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Abstract 
Sequence similarity tools, such as BLAST, seek sequences most similar to a query from a database of 

sequences. They return results significantly similar to the query sequence and that are typically highly 

similar to each other. Most sequence analysis tasks in bioinformatics require an exploratory approach, 

where the initial results guide the user to new searches. However, diversity has not yet been considered an 

integral component of sequence search tools for this discipline. Some redundancy can be avoided by 

introducing non-redundancy during database construction, but it is not feasible to dynamically set a level 

of non-redundancy tailored to a query sequence. We introduce the problem of diverse search and browsing 

in sequence databases that produce non-redundant results optimized for any given query. We define 

diversity measures for sequences and propose methods to obtain diverse results extracted from current 

sequence similarity search tools. We also propose a new measure to evaluate the diversity of a set of 

sequences that is returned as a result of a sequence similarity query. We evaluate the effectiveness of the 

proposed methods in post-processing BLAST and PSI-BLAST results. We also assess the functional 

diversity of the returned results based on available Gene Ontology annotations. Additionally, we include a 

comparison with a current redundancy elimination tool, CD-HIT. Our experiments show that the proposed 

methods are able to achieve more diverse yet significant result sets compared to static non-redundancy 

approaches. In both sequence-based and functional diversity evaluation, the proposed diversification 

methods significantly outperform original BLAST results and other baselines. A web based tool 

implementing the proposed methods, Div-BLAST, can be accessed at cedar.cs.bilkent.edu.tr/Div-BLAST 

Introduction 
Sequence similarity search is one of the earliest and most commonly employed tools of bioinformatics for 

molecular biologists. In current sequence search tools, the results retrieved from the database are typically 

also highly similar to each other. For many bioinformatics tasks, the result set needs to be diversified to 

produce a subset of results containing sequences well aligned with the query but sufficiently different from 

each other. This need is apparent in the use of non-redundant databases such as the nr database used in 

BLAST [1] [2]. However, to the best of our knowledge, no sequence similarity search tool incorporates 

diversity into the search algorithm. Search diversification has been studied in information retrieval, but it 

has not yet attracted attention in bioinformatics.   

Sequence similarity search is an area that would benefit from more diverse results rather than just top-

similar results. Identifying all functional domains of a query sequence, which may be comprised of separate 

homologous domains in different sequences, can only be established by an approach whose main purpose 

is to cover most of the query sequence rather than finding the most similar sequence. In this paper, we 

formalize the problem of diversification and investigate methods to post-process results from the 

commonly employed search tools to remove redundancy from the results and enable exploratory browsing. 

An example of such searches is to find proteins with different functions but similar enough to the query 

sequence. Different segments of the primary structure may correspond to different functional domains. 

Tools such as BLAST incorporate a domain identification step and present the identified domains to the 

user in addition to the query results. However, domain identification is limited to known, characterized 

domains and novel domains in the query sequence will be overlooked by this approach. Such novel 

domains may be shared by some of the database sequences and a diverse search may identify these regions.  

For this purpose, finding a diverse set of regions with similar segments would be a more appropriate 



approach than simply investigating the top-similar sequences. With our proposed method, we are also able 

to control the effect of diversification based on the dissimilarity of biological functions of sequences. 

Sequence alignment is utilized to arrange the sequences of DNA, RNA, or amino acid sequences to 

identify regions of similarity. Global alignment follows a general similarity measure and attempts to align 

each residue in every sequence using gaps, and local alignment focuses on determining similar sub-regions. 

Sequence search tools such as BLAST [1] [2] and FASTA [3] seek similar sequences to a given query in large 

sequence databases. Our proposed approach is applicable to post-process the results of any sequence 

similarity search tool. However, for our experiments, we focus on BLAST and on one of its popular variants, 

Position-Specific Iterated BLAST (PSI-BLAST) [2], which seeks locally similar sequences on protein 

databases by using profiles updated dynamically in iterations.  

BLAST compares nucleotide or protein sequences to large sequence databases, calculates the statistical 

significance of matches and returns the results with attributes such as query coverage, total score, max 

score, e-value, and maximal identity. Total score is the sum of the scores of all high scoring pairs(HSPs) 

from the same database sequence [1]. Unlike BLAST, PSI-BLAST profiles are built by considering 

evolutionary relationships, and using them enables detection of a protein's distant relatives. As 

diversification is applied for blastp, which is original BLAST for protein-protein search, and for PSI-BLAST, 

it could be possible to use for all versions of BLAST including nucleotide-nucleotide BLAST, blastn, and 

translation BLAST types such as blastx, tblastx and tblastn. The translation models may compare nucleotides 

to amino acids or vice versa. 

Diversification of search results aims to produce results similar to the query but different from each 

other. Although there is no prior work on diversification in sequence search, the notions of diversity and 

novelty are present in the context of information retrieval and recommendation systems. Carbonell and 

Goldstein [4] were the first to introduce Maximal Marginal Relevance (MMR) for text retrieval and 

summarization. This method builds a result set by maximizing the query relevance and minimizing the 

similarity between documents in the result set. It uses a parameter (λ) that specifies the proportions of 

relevancy and diversity. Jain et al. [5] and Haritsa [6] propose a greedy solution for the k-nearest diverse 

neighbor search for spatial data. Liu and Jagadish [7] employ the idea of clustering to find a solution to the 

Many-Answers Problem. They propose a tree-based approach to choose one representative from each 

cluster consisting of diverse results. 

Although diversity search has not yet been explicitly investigated in the context of browsing sequence 

databases, redundancy elimination during database generation may be a viable alternative. One can 

decrease the redundancy of these databases by a preprocessing procedure. Commonly used protein 

sequence databases such as UniProtKB, UniProtKB/SwissProt [8], UniParc [9], and UniRef [10] databases 

have reduced, non-redundant versions. UniProtKB includes two different databases: UniProt/TrEMBL and 

UniProt/SwissProt. In UniProt/TrEMBL database, for the fully identical, full-length sequences from one 

species there is one record.  UniProtKB/SwissProt is built with different representative sequences for 

sequences encoded by one gene in one species. UniParc and UniRef databases are comprised of 

representatives of 100%-identical sequences, regardless of the species. In the UniRef databases, sub-

fragments are included as different records from full-length sequences. These databases implicitly remove 

identical alignment results by eliminating identical sequences or fragments from the databases.  This pre-

processing is done in design time and is independent of the query sequence. While queries can avoid 

identical sequences in the results, most still contain results with too much redundancy, as we also illustrate 

in the experimental section.  

In addition to eliminating the redundancy during database generation, one can reduce redundancy by 

processing the search results. For example, Berman et al. [11] propose a redundancy elimination method in 

which a stretch of a locally aligned region I (i.e., interval) is filtered out from the result set if K other 

intervals include I and have better scores than I. The whole interval is filtered out from the result set. The 

methods we propose measure diversity at the amino acid or nucleotide level for the whole result set. 

Therefore, a sub-interval, which contributes to the overall diversity of the results, may be retained unlike in 

Berman et al.'s method. In addition, we seek diversity at the global level in the result set, whereas Berman et 

al. seek diversity at the interval level individually. Besides this study, search methods in the literature that 

use culling or clustering, such as Pisces, BlastClust and CD-HIT [12] [13] [14], can also be utilized for 

redundancy elimination. Pisces [12] is a culling tool that selects the first sequence of the input set and 

eliminates the sequences with higher pairwise similarity than a given identity threshold. As the chosen set 



is populated, the remaining sequences are compared to all currently selected ones. BlastClust [13] and CD-

HIT [14], [15] are based on clustering rather than culling, and can be used to choose representatives of each 

cluster to obtain a relatively more non-redundant set of given sequences. BlastClust clusters by starting a 

pairwise comparison between result sequences, while CD-HIT clusters are generated by using short word 

filtering. CD-HIT builds clusters by controlling common n-gram words among sequences. It skips pairwise 

alignment for efficiency. Sequences are sorted and the first one is picked as the first cluster representative. If 

the next sequence is similar to any cluster representative, i.e., higher similarity than a given threshold, it is 

included in the cluster. Otherwise, a new cluster is created by using the sequence as a seed. CD-HIT 

requires user inputs such as the weight of words and a cluster similarity threshold. Additionally, CD-HIT 

may eliminate potentially important diverse alignments because of the restriction to choose a single 

representative from each cluster. CD-HIT does not consider diversity at the amino acid or nucleotide level. 

To diversify sequence search results, we present two novel methods, BitDiversity and EntropyDiversity, 

which iteratively construct a set of results that are diversely aligned with the query sequence. We propose a 

novel diversity measure based on Rao’s quadratic entropy[16] to evaluate the result quality. We also 

evaluate the diversity of the protein functions using a molecular functional ontology subset of the Gene 

Ontology (GO) [17] terms. For each evaluation, we also test the result significance with Wilcoxon signed 

rank test [18], which is a non-parametric statistical hypothesis test for two sets of samples. We compare the 

results of both diversity methods with original BLAST results. We also compare our approach with an 

adaptation of the CD-HIT method for redundancy elimination. Additionally, we give the query coverage 

comparison results of diversified sets and the original set. One of the aims of diversification is to find 

diverse regions of queries, and the diversified set achieves a complete coverage more rapidly than the 

original set. We provide the significance of the coverage results with Wilcoxon test. 

We built an online diverse sequence search tool called Div-BLAST that supports queries using BLAST 

web services. The tool ranks the result set according to a desired diversity level. As Div-BLAST is a post-

processing tool on BLAST, it asks parameters such as database, program, query, etc. Div-BLAST users can 

choose one of the developed diversity algorithms and the diversity rate. Although our diversification 

methods need no parameters, we added a feature to allow users to observe similarity and diversity 

tradeoffs: user may re-rank the results again if they wish. Div-BLAST records the old queries with a unique 

ID, gives permission to download the result set, and enables users to arrange the results in ascending or 

descending order with respect to score, e-value, coverage, etc. 

Methods 

Diversification of Sequence Search Results 

We aim to diversify sequences from the result set of a query searched using a sequence search tool, e.g., 
BLAST. One can set an optional parameter k to retrieve the top results in a more diverse fashion. We build 
algorithms that are incremental and do not depend on the value. In other words, the first k diversified 
results are the same as those in the diversified set with k=k+1. The algorithms may run as re-ranking the 
result set regarding diversity. The k parameter provides speed; it is not necessary to wait for  all sequences 
to be ranked. We expect the k diverse sequences to have different alignments from each other with respect 
to the query. In other words, we want to choose k different results that have query coverage on different 
sections of the given query or different residues within the same alignment region. We present methods for 
systematizing the diversification problem. In accordance with the above-mentioned diversity definition, in 
our approaches, we deal not with full-length result sequences but with aligned fragments within the query. 
In the rest of the paper, the term result sequence refers to an aligned fragment. 

Eq. 1 represents the general formulation of diversity for our approaches, namely BitDiversity and 
EntropyDiversity. Both of these approaches are iterative, i.e., in each iteration the sequence that provides 
maximum difference is added into the current diverse set regardless of the original order in the result set. 
We initialize the diverse set with the first sequence of the original result set. We fix the length of all result 
sequences to that of the query enlarged with the gaps formed in the alignments of the query and any result 
sequence. The algorithm stops when the size of the current diverse set reaches k.  The proposed BitDiversity 
and EntropyDiversity methods are explained in detail in the following sections. Briefly, BitDiversity is 



based on the average of the differences between the candidate and each result sequence, whereas 
EntropyDiversity considers the general entropy of result sequences and candidates together. The proposed 
algorithms are executed as a post-processing of the search results, which involves aligned sections of the 
result sequences. 
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Here,
iD  is a result sequence included by the diversified set 

iR , which is a subset of all result sequences S . 

R is the top-k diversified set, therefore it equals to 
k

R . 
1i

R


is the chosen diverse set before
i

D . Q  represents 

the query used in difference formula characterized by the diversification methods. Note that 
0

R  is an empty 
set. 

To illustrate the diversity problem, we provide an example BLAST run. In the example, BLAST returns 

27 different sequences, as shown in Figure 1. The result set contains aligned fragments to the query. We run 

our pairwise bit comparison diversity method on this fragment set. Figure 1 shows the diversified set with 

top-4 diverse sequences, which are underlined in red with the new order after diversification. The diverse 

results are determined as follows: The diversification algorithm starts with the first sequence in the original 

result set. The last sequence in the result set is chosen next, which is the most distant sequence to the 

current result set. The sequence with number 3 is selected as the third diverse sequence because it has no 

intersection with the second element and has the least overlap (due to its length) with the first one. Last, the 

forth one is inserted in the diversified set due to no overlap with the second and third sequences in the set. 

 

Figure 1. A  result set obtained from a BLAST sequence search. Underlined sequences are chosen as top-4 

diverse results and the red numbers next to sequences represent the inclusion order into the diversified set. 

Pairwise Bit Comparison 
Algorithm 1 shown at Table 1 presents our greedy heuristic that selects a sequence from the initial result set 

S in each iteration, and constructs the diverse k results after k iterations. In every iteration, the algorithm 

scans the whole unselected result list. In a sub-iteration, there is also a loop that finds the difference 

between the candidate result and each sequence in the current diversified result set. In the BitDiversity 

approach, sequences are treated simply like bit sequences. The aligned residues of a result sequence with 

respect to query are marked as 1, otherwise as 0. It means every sequence is also represented as a d-

dimensional binary vector of 1 or 0, referring to matched or unmatched residues. BitDiversity uses the bit 

sequences for calculating the difference of two sequences. Here the difference is calculated with the XOR 

operation, which is a bitwise operator that makes the result bit 0 if a matching occurs; otherwise, the result 

bit is 1 (Eq. 2):  
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where l is the length of sequence, bits converts result sequences M and L , to bitwise sequences with 

respect to query Q. The formula aggregates the XOR results for each position j in M and L . 
 

Algorithm 1 Algorithm DiversitySearch 
 Inputs: S is the original result set, k is the length 

of diversified subset from the initial result set and 
Q is the searched query. 
Output: chosenList is the diversified subset. 

  

1: procedure DivSearch (S,k,Q)   
2: Initialize m as 1//is the counter for the chosen 

list 
  

3: Initialize divArr //used for finding the greatest 
diversity rate 

  

4: Initialize notChosenList with S (all results 
except the first) 

  

5: Initialize chosenList with {the first sequence of 
S} 

  

6: Do   
7: set divArr {}   
8: for i in 1 : notChosenListLength   
9: divArr[i]=Div(notChosenList[i],chosenList, Q)   
10: Endfor   
11: find j as the index of max valued divArr[i]   
12: add chosenList notChosenList[j]   
13: remove notChosenList[j]   
14: m++   
15: while(m<=k)   
16: End procedure   

 

Table 1. DiversitySearch algorithm for a given similar sequence set. The output of the algorithm is a 

diversified subset(with k elements) of the given sequences. 

The total number of 1s after the XOR operation is considered as a simple diversity measure of two given 
sequences. Diversity between a sequence and a set of sequences can be defined with various patterns, such 
as linkage computations [19]. In single and complete linkage approaches, the diversity-relevance measure 
between a sequence s and a sequence set R  depends on the difference between the sequence and the most 
similar (single linkage) or most diverse (complete linkage) sequence from the sequence set. The minimum 
or maximum pairwise difference between s and the sequence of R  specifies the diversity, depending on 
single or complete linkage algorithms, respectively. When the difference between s and R  is based on the 
average linkage method, the average of each difference between s and the sequence of R  is used for 
diversity. We experimentally observed that the average linkage approach provides the best results. 

The Div function at Step 9 in Algorithm 1 (Table 1) depends on the diversity approach used. For 
BitDiversity, it calculates the diversity rate based on the average diversity rate of the current candidate 
sequence and each sequence in the current chosen result set. 

Entropy-Based Diversity 
Entropy has been used for measuring diversity in information retrieval [20]. In the context of 
bioinformatics, it is applied to evaluate the quality of multiple sequence alignment, but with the opposite 
goal of having low entropy, i.e., to achieve a high-quality alignment [21]. We follow a similar idea for a 
sequence similarity search, where the multiple alignment of the result set is readily available in the form of 
a star alignment, where the center sequence is the query sequence. While the result set is similar to the 
query, a diverse result set implies a low-scoring multiple sequence alignment. Therefore, we aim to have a 
high entropy score in the result for diversity. We propose an entropy-based approach, EntropyDiversity, 
that chooses the nth sequence from the result set depending on the entropy of the chosen sequences and the 
candidate sequence together, and finds the candidate sequence that makes the entropy highest. Entropy is 
defined as: 
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where R is a result set, l is the length of the sequence, s is the size of the letter set, x represents the elements 
of the given alphabet (the alphabet, in other words, the letter set, could be comprised of 20 amino acid 
letters or 0 and 1), and pxj is the probability of x in the jth tuple of all m sequences (m is the size of result set.) 

Figure 2 illustrates an example of entropy-based diversity. In the illustration, 13 is the length of 
sequences, which is represented by l. In the amino acid set (s=20), let us assume the indices of G, S, A and 
gap(-) are 1, 2, 3 and 4, respectively. For j=1(first column) x=1(refers to G amino acids) p1,1 will be 0.75 (three 
Gs out of four residues) and p4,1 will be 0.25. Similarly p2,3, the probability of Ss in the third column, and p3,10, 
the probability of As for the tenth column, are 0.5 and 1.0, respectively. 

 

Figure 2. A result set  to explain entropy based diversity on amino acid level. 

In EntropyDiversity, one can look at either the entropy of amino acid residues or the bitwise entropy, 
which deals with whether the piece of sequence is aligned. For the former, the alphabet size is 20 (possible 
amino acids) and for the latter it is 2 (0 and 1). At Step 9 in Algorithm 1, we design the function Div as the 
combination of the amino acid and bitwise entropies by taking their average to utilize them both. To 
balance between amino acid-based and bitwise entropy, we normalize both of them before averaging. In 
normalization, Eq. 4 is used as the maximum value of the entropy. 
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where   is the alphabet, l is the length of the candidate sequence, and m is the length of the multiple 
alignment of the result set. 

We note that for both methods, BitDiversity and EntropyDiversity, no user-defined parameters are 
required. As we post-process the results of similarity search, the sequences in the raw result set are already 
similar to the query. Hence, we focus on diversifying the results. 

Measures for Evaluating Diversity 

Sequence Diversity Measure 
We first propose a measure to evaluate the diversity of a sequence set that consists of result sequences 
already aligned with the query. We adapt a version of Rao’s quadratic entropy [16] ,[22] (which was initially 
used for diversity of/within populations) as the basis of this new measure. Quadratic entropy is used for 
non-discrete instances; it takes distances into account. Eq. 5 shows the basic quadratic entropy formula: 
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where ( )E P  is the entropy of the whole set (for all instances 1 to n), pi represents the probability of the ith 

instance and dij is the distance between the ith and jth instances. 
To compute entropy as in Eq. 5, a dissimilarity matrix is needed.  To convert the amino acid substitution 

matrices, which incorporate similarities, into dissimilarity matrices, we apply Eq. 6 to each element in the 
BLOSUM62 [23] matrix and use it as the distance matrix for the entropy calculations. In addition to the 
existing rows and columns of the original BLOSUM62 matrix, we add a new row and a column for the non-
aligned symbol to the query. Note that; with the new values for the matrix, we obtain a dissimilarity matrix 
with 0 diagonal. 
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In Eq. 6, a'ij  is the new value for  element aij. aij and aji represent the raw distance between the ith and jth 
elements. Since aij and aji are different, the new distance values are not symmetric. To obtain a symmetric 
distance matrix, we use the average of the new raw distance values in Eq. 6. 

The diversity of a sequence of length l is computed as in Eq. 7. After the result sequences are multiply 
aligned with respect to the query, for each tuple we calculate the quadratic entropy with the new 
dissimilarity matrix. The average of the entropy of the tuples is the diversity rate of the given sequence set.
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In Eq. 7, l is the length of the sequence and s is the size of the letter set (including the amino acids and the 
gap and non-aligned part symbols). pih and pjh are the probability of the ith and jth letters for the hth position of 
all m sequences (m is the size of the result set). The probability depends on the frequency of the given 
position. Note that if the letter does not exist in the position, the probability is 0; additionally, for the same 
letter, the entropy is also 0 since dij equals zero. For Rao's entropy of the given elements having positive 
distance values, the lower bound is 0 when all objects in the set are the same (the distance is 0.) However 
the upper bound is not generic and it is the maximum distance among the element pairs. In this case, the 
upper bound is 19, which is the maximum value in the distance matrix based on BLOSUM62 (by using the 
formula in Eq. 6). 

Note that the dissimilarity matrix also includes the unmatched residues with respect to the query. It 
could be considered as a gap; however, it should be more distant from the amino acids than the gap symbol 
(a gap is created during alignment.) Hence, the “non-aligned” symbol is assigned with a value twice the 
value for the gap. In our experiments, this heuristic produces satisfactory results. Thanks to this process, we 
preserve the importance of “differently aligned sections” while also taking amino acid-based assessment 
into consideration. In other words, we are looking at the variety of matching and unmatching sequence 
parts with respect to the query by considering the relationship between amino acids. 

We use the above-mentioned measure to evaluate the quality of the results returned by different 
diversification approaches. While the same measure can be used within the proposed diversification 
algorithms, we choose to follow simpler measures for reduced computation complexity, hence for more 
efficient browsing. The performance evaluation does not have the time restrictions of an online search. Our 
experiments also confirm that the proposed methods do not improve significantly even when such a 
complex diversity measure is used for diversification. However, taking conservative substitutions into 
account may be important to signify common evolutionary changes in the level of amino acids. The scores 
of BLOSUM matrices intuitively give an insight about such substitutions, and we use the BLOSUM-based 
distances in this algorithm. In addition, taking conservative substitution into account will not affect the 
ordering of the results when such substitutions are observed in all result sequences. Therefore, there will be 
no significant difference between methods that consider conservative substitution and methods that do not. 

 

Functional Diversity Measure 

To check whether diversification methods also provide functional diversity, we propose a functional 
diversity measure based on GO annotations of proteins in the result set. It has been shown that due to 
divergent or convergent evolution of protein functions, similar sequences may exhibit different functions 
[24]. In divergent evolution, the same ancestor often generates super-families of functional proteins 
catalyzing a diversity of reactions. Conversely, in convergent evolution of functional proteins, the proteins 
which catalyze the same reaction are independent of each other [25]. Although these conditions are valid for 
many proteins, controlling functional diversity over result sets would still give insights about the 
importance of sequential diversity. Another aim of diversity in the primary structure of sequences may be to 
obtain proteins with different functions.  

    To compute the functional dissimilarity of a set of protein sequences, we utilize known functions of 
proteins. As functional information, we use the GO terms [17] belonging to the molecular function ontology. 
Gene ontology comprises three ontologies: biological process, cellular component, and molecular function. 
The ontologies are presented as directed acyclic graphs (DAGs) in which the terms form nodes and the two 
kinds of semantic relations (‘is-a’ and ‘part-of ’) form edges. 

For the similarity of functions in the molecular functional ontology, we use Wang et al.’s semantic 
similarity [26]. The authors proposed a method to compute a GO term’s semantics into a numeric value by 
aggregating the semantic contributions of their ancestor terms in the GO graph, and use the values to 
measure the semantic similarity of GO terms. They consider the similarity of terms not only based on their 



distance by using the closest ancestor, but also the specificity (depth in the GO graph) of the terms. Hence, 
the terms that are children of a parent (siblings) close to the root of the ontology do not have the same 
similarity as siblings that are close to leaf nodes. While Eq. 8 shows semantic value of a GO term, Eq. 9 
represents the semantic similarity of two GO terms. The similarity between genes and proteins are 
computed  by considering the pairwise semantic values of the sequences' common and divergent GO terms. 
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In Eq. 8, t refers to the terms related to A GO term, which means all ts are included in DAGA, the 
partition of the full DAG comprised of A and its ancestors. Note that there are two different weights (we) for 
each semantic relation (‘is-a’ and ‘part-of ’); however, for the molecular function aspect of the GO DAG, the 
'part of' relation does not exist. 

 

                                                                                         (9) 

 

Figure 3 shows the steps of finding the dissimilarity of a result set. The proteins (in the result set) having 

EBI GO annotations are included for the dissimilarity measure.  The dissimilarity is defined as 1-Wang’s 

similarity, whose range is 0 to 1. 

 

Figure 3. The steps for finding the functional diversity of a set of protein sequences. 

Experiments 

Div-BLAST Design and Implementation 
Div-BLAST is a web based service that searches the primary structure of biological sequences with a 

BLAST-like interface. Basically, the program executes a similarity search for a given sequence in a chosen 

database and diversifies the results based on the proposed diversification algorithms. Similar to BLAST, it 

uses search parameters such as database, program, query etc., and diversity parameters of method and rate. 

Div-BLAST includes a property to observe the tradeoff between the diversified results and the original 

search results. The user may also change the rate after retrieving the search results. Div-BLAST also saves 

the searched queries with a unique ID, gives permission to download the result set as txt file, and helps 

users sort the results in ascending or descending manner with respect to score, e-value, coverage, etc. The 

user can choose to receive information about the query by an email, and keep her own search history.  
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Div-BLAST utilizes EBI-EMBL Web Services [27] instead of searching databases on the server. After the 

web services send the output of the query to the server, the order of the initial search set is arranged 

according to the chosen diversity method. In the background, we parse xml and txt files retrieved from 

BLAST services. For the tool implementation, we used Java, JavaScript and HTML. Additionally, we 

employed ZK [28], which is an open-source Ajax-based web framework integrated into Java. The source 

code is given as an open-source project and requires Apache servers while running locally. Our web 

application is compatible with all browsers. The results are gathered from BLAST web services, so it has to 

wait its execution. We currently utilize a modest server and plan to upgrade as the tool becomes more 

popular. As we also provide the source code, others can improve the tool and provide their own web 

service. 

Dataset 
We used different sets of sequences, OXBench [29] and UniRef50 [10], for querying on UniProtKB, UniProt/ 

SwissProtKB [8] and UniRef50 databases in PSI-BLAST and BLAST. Our first query set is OXBench data, 

which is a benchmark for multiple sequence alignment evaluation. OXBench data set is based on 3Dee [30] 

database of protein structural domains. It has three sub-datasets: master, extended and full. The master set 

comprises 672 domain families whose three-dimensional structures are known. The extended set is 

populated with high-scoring homologous sequences of the master set. The two sets mentioned above only 

include domain sequences, while the full set incorporates full-length protein sequences including the 

domains. There are 605 different families in the set. As query, we use the full set in our experiments with 

one representative from each family. The sequence lengths range between 45 and 1124 in the full dataset. 

The average sequence length is 307. This set is important because it includes sequences with single, double 

and more domain sequences. 

For the second set of experiments, we built a data set using 1000 UniRef50 sequences of different lengths. 

The set is used as the query set for the sequence search in PSI-BLAST, which is more successful in finding 

remote homologs with a higher speed [31] rather than BLAST. UniRef is a non-redundant database with 

different threshold values: 100%, 90% and 50%. Initially, UniRef100 was created to supply non-overlapping 

sequence sets by combining identical sequences and sequence fragments. UniRef90 and UniRef50 are built 

upon the UniRef100 database. Each cluster contains sequences that have at least 90% or 50% sequence 

identity to the longest sequence, respectively. For this dataset, there is no prior information about the 

chosen sequences, such as their domains. The main purpose of this dataset is to observe diversification 

performance in a random dataset. The shortest sequence of this set has 12 amino acids, while longest one 

has 5287. The average sequence length is 421. 

Setup 
We analyze query results performed in three different databases: UniProtKB, UniProtKB/SwissProt, and 

UniRef50. The last two databases are commonly used non-redundant databases and the first one has both 

reviewed and unreviewed sequences together. UniProtKB includes 30,309,136 sequences. 

UniProKB/SwissProt contains 539,165 sequence entries and UniRef50 consists of 21,824,511 sequences. We 

performed the experiments with both the psi-blast and blastp tools. As mentioned above, experiments were 

done in two different sets. Note that the first experiments used OXBench and the second used UniRef50. 

    We evaluated the proposed diversification algorithms, BitDiversity and EntropyDiversity, by comparing 

them with the original results of the BLAST modules on both datasets. We also compared our algorithms 

with an approach that reduces the result set using the CD-HIT tool. This tool enables clustering with 

different setups, including similarity level and word sizes. We set three different similarity thresholds and 

word lengths: 90% similarity with quadrigram words, 70% with trigram words, and 40% similarity with 

bigram words. Our aim was not to control the word size effect, however, CD-HIT algorithms require 

decreasing word length while  reducing similarity threshold. For these thresholds, the optimum length of 

the words were given. We used the sequences aligned to the query as the CD-HIT input set. The non-

aligned residues are indicated with an 'X', which is a placeholder for unknown or insignificant amino acids. 

Only the fragments of result sequences are considered, because we measure diversity on only aligned 

regions to find differently aligned sequences. On the other hand, when clustering or any other 

diversification methods are applied to a set that includes whole sequences of genes or proteins, one such 

sequence that may pass the threshold may not be diversified with respect to a given query. 



Results 
The evaluation results are illustrated in Figures 4,  5, and 6. The first two figures (4 and 5) are related to the 

first set of experiments, while Figure 6 shows the results of the second set. In the figures, for each possible k 

(less than or equal to the result set size), we plot the average diversity rate of the diversified result sets with 

k sequences. For example, for k=35, we plot the average of the diversity rates of the result sets with at least 

35 sequences. We also plot the diversity rates of the original BLAST and PSI-BLAST result set to compare 

them with our methods. Note that as the non-redundancy rate increases (UniRef50> Swiss-Prot> 

UniProtKB), the diversity rates improve better in the original BLAST and PSI-BLAST result sets in both 

experiments (Figures 4-a, b, c; 5-a, b, c and 6-a, b, c). This is not surprising because  there is significant pre-

processing in the preparation of these databases. However, our methods are online and do not rely on this 

preprocessing, and still work considerably well even with redundant data. 
Sequence-Based Diversity     For the first evaluation, sequence-based diversity using quadratic entropy, all 
experiments with different databases show that our results obtained with both the entropic and pairwise 
methods are significantly more diverse than the BLAST and PSI-BLAST results (Figures 4-a, b, c; 5-a, b, c 
and 6-a, b, c). We test the statistical significance of our methods and the BLAST/PSI-BLAST with Wilcoxon 
signed rank test. We use τ = 0.05 as the significance threshold. In all databases, the test gives extremely small 
p-values (~0) for each k diversified result set up to k400. In the OXBench dataset, the difference is 
significant up to k500.  The results of the proposed methods are close to each other, as evident by looking 
at the averages on both datasets and on both BLAST modules.  

In the comparisons with CD-HIT, our algorithms achieve significantly better diversity on sets of results 
up to k15, k100, and k170, where cluster similarity thresholds for CD-HIT are set to  0.4, 0.7, and 0.9, 
respectively. CD-HIT clusters are built by looking at the similarities within a given set. Therefore, the 
number of clusters is not known before clustering, which means that one may not get a result set with the 
desired number of sequences; it may return fewer results than expected. In the CD-HIT program, as the 
similarity threshold within clusters increases, the number of clusters decreases as observed in Figures 4-a, b, 
c, and 5-a, b, c.  
    As expected, the diversity rates have a decreasing trend while the instance number increases because the 
methods first try to choose the most different sequences. There are minor fluctuations because of the 
independency of the evaluation criteria and the methods’ diversity criteria. In comparison, the diversity 
levels of the BLAST and PSI-BLAST results increase while the instance number decreases because more 
similar results to the query are obtained at the beginning.  

    In addition to finding mean values for each k, we also analyzed the standard deviation related to given 

mean values. The results show that except in the first experiment with UniProtKB, the BLAST/PSI-BLAST 

results have more deviation than the diversity methods. The averages of the deviations are 1.4 for 

EntropyDiversity, 1.43 for BitDiversity and 1.47 for the PSI-BLAST results in UniProtKB. These values in 

SwissProt are 1.32, 1.35 and 1.38; for UniRef50 they are 0.95, 0.98, and 1.01, respectively. The difference 

between diversity methods and the BLAST/PSI-BLAST is statistically significant according to Wilcoxon’s 

test (p<0.05).  
Functional Diversity     While sequential diversity is different from functional diversity, they both provide 
useful insights about different aspects of sequences. The functional dissimilarity rates of the result sets are 
illustrated in Figures 4-d, e, f; 5-d, e, f and 6-d,e, f. In the graphs, the maximum instance number is lower 
than the original result set size, because not all sequences are annotated with GO terms and we do not 
compute functional dissimilarity for all the result sets due to the long running times. In the experiments 
with OXBench sequences, we choose 100 random sequences out of 605, and compare sets (original PSI-
BLAST/BLAST and CD-HIT methods) up to 150 sequences. The experiments show that our methods 
produce more diversity than all the alternatives, including CD-HIT, with statistical significance (p<0.05). 
While CD-HIT performs better than BLAST and PSI-BLAST on sequential diversity, it performs poorly on 
functional dissimilarity. A reason for this is that sequences with short functional regions are likely to be 
eliminated by CD-HIT due to overall similarity. The tools we propose signify local diversity; hence, they are 
also able to provide more functionally diverse results. 

In the second experiment, we choose 250 query results with approximately 150 as the maximum size of 
result set to perform a complete comparison for each sequence and avoid the heavy computational load 
with larger ks. In evaluating this measure, we see that as the number of proteins increases, the required 
computations also greatly increase. Because, even computing the semantic similarity of two proteins 
requires computing the pairwise similarity between all GO terms and their ancestors. The measure depends 
on pairwise protein similarities to calculate an overall dissimilarity within a  set of proteins. To avoid long 
running times, we performed this evaluation for the first 150 query results. Here, the maximum number of 
GO annotated sequences are 116, 140, and 113 for UniProtKB, SwissProt and UniRef50 databases, 



respectively. As seen in 6-d, e, and f, our methods give more diverse results than PSI-BLAST with respect to 
the functional dissimilarity measure. According to Wilcoxon signed rank test, the difference between the 
proposed diversification methods and PSI-BLAST is significant (p< 0.05), especially for the first half of the k 
values. Except for the results of UniProtKB database, the difference between the original set and others is 
significant up to k100. However, for the functional dissimilarity evaluation, we did not find a consistent 
difference between diversification methods. 

In the last set of experiments, we analyze the query coverage of result sequences in the second dataset. 
In our experiments, we have full coverage, i.e., every residue of a query is included in one or more  result 
sequences, on 479, 858 and 508 queries out of 1000 random queries in the UniProtKB, UniProt/Swiss-Prot 
and UniRef50 databases, respectively. Since the UniProtKB database includes redundant sequences, the 
result set may contain highly similar sequences. The UniRef50database is smaller compared to the others; 
hence, the number of fully covered queries in UniRef50ismuch smaller compared to SwissProt. In the 
UniProtKB database, BitDiversity achieves the full coverage with just 3% of the result set, while 
EntropyDiversity does the same with 4.5%. PSI-BLAST needs 7.5% of the result set on average to reach full 
coverage. The rates for the SwissProt database are 1%, 1.5%, and 4.5%, respectively. For the UniRef50 
database, 3%, 4%, and 10% of the results achieve full coverage. Note that while investigating coverage, we 
do not include the first result sequences, which are the same sequences as the queries. This method may not 
always be observed; however, in our experiments we use known sequences, and the first result is always the 
query itself. Figure 7 shows the relation between the number of sequences in the result set and the query 
coverage. The figure also includes non-covered query results; the maximum coverage is considered full 
coverage for a query. 

Figures 7-a, b, c show that the diversification methods have more sequences covered in the same 
percentage of a result set. Since the size of result sets for each query may be different, we use the percentage 
of the result sets. We obtain significant p-values (less than τ=0.05) with Wilcoxon’s signed-rank test between 
the diversified and original results. 

 

Figure 4. Comparisons based on sequence diversity and functional dissimilarity measures in different 

databases: UniProtKB, SwissProtKB and UniRef50. The experiments are done by using OXBench dataset on 

BLAST Web services. For a, b, and c, the x axes represent the average sequence diversity rate calculated 

with Rao's entropy method and the y axes show the size of the diversified set(k). For d, e, and f, the x axes 

represent the average functional dissimilarity rate based on Wang et al.'s similarity on molecular function 

GO DAG. The y axis is the same as the a, b, and c.  



 

 

 

 

 

Figure 5. Comparisons based on sequence diversity and functional dissimilarity measures in  different 

databases: UniProtKB, SwissProtKB and UniRef50. The experiments are done by using OXBench dataset on 

PSI-BLAST Web services. For a, b, and c, the x axes represent the average sequence diversity rate calculated 

with Rao's entropy method and the y axes show the size of the diversified set(k). For d, e, and f, the x axes 

represent the average functional dissimilarity rate based on Wang et al.'s similarity on molecular function 

GO DAG. The y axis is the same as the a, b, and c. 

 



 

Figure 6. Comparisons based on sequence diversity and functional dissimilarity measures in different 

databases: UniProtKB, SwissProtKB and UniRef50. The experiments are done by using random 1000 

UniRef50 sequences on PSI-BLAST Web services. For a, b, and c, the x axes represent the average sequence 

diversity rate calculated with Rao's entropy method and the y axes show the size of the diversified set(k). 

For d, e, and f, the x axes represent the average functional dissimilarity rate based on Wang et al.'s similarity 

on molecular function GO DAG. The y axis is the same as the a, b, and c. 

 

 

 

Fig. 7. Coverage comparison graphs between original BLAST and diversity based approaches result sets in 

different databases: UniProtKB, SwissProtKB and UniRef50. The x axes represent the number of result sets 

that cover all sections of the given queries. The y axes show how much percent of a result set is used. 

Conclusions 
Diverse browsing of sequences and structures is essential for exploratory research in bioinformatics. The 

current approach of curating non-redundant databases and eliminating identical sequences or fragments is 

costly and prone to error. In addition, as we illustrated in the experimental section, most queries still 



contain results with too much redundancy. Alignment and search tools need to perform diversifications 

tailored for each query. To the best of our knowledge, ours  is the first work that investigates diversity in 

sequence search and alignment. We propose quality measures and methods to diversify the results of 

sequence similarity search tools. As the result set already includes top-matching sequences, we focus on 

selecting a diverse subset of this result. To obtain non-redundant results, one could either specify a 

similarity threshold and omit the sequences that have more similarity than the threshold, or use clustering 

algorithms. However, these approaches would fail to return enough results and may not supply the desired 

diversity regarding the query. To overcome this problem, we first presented a pairwise bit comparison 

approach, BitDiversity, by treating the sequence matches as bit sequences. BitDiversity stresses the diversity 

in matching locations without considering amino acid differences in those locations. Diversity rate is 

calculated with the XOR operation for the bit sequences of two sequences. We propose another approach 

based on entropy and also focused on diversification at the amino acid level. In EntropyDiversity, we 

compute the entropy of each ith position(i is from 1 to the size of the multiple alignment of all result 

sequences with respect to the query), and in each iteration the sequence that maximizes entropy is chosen to 

be added to the result set.  For both proposed approaches, we investigate design alternatives for calculating 

the difference between two sequences, and choose the appropriate ones.  

To evaluate the sequence-based diversity, we developed a new algorithm based on Rao’s quadratic 

entropy providing an entropy measure by considering distances. Our methods significantly outperforms 

the original result sets and a clustering-based elimination algorithm, CD-HIT, for various databases, 

including non-redundant ones. We also evaluate the functional diversity of the result set based on GO 

terms. Our methods improve the original result set and the CD-HIT method in terms of functional 

diversification. 

Diversity in biological sequences is a novel, and potentially very useful approach. Diversification of 

sequence similarity search results promise biologists more efficient exploration of the potential functional 

landscape of the query sequence. By integrating other biological information such as sub-cellular 

localization and related pathways into diversity measures, diversification may be tailored to specific 

biological goals.  
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