codes for the mapper and the
reducer for the iterative steps of the random walks, respectively.

When l iterations are completed, the final MR job combines all interme-
diate files and outputs the diffusion sets. Assigning weights to vertices in the
diffusion sets is an important step performed by this last task, because it identi-
fies the vertices that are commonly visited (closer). We tested our system with
several alternatives for the weight assignment:

– non-weighted diffusion paths,
– occurrence count based weighted diffusion sets, and
– tf-idf based weighted diffusion sets.

12 Abdurrahman Yaşar et al.

Algorithm 1: Random Walk Mapper
Param : t, the number of random walks; isFirst, whether this is the first job
Input : 〈key, value〉
if isFirst then

let 〈v,Nv〉 = 〈key, value〉
for t times do

u← Nv [rand()]
output 〈v, u〉

else
if value is a neighbor list then

let 〈u,Nu〉 = 〈key, value〉
output 〈u,Nu〉

else
let 〈v, u〉 = 〈key, value〉
output 〈u, v〉

Algorithm 2: Random Walk Reducer
Param : isFirst, whether this is the first job
Input : 〈key, values〉
N ← nil . neighbor list of last visited vertex
V ← [] . initiator vertices for last visited vertex
if isFirst then

let 〈v, U〉 = 〈key, values〉
foreach u ∈ U do

output 〈v, u〉
else

let u = key
foreach value ∈ values do

if value is a neighbor list then
let Nu = value
N ← Nu

else
let v = value
V ← V + [v]

foreach v ∈ V do
output 〈v,N [rand()]〉

Tf-idf based weights are computed by treating each diffusion set as a document
and using the traditional term frequency times inverse document frequency
formulation from Information Retrieval [Rajaraman and Ullman(2011)]. In
our context, the term frequency is the weight of a vertex in the diffusion set.
The inverse document frequency for a vertex is the logarithm of the ratio of
the total number of vertices to the number of diffusion sets that contain the
vertex.

4.2 Coarse Partitioning

After identifying diffusion sets for each vertex in the graph, we divide the graph
into k vertex-disjoint sub-graphs as part of the coarse partitioning stage. The
goal of the coarse partitioning is to create sub-graphs that can fit into the
memory available on a single machine. Furthermore, coarse partitioning also
helps us create sufficiently small sub-graphs that are suitable for executing

Title Suppressed Due to Excessive Length 13

computationally more expensive block formation algorithms inspired by hier-
archical clustering.

Our coarse partitioning algorithm is based on k-means [MacQueen(1967)].
As such, we first choose a set of k initial centers, denoted by C, from the graph.
Then, for each vertex v ∈ V , we find the closest center c ∈ C and assign v to
the cluster of c. After all vertices are assigned, we obtain a list of vertices for
each cluster, denoted as as Vc for center c. We then calculate the new centers,
that is we update C, by reducing Vc into a new center value replacing the old
one. The process is repeated until convergence, detected based on comparing
the difference between the new and old clusters to a threshold.

We now describe the various details of the algorithm, such as the distance
metric we use, setting the value of k, and determining the initial centers. We
then provide a brief description of the MR implementation.

Distance Metric. To determine closeness of vertex pairs we need to de-
fine a distance metric. Since diffusion sets are just weighted sets of vertices,
we use a weighted Jaccard distance for this purpose. Jaccard similarity of
two sets S and T is the ratio of the size of their intersection to the size
of their union, that is |S∩T ||S∪T | . If we apply this in our context for two ver-

tices u, v ∈ V , we get JS(u, v) = |Du∩Dv|
|Du∪Dv| . As we mentioned before, the

vertices in diffusion paths could be weighted. The intuition behind weighted
diffusion sets is to improve closeness of vertices. For example, if a vertex
frequently appears in two diffusion sets, then we should compute a closer
distance for these sets. In that case we have a weighted Jaccard similarity,

defined as JSw(u, v) =
∑

x∈Dv∩Du
min{w(x,Dv),w(x,Du)}∑

x∈Dv∪Du
max{w(x,Dv),w(x,Du)} . Here, w(x,D) rep-

resents the weight of vertex x in diffusion set D. After defining the simi-
larity between two vertices, the Jaccard Distance between them is simply:
JD(u, v) = 1− JSw(u, v).

Choosing k. Tuning the k parameter is crucial because coarse partitioning
aims to divide the graph into in-memory processable sub-graphs for the fol-
lowing block formation stage. Therefore, if we choose a too small k value, then
we can run out of memory in the block formation stage. On the other hand,
if we choose a too large k value, then we increase the processing time for the
coarse partitioning stage and we also lose the locality effect that is needed for
the block formation stage to form blocks with high locality. Assume that all
cores in our cluster has M byte of memory and a vertex with its diffusion set
is s bytes. Then we choose k as follows:

k =
⌈
s · |V |/

√
0.8×M

⌉
(8)

In summary, we make k as small as possible without utilizing more than
80% of the main memory available to a core in the system.

Initial Centers. One way of creating the initial centers is to choose them
randomly. However, in our experiments this has caused unstable performance,
both in terms of convergence of the coarse partitioning stage as well as the

14 Abdurrahman Yaşar et al.

Algorithm 3: Coarse Partitioning Mapper
Param : C, set of centers, where for c ∈ C, c.id is the center id and c.S is the

diffusion set for the center.
Input : 〈key, value〉
let 〈v,Dv〉 = 〈key, value〉
c ← argminc∈CJD(Dv , c.S)
output 〈c.id,Dv〉

Algorithm 4: Coarse Partitioning Reducer
Param : isLast, whether this is the last job
Input : 〈key, values〉
O ← {} . Map from vertex to in-cluster occurrence count
size← 0 . Average diffusion set size in cluster
let cId = key . key is the cluster id
if not isLast then

foreach value ∈ values do
let D = value . each value is a diffusion set
foreach v ∈ D do

O[v]← O[v] + 1
size← size + |D|

size← size/|values|
D ← argtop-kv∈OO[v], where k = size
c← tuple(id=cId, S=D)
output 〈cId, c〉

else
foreach value ∈ values do

let D = value
c← tuple(id=cId, S=D)
output 〈cId, c〉

locality of the resulting blocks. Instead, we came up with a more effective way
of setting the initial centers. The idea is to pick k vertices that are distant to
each other and have high degrees. These can be considered as influence centers
in the graph. To compute them, we added an MR job to the system to sort the
vertices by degree. We then process this list, starting from the highest degree
vertex. If a vertex has a distance 0.9 or more to all of the previously selected
ones, we select it as a center vertex. We stop when k vertices are selected.

Deciding Center Size. Cluster centers are weighted sets, just like the dif-
fusion sets. Recall that at the end of each iteration of k-means, we have to
form new centers. The size of these centers is also an important factor. If we
choose a too small size, then coarse partitioning converges too fast and the
resulting clustering has poor locality. If the size is too large, then this de-
lays convergence. We set the center size to the average length of the diffusion
paths within a cluster. In our empirical study, this setting has resulted in good
quality sub-graphs and has shown good convergence behavior.

MR Implementation. Coarse partitioning is implemented via repeated se-
quential MR jobs. The first iteration takes a set of initial centers denoted by
C. Remaining iterations produce the new centers for their following iterations
until the final MR job, which produces the final clustering. We produce new

Title Suppressed Due to Excessive Length 15

a b c d e f g h i j k l m n o p q r

a.0

e.0

j.0 j.1 p .0

e.0 e:a.0 a.0 j.0 j.1 p.0

FINAL BLOCK ORDER ON DISK

FINAL NODE ORDER ON DISK
1 2 4 53

7 8 9 10
11 12 13

15 16
17

e f g d h i a b c j k l m n o p q r

a
a

e
h

e

e

e:a

j
 j

j

n

j

p

j:p
e:a:j:p

a

e:a.0

Fig. 3: Illustration of block layout.

centers by counting the number of occurrences of vertices in each cluster and
keeping the most frequent ones. Algorithms 3 and 4 give the pseudo-codes for
the mapper and the reducer for the coarse partitioning stage, respectively.

4.3 Block Formation

During block formation, vertices are placed into partitions in a bottom-up
fashion. Each vertex starts in its own partition and partitions are successively
merged by picking the closest pair of partitions at each step. We define the
closeness of two partitions as the minimum Jaccard distance between the dif-
fusion sets of the vertices contained within. For partitions P and P ′, this is
given as min{JD(Du,Dv) : u ∈ P ∧v ∈ P ′}. When the size of a potential block
that would be formed by vertices in the partition without a block assigned so
far exceeds the maximum block size, then a full block is formed and output.
The block formation completes when all vertices are assigned to a block.

Super blocks. In large graphs that exhibit power law [Newman(2005)] degree
distribution, popular nodes require special treatment. If we take the Twitter
graph as an example, a user with millions of followers becomes an exceptional
case because the size of his/her neighbor list exceeds the block size. In such
exceptional cases, we divide the neighbor list of the vertex into multiple block
sized segments. We refer to a block that points to multiple such segments as
a super block.

Block labeling. We assign labels to blocks for helping with the last stage of
the ICBL solution, that is layout. For this purpose, during the execution of
the block formation algorithm, each partition maintains a label. This partition
label is used to derive the block label later. It captures the merge history of
partitions with respect to blocks. Initially, each partition has its vertex id as
its label. When two partitions merge, this label is updated as follows: If the
two partitions have not produced a block before, the new label is taken as the
label of the larger partition. If only one of them has formed a block before,
then its label is taken as the partition label. Finally, if both of the partitions
have produced a block before, then the label is taken as the concatenation
(using ":" as a delimiter) of the two labels, label of the bigger partition ap-
pearing on the left. When a block is produced, it gets the label of its partition,
with an additional suffix (using "." as a separator) representing the index
among blocks generated with the same partition label. Figure 3 shows an ex-
ample block formation process, where numbers represent the order in which
the partitions are merged. The partition labels are indicated on tree edges
representing the merges. Blocks are marked with dotted boxes and their block
labels are indicated next to the boxes.

16 Abdurrahman Yaşar et al.

Algorithm 5: Block Formation Algorithm
Param : S, block size; V : set of vertices in the sub-graph

B ← ∅ . Blocks to be generated P ←
⋃

v∈V {tuple(l=str(v), i=false, V =[v], U={v})}
while |P| > 1 do
{P, P ′} ← argmin{P,P ′}⊆P

min{JD(Du,Dv) : u ∈ P.U ∧ v ∈ P ′.U}
. Setup the partition label
let Pn = argminP ′′∈{P,P ′}|P ′′.U | . Small partition

let Px = P ′′ s.t. P ′′ 6= Pn ∧ P ′′ ∈ {P, P ′} . Large part.
if Pn.i ∧ Px.i then Px.l← Px.l + “ : ” + Pn.l
else if ¬Px.i ∧ Pn.i then Px.l← Pn.l
. Merge the partitions
P ← P \ {Pn}
Px.U ← Px.U ∪ Pn.U
Px.V ← Px.V ∪ Pn.V
if blockSize(Px.V) ≥ S then

Px.i← true . Remember generation of block
k ← max{k : blockSize(Px.V [0:k]) ≤ S}
V ′ ← Px.V [0:k] . Vertices to form a block
B ← {(v,Nv) : v ∈ V ′} . Form the block
B ← B ∪B
Px.V ← Px.V \ V ′ . Update unassigned vertices

return B

MR implementation. Block formation is implemented with a single MR job,
making use of only the map operation. Each map performs block formation on
one of the sub-graphs generated by the coarse partitioning stage and produces
blocks with their associated labels. Algorithm 5 gives the pseudo-code for this
process.

4.4 Layout

Social graphs exhibit small-world behavior, and thus most vertices are reach-
able from each other via a small number of hops. Therefore, even with locality-
aware block formation, we will have many edges crossing between blocks. With
the layout algorithm, we aim to provide a locality-aware disk ordering for
graphs by considering inter block similarities. Primary goal of the layout pro-
cess is to store similar blocks close on disk.

The layout algorithm simply orders the blocks based on their labels that
were generated as part of the block formation phase. Before performing a sort,
we replace the vertex names that appear in the block labels with their order
in the leaves of the hierarchical merge tree. Then sorting the blocks by their
labels locate blocks that were close in the merge tree, close on the disk as well.

For instance, in Figure 3, first nodes a and b are merged. then e and f ,
and so on. As you can see, we construct a tree in a bottom up manner. In this
toy example, for brevity and ease of exposition, we assume that all vertices
have the same degree d and size limit for a block is 3 × (d + 1), thus only 3
vertices fit in a block. We observe that in the 7th iteration, the vertices [a, b, c]
reach the size limit and block formation algorithm generates them as a block.
This block is labeled as a.0 by taking the partition label at the time of block
generation (a in this case), and the index among the blocks that are generated

Title Suppressed Due to Excessive Length 17

12 24 36 48 60 72 84 96

Number of Cores

0

5000

10000

15000

20000

25000

E
x

e
c
u

ti
o

n
 T

im
e

 (
s)

Initialization

Diffusion Path

Coarse Partition

Block Formation

Fig. 4: Scalability w.r.t. # of cores.

10 20 40 80 200
Number of Edges(Millions)

0

500

1000

1500

2000

2500

3000

3500

E
x

e
c
u

ti
o

n
 T

im
e

 (
s
)

Initialization

Diffusion Path

Coarse Partition

Block Formation

Fig. 5: Scalability w.r.t. # of edges.

with that partition label (0 in this case). This procedure continues to create
blocks out of vertices [e, f, g], [j, k, l], [m,n, o], and [p, q, r].

In Figure 3, the block that contains vertices [d, h, i] is different, because the
vertices in this block are not contiguous at the leaf level. In the 11th step, the
partition that contains d merges with the partition that has earlier produced
block a.0. And in the 12th step, the partition that contains h and i merges
with the partition that earlier produced block e.0. Finally, 15th step, we merge
these two partitions. The resulting partitions gets the label a : e, because the
constituent partitions both have produced blocks earlier. Since the number of
vertices without assigned blocks in the partition reaches the maximum size, a
new block that contains the vertices [d, h, i] and has label a : e.0 is generated.

Finally, when block formation is completed, we order blocks by sorting
their labels. The end result is seen at the bottom of Figure 3.

Recall that this layout procedure is performed for each sub-graph, in par-
allel. Once the order of blocks with each sub-graph is determined, a sequential
version of the same process is applied across sub-graphs, by treating each
sub-graph as a virtual vertex and pre-computing the distances among them
based on the number of edges going across. The end result is an ordering that
specifies which sub-graph blocks go earlier on the disk.

5 Experimental Evaluation

In this section, we evaluate our system with a focus on the impact of the pro-
posed optimizations on the locality of the generated layout and the scalability
of the block formation and layout process. Scalability experiments evaluate the
running time of our ICBL algorithm as a function of the number of cores used
and the size of the graph. Locality experiments evaluate the performance us-
ing locality metrics, as well as query running time using an industrial-strength
graph database system.

5.1 Experimental Setup

We first provide details on our implementation, evaluation environment, the
datasets used, and the metrics employed in our evaluation.

Implementation. Our implementation was done in Java 1.7 using Hadoop
v2.6. For evaluation of the coarse partitioning method we use Metis [Karypis
and Kumar(1995)] graph partitioning tool and for evaluation of the layout

18 Abdurrahman Yaşar et al.

Graphs # of vertices # of edges
ego-Facebook 4039 88234
wiki-Vote 7,115 103689
wiki-Talk 2,394,385 5,021,410
com-Orkut 3,072,441 117,185,083
uk-2002 18,520,486 298,113,762
arabic-2005 22,744,080 639,999,458
uk-2005 39,459,925 936,364,282
twitter 41,700,000 1.47 billion

Table 1: List of real-world graphs used in the experiments.

88234 103689 200000 1000000 2000000 3000000
0

100

200

300

400

500

600

700

C
o
a
rs

e
 P

a
rt

.
M

e
ti

s

Initialization

Diffusion Path

Coarse Partition

Block Formation

C
o
a
rs

e
 P

a
rt

.
M

e
ti

s

C
o
a
rs

e
 P

a
rt

.
M

e
ti

s

C
o
a
rs

e
 P

a
rt

.
M

e
ti

s

C
o
a
rs

e
 P

a
rt

.
M

e
ti

s

C
o
a
rs

e
 P

a
rt

.
M

e
ti

s

0.00

0.05

0.10

0.15

0.20

0.25

Lo
ca

lit
y

ICB (Coarse Partitioning)

ICB (Metis)

L

L

Number of Edges

E
xe

cu
ti

o
n
 T

im
e
 (

s)

Fig. 6: ICBL with Metis & coarse
partitioning.

Non-weighted Weighted TfIdf Weighted
Case

0

500

1000

1500

2000

2500

3000

3500

4000

E
xe

cu
ti

o
n
 T

im
e
 (

s)

Initialization

Diffusion Path

Coarse Partition

Block Formation

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Lo
ca

lit
y

Locality - 200m
Locality - 80m
Locality - 40m
Locality - 20m

Fig. 7: Assigning weights to diffusion sets.

we use Neo4j [neo4j(2015)] graph database. For workload generation, we use
RMAT [Chakrabarti et al(2004)Chakrabarti, Zhan, and Faloutsos] implemen-
tation of Boost Library [Siek et al(2002)Siek, Lee, and Lumsdaine].

Environment. For running the ICBL algorithm, we used a cluster consisting
of 8 machines with a total of 96 CPU cores. Each machine has 2 6-core In-
tel Xeon E5-2620 2.00GHz processors, 32GB of memory, and 1TB disk space
from 4 IBM Server X 5400 SATA disks configured via RAID-5. The operating
system used was CentOS GNU/Linux with the 2.6 kernel and ext4 file system.

Data Sets. We use R-MAT [Chakrabarti et al(2004)Chakrabarti, Zhan, and
Faloutsos] generated graphs, as well as real-world graphs obtained from SNAP
[Leskovec and Krevl(2015)], Kwak et al. [Kwak et al(2010)Kwak, Lee, Park,
and Moon] and WebGraph [Boldi and Vigna(2004)], [Boldi et al(2011)Boldi,
Rosa, Santini, and Vigna].

Synthetic Data: In our experiments we use R-MAT generated power-law graphs
with small world properties. The R-MAT graph generator provides an efficient
way for generating large realistic graphs. The number of edges is taken as 20
times the number of vertices.

Real Data: In addition to the R-MAT graphs, we also selected several small,
medium, and large sized graphs from SNAP, listed in Table 1.

5.2 Scalability

Figure 4 shows the running time of the ICBL method as a function of the
number of cores used. The graph used in this experiment is an 80 million
edge R-MAT graph. Each bar represents the total amount of time the ICBL
algorithm took to generate the disk layout. The different colored sub-bars

Title Suppressed Due to Excessive Length 19

represent the time taken by different stages on the ICBL method. The first
sub-bar represents initialization, which is used to convert the initial graph
from edge list representation to adjacency list representation. The second sub-
bar represents forming the diffusion sets, and the third sub-bar represents
coarse partitioning. The fourth and final sub-bar represents block formation,
which also performs layout generation. The figure also shows an ideal line
representing perfect scale-up. Figure 5 shows the running time with the same
breakdown, but as a function of the number of edges.

We observe from Figures 4 and 5 that initialization step takes negligible
time compared to other stages, as it is very light on computation. Among the
remaining stages, forming the diffusion sets is cheaper than coarse partitioning
and block formation, but in general the distribution is quite balanced, espe-
cially with increasing number of cores. The most striking observation from
Figure 4 is about scalability. We see that ICBL’s running time with increasing
core sizes closely matches the running times represented by the ideal scale-up
line.

We observe from Figure 5 that the running time is sub-linear in the number
of edges. In fact, running time is expected to be linear in the size of the diffusion
sets, and not the number of edges. In particular, the t parameter is one of the
key factors that determine the size of the diffusion sets. In our parameter
selection policy, t does not increase proportional to number of edges of the
graph, and instead it increases more slowly. This explains the sub-linear trend
in Figure 5.

5.3 Locality

In this section, we study the effectivenesses of our proposed optimizations on
the locality of the layouts generated by ICBL.

5.3.1 Effectiveness of Coarse Partitioning

Coarse partitioning plays an important role in ICBL, as the localities of the
generated blocks are affected by the quality of the sub-graphs generated by
coarse partitioning. To understand the effectiveness of coarse partitioning, we
compare it to a more traditional approach: graph partitioning.

Metis [Karypis and Kumar(1995)] is one of the popular and effective graph
partitioning methods in the literature and it produces high-quality graph par-
titions. Therefore, in this experiment, we compared the results from ICBL
with those from a variant of ICBL where the coarse partitioning is replaced
by graph partitioning. The graph partitioning aims to minimize the edge cut,
while balancing the number of vertices in each partition. Figure 6 plots the
locality of the resulting blocks, as a function of graph size. We use 6 differ-
ent graphs for this purpose. The first two graphs are real graphs from SNAP,
namely ego-Facebook and wiki-Vote, and the last four ones are generated using
R-MAT.

From Figure 6 we observe that for small graphs (especially the first real-
world graph), ICBL with coarse partitioning can lead to improved locality
compared to using ICBL with Metis. However, for larger graphs, the localities

20 Abdurrahman Yaşar et al.

Random Center Distant Center
Case

0

500

1000

1500

2000

2500

3000

3500

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Initialization

Diffusion Path

Coarse Partition

Block Formation

0.05

0.00

0.05

0.10

0.15

Lo
ca

lit
y

Locality - 200m

Locality - 80m

Locality - 40m

Locality - 20m

Fig. 8: Choosing initial centers.

32KB 64KB 128KB 256KB 512KB 1024KB
Block Size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ca

lit
y

Locality - 20m
Locality - 40m
Locality - 80m
Locality - 200m

0.0

0.1

0.2

0.3

0.4

0.5

1
 -
 C

o
n
d
u
ct

a
n
ce

Conductance - 20m
Conductance - 40m
Conductance - 80m
Conductance - 200m

Fig. 9: Locality vs. block size.

achieved by the two approaches are identical. We prefer coarse partitioning
over Metis due to its scalability and integration into ICBL’s Hadoop frame-
work, as well as its good locality for large-graphs that is the focus of this work.
Figure 6 also shows that Metis starts to take more time as the graph size is
increased. Furthermore, pre-processing also starts to take more time for Metis,
as the graph needs to be converted into the input format of Metis. The time
taken by coarse partitioning, on the other hand, is not effected as much from
the number of vertices, even though in absolute terms it takes more time than
Metis for smaller graph sizes. For 300 million edges, ICBL with coarse parti-
tioning starts to take less time compared to Metis. While parallel versions of
Metis [Lasalle and Karypis(2013)] can be used to bring the running time per-
formance of Metis down and make it scale, we have not made this comparison,
as the resulting locality is not going to be any better than for serial Metis.

5.3.2 Assigning weights

Having weighted diffusion sets helps us better capture similarity for vertices,
which in turn is expected to improve block locality. To understand the impact
of weight assignment on the locality of the generated blocks, we compared
three alternatives schemes: non-weighted, occurrence counts as weights, and
tf-idf weights computed over occurrence counts. For the weighted schemes, it
is important to note that during random walks, the host vertex is assumed to
be visited as the first vertex.

Figure 7 plots the execution time of ICBL (using the left y-axis) and lo-
cality (using the right y-axis), for different weighting schemes and for R-MAT
generated graphs of different sizes (20, 40, 80, and 200 million edges).

We observe from Figure 7 that for all graphs sizes, tf-idf based weight
assignment improves locality compared to non-weighted and occurrence count
based weighted cases, with relative improvements ranging from 20% to 50%.
Since tf-idf based weights decrease the importance of very popular vertices
in diffusion sets, this type of weight assignment improves the quality of sub-
graphs that are generated with coarse partitioning by reducing the tendency
of vertices to accumulate in one cluster.

Title Suppressed Due to Excessive Length 21

10 20 40 80 200
No. of Edges (Millions)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Lo
ca

lit
y

Diffusion Sets with l=1

Diffusion Sets with l=2

Diffusion Sets with l=3

Diffusion Sets with ICB setL

Fig. 10: Locality vs. diffusion path length
(l).

orkut uk-2002 arabic-2005 uk-2005 twitter
Graphs

0

5000

10000

15000

20000

25000

E
x
e
cu

ti
o
n
 T

im
e
 (

s)

Initialization

Diffusion Path

Coarse Partition

Block Formation

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Lo
ca

lit
y

Locality

Fig. 11: Real graph experiments.

5.3.3 Choosing Centers

In this experiment we examine two center selection strategies, namely random
and distant. The first selection strategy is to choose randomly selected k host
vertices and their adjacency lists as centers. The second selection approach is
to choose k most distant and highest degree host vertices and their adjacency
lists as initial centers, as explained earlier in Section 4.2. For this experiment,
we again used RMAT-generated graphs.

Figure 8 plots the execution time of ICBL (using the left y-axis) and locality
(using the right y-axis), for the two center selection schemes and for 4 different
graph sizes (20, 40, 80, and 200 million edges).

We see that initial center selection strategies impact the convergence speed
of coarse partitioning. Based on our experiments, we have observed that start-
ing coarse partitioning with randomly selected centers from the graph some-
times requires more iterations to converge. The 40 million edge graph is a good
example of this in Figure 8, where the coarse partitioning takes almost two
times longer with random center selection.

From Figure 8, we also observe that initial center selection strategy impacts
locality. For all graph sizes, the distant center selection strategy outperforms
the random one, up to 30% in some cases.

Although distant center selection strategy improves locality and speeds up
convergence, in some cases it also increases the time taken by the following
stage of ICBL, that is block formation. This can be observed for the 200 million
edge graph in Figure 8. Still, ICBL with distant center selection completes
faster than random selection, for all graph sizes. The reason block formation
sometimes takes longer with distant center selection is that, higher quality
sub-graphs formed by it may have higher skew in their sizes, resulting in load
imbalance during the block formation stage.

5.3.4 Locality and Length of Diffusion Paths

In this experiment we examine the effect of diffusion path length on locality.
We apply ICBL with diffusion paths of length l = 1, l = 2 and l = 3. We use
R-MAT graphs for this experiment.

22 Abdurrahman Yaşar et al.

20M 40M 80M 200M
Number of edges

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

R
a
n
ki

n
g
 L

o
ca

lit
y

32KB-Blocks

64KB-Blocks

128KB-Blocks

256KB-Blocks

Fig. 12: Ranking locality vs. graph size.

BFS DFS 2-Hop BFS 4-Hop BFS 2-Hop DFS 4 Hop DFS RWalk
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
a
ti

o

8
.3

2
h

C
o
ld

 s
ta

rt

9
.2

1
h

C
o
ld

 s
ta

rt

3
8

6
s

C
o
ld

 s
ta

rt
2

2
6

s
H

o
t

st
a
rt

1
1

8
0

s
C

o
ld

 s
ta

rt
8

1
7

s
H

o
t

st
a
rt

5
8

7
s

C
o
ld

 s
ta

rt
3

4
1

s
H

o
t

st
a
rt

3
2

3
2

s
C

o
ld

 s
ta

rt
2

3
3

3
s

H
o
t

st
a
rt

3
6

5
s

C
o
ld

 s
ta

rt
3

3
2

s
H

o
t

st
a
rt

5
.8

2
h

C
o
ld

 s
ta

rt

4
.7

9
h

C
o
ld

 s
ta

rt

1
5

4
s

C
o
ld

 s
ta

rt
1

4
2

s
H

o
t

st
a
rt

6
4

2
s

C
o
ld

 s
ta

rt
5

8
0

s
H

o
t

st
a
rt

3
5

0
s

C
o
ld

 s
ta

rt
2

9
6

s
H

o
t

st
a
rt

1
7

1
3

s
C

o
ld

 s
ta

rt
1

4
4

0
s

H
o
t

st
a
rt

1
8

7
s

C
o
ld

 s
ta

rt
1

3
3

s
H

o
t

st
a
rt

Normal Layout

ICB LayoutL

Fig. 13: Query running times with Neo4j.

Figure 10 plots locality as a function of the diffusion path length (l), for
graphs of different sizes. Each line shows locality for a different diffusion path
length and the hexagons represent the locality for the length chosen by ICBL.
We observe that, as the diffusion path length increases, the locality first in-
creases and then decreases. The latter is because when we enlarge l too much,
the diffusion set sizes increase and all sets become similar.

We observe that ICBL chooses the best diffusion path length for graphs
with 20, 80 and 200 millions edges. For 40 millions edges, although ICBL
couldn’t choose the best length, we observe that there is a little locality differ-
ence with the best length. Therefore we can say that ICBL gains in terms of
execution time by choosing a smaller l and loses little locality. For the graph
which has 10 millions edges, ICBL chooses the worst length, because this is a
small graph and can be handled with a smaller k. Since k and l are inversely
proportional, ICBL chooses a larger l and performs poor on locality.

5.3.5 Locality and Block Size

In this experiment we examine the effect of block size on locality. We apply
ICBL with blocks of size 32, 64, 128, 256, 512, and 1024 KBs. We use R-MAT
graphs with differing sizes and measure locality.

Figure 9 plots locality as a function of the block size, for graphs of different
sizes. The overall locality is shown on the left y-axis and 1 - conductance is
shown on the right y-axis. Since cohesiveness has a term that graphs quadrati-
cally with the number of vertices in a block, it brings down the overall locality
significantly. Thus, we also show conductance separately in this experiment.
We observe that, as the block sizes increase, the conductance decreases. This
is intuitive, as if there was only a single block, then conductance would have
been 1. However, the overall locality decreases as the block size increases, due
to the impact of cohesiveness.

5.3.6 ICBL and Real Graphs

In this experiment we examine the effectiveness of ICBL on real world graphs
listed in Section 5.1.

Figure 11 plots locality and execution time for graphs of different sizes. The
overall locality is shown on the right y-axis and execution time is shown on
the left y-axis. We observe from Figures 11 that initialization step takes negli-

Title Suppressed Due to Excessive Length 23

gible time compared to other stages, as R-MAT generated graphs. Among the
remaining stages, performance is again similar to R-MAT generated graphs.
Different than R-MAT graphs, for the real-world graphs, the locality is better
for the larger sized graphs.

5.3.7 Ranking Locality

In this experiment, we evaluate ranking locality for different graph and block
sizes. We use Equation 2.3.2 to compute ranking localities over all disk blocks.
We use distant center selection and tf-idf weight assignment strategies. The
graphs used are R-MAT generated.

Figure 12 plots ranking locality as a function of graph size, for different
block sizes. Overall, ranking localities are high. An important observation from
the figure is about the sensitiveness of ranking locality to graph size. Small
blocks are more resilient to changes in the graph size. In fact, 32KB blocks have
ranking localities almost independent of graph size. On the other hand, 256KB
blocks show high variation in locality as the graph size changes, compared to
smaller block sizes.

5.3.8 Query Running Times

To understand the impact of the layouts generated by ICBL on the perfor-
mance of query evaluation in a graph database, we deployed the graph layouts
generated by ICBL to the Neo4j [neo4j(2015)] graph database management
system. For this experiment, we used the 80 million edge R-MAT graph. To
evaluate query performance, we used global BFS and DFS queries, limited hop
BFS and DFS queries, and random walks. The limited hop queries were run
100 times and the average results are reported. These graph algorithms were
implemented using the Java API provided by Neo4j [neo4j(2015)].

Deployment of the ICBL generated layout to Neo4j is performed in two
stages. First stage is for preparation and the second one is for generation of
the Neo4j specific files on the disk. Neo4j stores graphs in separate files and
uses a variation of edge list format to represent relationships between vertices.
Since Neo4j doesn’t have a clear notion of a block and uses edge lists, our
adjacency list based block structure needs to be converted. In the preparation
stage, we do this conversion in two steps. First we merge blocks according to
layout order and obtain a single file; and second we transform this file into
edge list format. After the edge list file is generated, we create a second file,
which stores vertices in the order of their first appearance in the edge list.
These two files become inputs of the second stage. In the generation stage, we
create Neo4j specific files using MapReduce jobs, consisting of join, union, and
ascending sort.

Figure 13 shows the running times of the algorithms, normalized with
respect to Neo4j’s default layout (labeled as Normal in the graph). We also
have absolute running times as annotations in the figure. We show running
times for both cold start and hot start cases, except for the global queries
for which a hot cache does not make a difference (since the query touches the
entire database). We observe that the default layout of Neo4j has 43% and 92%

24 Abdurrahman Yaşar et al.

higher running times compared to ICBL for the BFS and DFS algorithms,
respectively. For the cold start case using limited hop queries, the default
layout results in running times that are 1.5 to 2.5 times that of with ICBL.
The relative results are similar even for the hot start case, except for 2-hop
DFS where the normal layout and ICBL perform similarly.

6 Related Work

With the popularization of social networks and availability of large amounts of
relationship data in the form of graphs, graph data management and mining
became an important area of research and development. A survey can be found
here [Aggarwal and Wang(2010)].

Graph representation is used frequently in many domains, such as social
media and telecommunications. For example, we can model the relationships
in a social network using graphs and finding communities in the graph [For-
tunato(2009)] can facilitate targeted advertising. In the telco domain, CDRs
(call details reports) can be used to capture the call relationships between peo-
ple [Nanavati et al(2006)Nanavati, Siva, Das, Chakraborty, Dasgupta, Mukher-
jea, and Joshi], and locating closely connected groups of people can be used for
generating promotions. To handle the graph processing and management needs
of an increasing number of applications in diverse domains, several graph pro-
cessing and management systems have been introduced to handle large-scale
graphs [Malewicz et al(2010)Malewicz, Austern, Bik, Dehnert, Horn, Leiser,
and Czajkowski], [Low et al(2012)Low, Bickson, Gonzalez, Guestrin, Kyrola,
and Hellerstein], [Kyrola et al(2012)Kyrola, Blelloch, and Guestrin], [Gonzalez
et al(2012)Gonzalez, Low, Gu, Bickson, and Guestrin], [Shao et al(2013)Shao,
Wang, and Li], [Mondal and Deshpande(2012)], [Kang et al(2011)Kang, Tong,
Sun, Lin, and Faloutsos], [giraph(retrieved June, 2015)], [Xin et al(2013)Xin,
Gonzalez, Franklin, and Stoica], [Prabhakaran et al(2012)Prabhakaran, Wu,
Weng, McSherry, Zhou, and Haridasan]. The primary goal of these systems is
to manage large graphs and execute graph algorithms on them in an efficient
and scalable manner.

In this work, we focus on disk-based graph management systems [Kang
et al(2011)Kang, Tong, Sun, Lin, and Faloutsos], [neo4j(2015)]. Unlike rela-
tional data, graphs are semi-structured in nature. Thus, storing and accessing
graph data using secondary storage requires new solutions that can provide
locality of access for graph processing workloads. In the literature there are
several works which try to increase efficiency of graph management systems,
like [Hoque and Gupta(2012)] and [Nodine et al(1996)Nodine, Goodrich, and
Vitter].

One of the primary contributions of our work is the scalable block forma-
tion algorithm used to generate locality-aware blocks by storing close vertices
in the same blocks as much as possible. A relevant work in this area is the
disk layout techniques proposed by Hoque and Gupta called Bondhu [Hoque
and Gupta(2012)]. Bondhu [Hoque and Gupta(2012)] presents a strategy for
storing a social graph on disk. It uses the community structures within the
social graph as a placement strategy. Using this strategy, the disk layout is

Title Suppressed Due to Excessive Length 25

optimized, so that graph traversals can be performed using fewer I/O opera-
tions. Unlike Bondhu, ICBL is a distributed graph layout algorithm (based on
MapReduce) that can scale to large graphs.

In [Nodine et al(1996)Nodine, Goodrich, and Vitter], Nodine et al. study
the graph search problem for large graphs that cannot fit into the main memory
by trying to use blocks on disk efficiently. As part of their work, it is shown that
optimizing the block layout and access increases the performance of searching
complete d-ary trees and d-dimensional grid graphs.

In [Gedik and Bordawekar(2014)], Gedik et al. have proposed a system for
temporal storage and querying of evolving interaction graphs. In this work they
proposed several online block formation algorithms that are used to reduce
the I/O required to answer queries. Besides, they have proposed and applied
several locality metrics to analyze graph blocks. In contrast to our work, their
graphs are not relationship graphs, but instead append-only interaction graphs
with a temporal aspect. As a result, their algorithms are streaming in nature.

GBASE [Kang et al(2011)Kang, Tong, Sun, Lin, and Faloutsos] is a disk-
based graph management system. It is related to our work in the sense that
it is a Map/ Reduce [Dean and Ghemawat(2004)] based large-scale graph
management system. It employs a graph storage method that relies on block
compression to efficiently store homogeneous regions of graphs, and a grid-
based technique to efficiently place blocks into files. However, the system is
not optimized for locality-awareness.

In [Akyurek and Salem(1995)], Akyürek et al. describe an adaptive tech-
nique for reducing disk seek times. To achieve this goal they copy a number of
frequently referenced disk blocks to a reserved area near the middle of the disk
from their current locations. Block rearrangement is related with our work, be-
cause we also need to arrange and order graph blocks on disk to achieve good
performance. In [Akyurek and Salem(1995)], the arrangement of blocks are
done based on block access frequencies and in our work we do it based on
block similarities.

BORG [Bhadkamkar et al(2009)Bhadkamkar, Guerra, Useche, Burnett,
Liptak, Rangaswami, and Hristidis] is a self-optimizing layer in the storage
stack. It reorganizes data on disk by looking at access patterns. BORG aims
to optimize read and write traffic dynamically by making them more sequen-
tial. This work is relevant with ours, in which we aim to organize locality-aware
blocks of a graph on disk and make reads more sequential.

TurboGraph [Han et al(2013)Han, Lee, Park, Lee, Kim, Kim, and Yu] is
designed as a single PC graph processing system. It leverages the advantages
of low latency and random I/O capabilities of SSDs. Although TurboGraph
performs really well on SSD based disks, due to its parallel random I/O de-
pendent design, it performs poorly on conventional magnetic disks.

In [Xie et al(2013)Xie, Wang, Bindel, Demers, and Gehrke], Xie et al. pro-
pose a novel block-oriented computation model. In their model, computations
are performed by iterating over locality-aware blocks. Although their compu-
tation model is based on the vertex-centric programming abstraction, instead

26 Abdurrahman Yaşar et al.

of executing one vertex at a time they execute one block at a time and achieve
good cache performance.

Neo4j [neo4j(2015)] is a commercial disk-based graph management system.
Although Neo4j implements optimizations such as indexing and caching, its
on-disk graph layout can be improved to increase query performance. In this
work, we have shown that locality-aware layouts generated by ICBL can be
used to improve Neo4j’s query performance by a factor of 2 or more.

In [Dominguez-Sal et al(2011)Dominguez-Sal, Martinez-Bazan, Muntes-
Mulero, Baleta, and Larriba-Pey], Dominguez-Sal et al. study the character-
istics of the graphs which are essential for benchmarks, and also the char-
acteristics of the queries that are important in graph analysis applications.
Their study has helped us determine graph characteristics that are useful for
parameter selection in our experimental study.

7 Conclusion

We have developed a scalable method called ICBL that generates locality-
aware disk blocks for large graphs. ICBL uses a series of MapReduce jobs to
divide the graph into disk blocks that contain sub-graphs with high locality.
Furthermore, ICBL orders the resulting blocks on the disk to further reduce
non-local accesses. ICBL makes the disk layout generation scalable, so that
large-scale graphs can be divided into disk blocks using distributed process-
ing. We proposed evaluation metrics for measuring the efficacy of the ICBL
disk layout technique and presented an experimental evaluation showcasing
its running time scalability, layout quality, as well as the effectiveness of auto-
matic parameter tuning for ICBL. We demonstrated that ICBL is an effective
disk layout technique for large-scale graphs and it increases the performance
of disk-based graph management systems, such as Neo4j, by increasing the
locality of access of disk blocks for common graph queries.

References

Aggarwal and Wang(2010). Aggarwal C, Wang H (2010) Graph data management and min-
ing. In: Aggarwal C (ed) A survey of algorithms and applications, Springer

Akyurek and Salem(1995). Akyurek S, Salem K (1995) Adaptive block rearrangement.
ACM Trans Comput Syst 13(2):89–121, DOI 10.1145/201045.201046

Bhadkamkar et al(2009)Bhadkamkar, Guerra, Useche, Burnett, Liptak, Rangaswami, and Hristidis.
Bhadkamkar M, Guerra J, Useche L, Burnett S, Liptak J, Rangaswami R, Hristidis V
(2009) Borg: Block-reorganization for self-optimizing storage systems. In: Proccedings
of the 7th Conference on File and Storage Technologies, pp 183–196

Boldi and Vigna(2004). Boldi P, Vigna S (2004) The WebGraph framework I: Compres-
sion techniques. In: Proc. of the Thirteenth International World Wide Web Conference
(WWW 2004), pp 595–601

Boldi et al(2011)Boldi, Rosa, Santini, and Vigna. Boldi P, Rosa M, Santini M, Vigna S
(2011) Layered label propagation: A multiresolution coordinate-free ordering for com-
pressing social networks. In: Proceedings of the 20th international conference on World
Wide Web

Chakrabarti et al(2004)Chakrabarti, Zhan, and Faloutsos. Chakrabarti D, Zhan Y, Falout-
sos C (2004) R-MAT: A recursive model for graph mining. In: In Fourth SIAM Inter-
national Conference on Data Mining

Dean and Ghemawat(2004). Dean J, Ghemawat S (2004) MapReduce: Simplified data pro-
cessing on large clusters. In: Symposium on Operating System Design and Implemen-
tation (OSDI), pp 137–150

Title Suppressed Due to Excessive Length 27

Dominguez-Sal et al(2011)Dominguez-Sal, Martinez-Bazan, Muntes-Mulero, Baleta, and Larriba-Pey.
Dominguez-Sal D, Martinez-Bazan N, Muntes-Mulero V, Baleta P, Larriba-Pey J (2011)
A discussion on the design of graph database benchmarks. In: Nambiar R, Poess M
(eds) Performance Evaluation, Measurement and Characterization of Complex Systems,
Springer Berlin Heidelberg

Fortunato(2009). Fortunato S (2009) Community detection in graphs. Physics Reports
483(3-5):75–174

Gedik and Bordawekar(2014). Gedik B, Bordawekar R (2014) Disk-based management of
interaction graphs. IEEE Transactions on Knowledge and Data Engineering (TKDE)
26(11):2689–2702

giraph(retrieved June, 2015). giraph (retrieved June, 2015) Apache Giraph. giraph.apache.

org/

Gonzalez et al(2012)Gonzalez, Low, Gu, Bickson, and Guestrin. Gonzalez JE, Low Y, Gu
H, Bickson D, Guestrin C (2012) PowerGraph: Distributed graph-parallel computation
on natural graphs. In: Symposium on Operating System Design and Implementation
(OSDI), pp 17–30

Han et al(2013)Han, Lee, Park, Lee, Kim, Kim, and Yu. Han WS, Lee S, Park K, Lee JH,
Kim MS, Kim J, Yu H (2013) Turbograph: A fast parallel graph engine handling billion-
scale graphs in a single pc. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp 77–85

Hoque and Gupta(2012). Hoque I, Gupta I (2012) Disk layout techniques for online social
network data. IEEE Computing 16(3):24–36

Kang et al(2011)Kang, Tong, Sun, Lin, and Faloutsos. Kang U, Tong H, Sun J, Lin CY,
Faloutsos C (2011) Gbase: A scalable and general graph management system. In: ACM
International Conference on Knowledge Discovery and Data mining (SIGKDD), pp
1091–1099

Karypis and Kumar(1995). Karypis G, Kumar V (1995) Multilevel graph partitioning
schemes. In: International Conference on Parallel Processing (ICPP), pp 113–122

Kwak et al(2010)Kwak, Lee, Park, and Moon. Kwak H, Lee C, Park H, Moon S (2010)
What is Twitter, a social network or a news media? In: WWW ’10: Proceedings of
the 19th international conference on World wide web, pp 591–600

Kyrola et al(2012)Kyrola, Blelloch, and Guestrin. Kyrola A, Blelloch G, Guestrin C (2012)
GraphChi: Large-scale graph computation on just a PC. In: Symposium on Operating
System Design and Implementation (OSDI), pp 31–46

Lasalle and Karypis(2013). Lasalle D, Karypis G (2013) Multi-threaded graph partition-
ing. In: Proceedings of the IEEE International Symposium on Parallel and Distributed
Processing (IPDPS), pp 225–236

Leskovec and Krevl(2015). Leskovec J, Krevl A (2015) SNAP Datasets: Stanford large net-
work dataset collection. http://snap.stanford.edu/data

Low et al(2012)Low, Bickson, Gonzalez, Guestrin, Kyrola, and Hellerstein. Low Y, Bick-
son D, Gonzalez J, Guestrin C, Kyrola A, Hellerstein JM (2012) Distributed GraphLab:
A framework for machine learning and data mining in the cloud. Proceedings of the
VLDB Endowment 5(8):716–727, DOI 10.14778/2212351.2212354

MacQueen(1967). MacQueen J (1967) Some methods for classification and analysis of mul-
tivariate observations. In: Proceedings of the Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics, pp 281–297

Malewicz et al(2010)Malewicz, Austern, Bik, Dehnert, Horn, Leiser, and Czajkowski.
Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010)
Pregel: a system for large-scale graph processing. In: ACM International Conference
on Management of Data (SIGMOD), pp 135–146

Mondal and Deshpande(2012). Mondal J, Deshpande A (2012) Managing large dynamic
graphs efficiently. In: ACM International Conference on Management of Data (SIG-
MOD), pp 145–156

Nanavati et al(2006)Nanavati, Siva, Das, Chakraborty, Dasgupta, Mukherjea, and Joshi.
Nanavati AA, Siva G, Das G, Chakraborty D, Dasgupta K, Mukherjea S, Joshi A
(2006) On the structural properties of massive telecom call graphs: findings and
implications. In: ACM International Conference on Information and Knowledge
Management (CIKM), pp 435–444

giraph.apache.org/‎
giraph.apache.org/‎
http://snap.stanford.edu/data

28 Abdurrahman Yaşar et al.

neo4j(2015). neo4j (2015) Neo4j open source graph database. http://neo4j.org/
Newman(2005). Newman M (2005) Power laws, pareto distributions and Zipf’s law. Con-

temporary Physics 46(5):323–351, DOI 10.1080/00107510500052444
Nodine et al(1996)Nodine, Goodrich, and Vitter. Nodine MH, Goodrich MT, Vitter JS

(1996) Blocking for external graph searching. Algorithmica 16(2):181–214
Prabhakaran et al(2012)Prabhakaran, Wu, Weng, McSherry, Zhou, and Haridasan.

Prabhakaran V, Wu M, Weng X, McSherry F, Zhou L, Haridasan M (2012) Managing
large graphs on multi-cores with graph awareness. In: Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, pp 4–4

Rajaraman and Ullman(2011). Rajaraman A, Ullman JD (2011) Data mining. In: Mining
of Massive Datasets, Cambridge University Press, pp 1–17

Shao et al(2013)Shao, Wang, and Li. Shao B, Wang H, Li Y (2013) Trinity: A distributed
graph engine on a memory cloud. In: ACM International Conference on Management
of Data (SIGMOD)

Siek et al(2002)Siek, Lee, and Lumsdaine. Siek JG, Lee LQ, Lumsdaine A (2002) Boost
Graph Library, The: User Guide and Reference Manual. Addison-Wesley

Simmhan et al(2015)Simmhan, Kumbhare, and et al.. Simmhan Y, Kumbhare A, et al CW
(2015) Goffish: A sub-graph centric framework for large-scale graph analytics. In: Eu-
ropean Conference on Parallel Processing (Euro-Par), pp 451–462

Steinhaus(2011). Steinhaus R (2011) G-Store: A storage manager for graph data. Master’s
thesis, University of Oxford

Tian et al(2013)Tian, Balmin, Corsten, Tatikonda, and McPherson. Tian Y, Balmin A,
Corsten SA, Tatikonda S, McPherson J (2013) From think like a vertex to think like a
graph. Very Large Databases Conference (PVLDB) 7(3):193–204

Watts and Strogatz(1998). Watts DJ, Strogatz SH (1998) Collective dynamics of’small-
world’networks. Nature 393(6684):409–10

Xie et al(2013)Xie, Wang, Bindel, Demers, and Gehrke. Xie W, Wang G, Bindel D, Demers
A, Gehrke J (2013) Fast iterative graph computation with block updates. Very Large
Databases Conference (PVLDB) 6(14):2014–2025, DOI 10.14778/2556549.2556581

Xin et al(2013)Xin, Gonzalez, Franklin, and Stoica. Xin RS, Gonzalez JE, Franklin MJ,
Stoica I (2013) Graphx: A resilient distributed graph system on spark. In: First Inter-
national Workshop on Graph Data Management Experiences and Systems, pp 2:1–2:6

Yan et al(2014)Yan, Cheng, Lu, and Ng. Yan D, Cheng J, Lu Y, Ng W (2014) Blogel: A
block-centric framework for distributed computation on real-world graphs. Very Large
Databases Conference (PVLDB) 7(14):1981–1992

http://neo4j.org/

	Introduction
	Problem Definition
	Solution Overview
	Scalable Block Formation & Layout
	Experimental Evaluation
	Related Work
	Conclusion

