
Mutual Information Based Extrinsic Similarity

for Microarray Analysis

Duygu Ucar1, Fatih Altiparmak2, Hakan Ferhatosmanoglu1,
and Srinivasan Parthasarathy1

1 Department of Computer Science and Engineering, The Ohio State University,
Columbus, OH

2 ASELSAN A.S. Radar, EW, and Intelligence Systems Division, Turkey

Abstract. Genes responding similarly to changing conditions are
believed to be functionally related. Identification of such functional re-
lations is crucial for annotation of unknown genes as well as the explo-
ration of the underlying regulatory program. Gene expression profiling
experiments provide noisy datasets about how cells respond to different
experimental conditions. One way of analyzing these datasets is the iden-
tification of gene groups with similar expression patterns. A prevailing
technique to find gene pairs with correlated expression profiles is to use
linear measures like Pearson’s correlation coefficient or Euclidean dis-
tance. Similar genes are later compiled into a co-expression network to
explore the system-level functionality of genes. However, the noise in-
herent in microarray datasets reduces the sensitivity of these measures
and produces many spurious pairs with no real biological relevance. In
this paper, we explore an extrinsic way of calculating similarity of two
genes based on their relations with other genes. We show that ‘similar’
pairs identified by extrinsic measures overlap better with known biolog-
ical annotations available in the Gene Ontology database. Our results
also indicate that extrinsic measures are useful in enhancing the quality
of co-expression networks and their functional subnetworks.

1 Introduction and Related Work

Microarray experiments are now being used to profile expression levels of genes
under changing experimental conditions. To analyze these profiles in an attempt
to answer diverse biological questions, various techniques and ideas have been
proposed. Of particular interest to many scientists is the identification of genes
whose expression profiles are similar, since genes with similar cellular functions
have been theorized to respond similarly to changing conditions [9]. As a re-
sult, an efficient similarity measure for microarray analysis is fundamental for
understanding the cellular processes [24] and annotating unknown genes.

There has been a growing interest in linking genes whose expression profiles
are similar to construct co-expression networks. These networks and their highly
modular subnetworks are invaluable sources of information for system-level gene
processes [29,4]. Similarity of two genes can be deduced from expression levels
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of these genes across all samples [12,29,7]. However, the noise inherent in mi-
croarray datasets limits the sensitivity of such analysis. Since any microarray
measurement is likely to fluctuate due to many possible sources of error, a simi-
larity based solely on expression measurements of two genes is more error-prone
than a similarity based on expression measurements of many genes. In addition,
inferring the similarity of two genes based on their relations with a set of other
genes will be in accordance with the biological hypothesis about gene prod-
ucts acting as complexes to accomplish certain cellular level tasks [23]. Thus,
here we investigate use of extrinsic similarity measures to analyze microarray
studies.

The use of extrinsic measures and their advantages have been previously stud-
ied for various data mining problems [5,6]. Das et al. [5] proposed using extrin-
sic measures on market basket data in order to derive similarity between two
products from the buying patterns of customers. Palmer et al. [19], defined an
extrinsic similarity measure (REP) with an analogy to electric circuits. Both
groups concluded that extrinsic measures can give additional insight into the
data. Recently, Ravasz et al. [20], took a step towards using extrinsic properties
along with the intrinsic similarity. Their measure, the Topological Overlap Mea-
sure (TOM), infers similarity of two nodes in a biochemical network in terms
of their pairwise similarity as well as the number of their common neighbors.
In a previous work we discussed using mutual independence notion to derive an
effective extrinsic dissimilarity measures [25].

We introduce application of extrinsic similarity measures for identification
of co-expressed genes. We propose extrinsic measures motivated by Mutual In-
formation notions from Information Theory. The proposed similarity measures
are evaluated on a well-studied cancer microarray dataset [1] obtained with
Affymetrix oligonucleotide arrays, as well as a yeast microarray data generated
with custom complementary DNA (cDNA) arrays [10]. For both datasets and
platforms, we showed that gene pairs obtained by extrinsic similarity measures
better overlap with known biological annotations from the Gene Ontology (GO)
database when compared to the Pearson’s correlation coefficient and the TOM.
To further analyze efficacy of extrinsic measures for gene function inference,
we constructed co-expression networks by using different measures. We observe
that co-expression networks constructed based on extrinsic measures contain less
spurious and more biologically verified edges compared to their counterparts gen-
erated with other measures. We also studied modular structure of these networks
by decomposing them into co-expressed modules. We found that gene modules
extracted from Extrinsic Gene Networks are also functionally more homogeneous
in comparison.

To summarize, our main contributions in this study are:

– The study of Information Theory concepts, Conditional Mutual Information
and Specific Mutual Information, for genes derived from their associations
with other genes

– The introduction of extrinsic measures for microarray datasets based on
Conditional Mutual Information and Specific Mutual Information
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– The demonstration of the efficacy of using extrinsic measures in inferring
pairwise gene similarities, constructing co-expression networks, and identi-
fying co-expressed modules.

2 Similarity Measures

To quantify the resemblance of two points, one needs a measure of similarity.
Similarity measures can be categorized into two: extrinsic and intrinsic similar-
ity. An intrinsic similarity of two points i and j is purely defined in terms of
the values of i and j. On the other hand, an extrinsic similarity measure takes
into account other points to infer similarity of i and j. Previous studies have
shown the usability of extrinsic similarity measures in other domains [5,6]. The
standard method to infer similarity of two genes from their expression patterns
is to use a linear intrinsic similarity such as the Pearson’s correlation coefficient.
To our knowledge, we are the first to study extrinsic measures for microarray
datasets [25].

2.1 Intrinsic Similarity

Intrinsic similarity is purely defined on the points in question. In the context
of microarray analysis, the intrinsic similarity of two genes is defined on the
measured expression levels of these two genes over all samples. In a typical
microarray experiment, each gene is expressed at some certain level at each
condition which is defined as the expression profile of the gene. More formally, a
gene (say, x) is associated with a profile vector (Vx) composed of its expression
values over all samples, such that Vx = [x1, x2, ..., xn], where n denotes the
number of samples in the dataset. Thus, intrinsic similarity between genes x
and y, is a measure defined on their profile vectors, Vx and Vy . A prevailing
measure used for inferring similarity of two genes based on their gene profiles
is Pearson’s correlation coefficient [17]. Throughout our analysis, we employ
absolute value of Pearson’s correlation scores since both positive and negative
correlations can play an important role in gene association. Recently, Ravasz
et al [20], proposed the Topological Overlap Measure (TOM) which takes into
a step in incorporating external information to infer similarity of two nodes
in a biological network. This measure is considered as an improvement over the
intrinsic similarity which amalgamates an additional external knowledge derived
from the network topology (i.e., number of common neighbors).

2.2 Extrinsic Similarity

Extrinsic similarity of two attributes (i.e., genes) is defined over other attributes
in the dataset [5]. In general, an extrinsic similarity between two attributes, i
and j, can be defined as ESP (i, j) =

∑
k∈P f(i, j, k). Here, f(i, j, k) denotes a

function that signifies the association between attributes i and j, with respect
to a third attribute k. P refers to the set of attributes that will contribute to
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the extrinsic similarity of attributes i and j. As noted by Das et al [5], proper
choice of the attribute set P and function f is crucial for the usefulness of the
resulting extrinsic measure. Different choices of P and f will result in different
similarity notions. Das et. al. [5] preferred to define an extrinsic dissimilarity
measure based on the confidence of association rules.

In this work, we propose using Mutual Information of Information Theory to
derive efficient extrinsic gene similarity measures. Our final goal is to surmise the
similarity of two genes by the similarity of their relation with other genes. We
believe that an extrinsic measure for microarray analysis has a twofold advantage
over the use of intrinsic measures. First, it may reduce the impact of noise
inherent in the dataset on the similarity analysis. It is well known that expression
level of each gene is likely to fluctuate due to many sources of variability in a
typical microarray analysis. Thus, the similarity deduced from expression levels
of two genes is likely to be more error-prone than a similarity deduced from
relative positions of these two genes with respect to many other genes. Second,
it suits well with the biological hypothesis about genes and gene products acting
in the form of complexes (i.e., groups) to accomplish certain tasks in the cell.
As hypothesized, two gene products that belong to the same complex behave
similarly with the members of this complex. Thus a similarity notion that is
defined based on the relation of two genes with other genes can potentially
capture the modular structure of the genomic interactions. Moreover, known
modular structure of a biological system can be incorporated into the similarity
analysis, by defining the P set by using this known structure.

To define proper extrinsic measures, we first need to determine the gene set,
P , and the association function, f , that will constitute our measures. For the P
set, we make use of the close proximity of each gene determined by an intrin-
sic similarity notion. We propose to use Conditional Mutual Information and
Specific Mutual Information as the association functions.
Choice of Attribute Set (P ): To derive an efficient extrinsic measure, we
need an effective gene set that will be used to infer the extrinsic similarity of two
genes. To compile such a set, we initially identified for each gene a set of genes
that are intrinsically similar to that gene. We refer this as the neighborhood
list of gene i and define it as Ni = {j|j ∈ G, |rij | > κ}, where G denotes
the set of all genes in our dataset and |rij | refers to the absolute value of the
Pearson’s correlation coefficient between genes i and j. We investigated the effect
of the threshold parameter κ in our previous work and observed that size of the
neighborhood lists can help us set this parameter [25]. Next, the attribute set P
that will be used to infer similarity of two genes is designated as the intersection
of their neighborhood lists (i.e., P = Ni ∩ Nj ). Using the common elements
in two neighborhood lists, has two important implications. First, it significantly
reduces the required number of calculations. Hence, instead of using the whole
gene set (G), a smaller size set is taken into consideration for each similarity
calculation. Secondly, it filters out irrelevant information which enhances the
power of the extrinsic measure. Moreover, by using the intrinsic similarity to
determine elements in set P , we take advantage of both extrinsic and intrinsic
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properties. We believe this will be helpful in reducing the noisy inference that can
be introduced into the similarity inference by using each technique separately.
Choice of Association Function (f): Das et al [5], proposed using confidence
of association rules in an application on market basket dataset. We previously
discussed Das’s external dissimilarity measure and its applicability on gene ex-
pression datasets [25]. Our analysis showed that it is possible to improve their
measure for the task of similar gene identification by using Mutual Independence
of genes. We here propose using Conditional Mutual Information and Specific
Mutual Information to derive effective extrinsic microarray measures.

To leverage Mutual Information of genes we used probability of occurrence
and co-occurrence for genes in the neighborhood lists. Formally we define these
probabilities as follows:

Definition 1: Probability of occurrence for a gene i, P (i), is defined as the
frequency of encountering that gene in all neighborhood lists. Note that genes
with indistinct expression profiles will have higher frequency of occurrence values.

Definition 2: Probability of co-occurrence for two genes, i and j, P (i, j), is
defined as the frequency of encountering these two genes together in the neigh-
borhood lists.

Conditional Mutual Information based Gene Similarity: Conditional
Mutual Information between variables X and Y, I(X, Y |C), signifies the quantity
of information shared between X and Y when C is known. Formally, it is de-
fined as, I(X, Y |C) = H(X |C) − H(X |Y, C) where H(X) signifies the Shannon
entropy of the discrete random variable, X . For our calculations, H is defined
for the occurrence of a gene in the neighborhood lists. Mutual information cal-
culates the quantity of information shared between X and Y when C is given.
I(X, Y |C) is equal to zero iff X and Y are conditionally independent given C.
Probabilities of occurrence and co-occurrence are used to calculate Conditional
Mutual Information of two genes given neighborhood list of a third gene. A high
Conditional Mutual Information between two genes implies that these two genes
prefer to co-occur with the same set of genes when a third gene is known to be
occurring in the neighborhood lists. If they are not co-occurring with the same
set of genes, they will have a smaller Conditional Mutual Information. If two
genes bring the same information to the Neighborhood Lists of many third par-
ties, we expect these two genes to be regulated by the same mechanism. Based
on this heuristic we define Conditional Mutual Information based Extrinsic Gene
Similarity as follows:

CMIP (i, j) =
∑

k∈P

I(i, j|k = 1) (1)

This measure calculates the quantity of information shared by i and j, given that
a third gene k is occurring in the neighborhood lists. As can be seen above, the
final score is the sum of Conditional Mutual Information between i and j, with
respect to all elements in set P . If i and j tend to share the same information,
they will have a high CMI similarity value.
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Specific Mutual Information based Gene Dissimilarity: The Specific Mu-
tual Information is a measure of association commonly used in the Information
Theory to infer mutual dependency. Specific Mutual Information of two vari-
ables, X and Y , given their joint distribution, P (X, Y ), and individual distribu-
tions, P (X) and P (Y ), is defined as P (X,Y )

P (X)P (Y ) , where P (X, Y ) is the observed
value (O) for joint probability of events X and Y , whereas P (X)P (Y ) is its
expected value (E). This test can be used to deduce the co-occurrence rela-
tion between two genes when their neighbors are considered. If Specific Mutual
Information of two genes is 1, it can be concluded that these two genes are
independent. In this context, being independent means genes i and j are ran-
domly appearing together in the neighborhood lists. However, if two genes are
not independent, occurrence of a gene in a neighborhood list makes it either less
probable or more probable for the other gene to occur in that list. Based on this
analysis we propose the following extrinsic measure to quantify dissimilarity of
two genes (i and j).

SMIP (i, j) =
∑

k∈P

| P (i, k)
P (i)P (k)

− P (j, k)
P (j)P (k)

| (2)

This definition ensures that two genes having the same co-occurrence relations
with their common neighbors are closely related to each other (SMI value close
to 0). Whereas two genes that have different independency relations with their
common neighbors are dissimilar and associated with higher values of SMI.

We compare the proposed Mutual Information based extrinsic measures with
the existing measures in the literature.

3 Domain Based Evaluation

‘Similar’ pairs identified according to different similarity/dissimilarity measures
are evaluated based on Pairwise Semantic Similarity measure of Resnik [18]. This
measure makes use of known annotations in the Gene Ontology (GO) database.
GO is a controlled vocabulary designed to accumulate the result of all investi-
gations in the area of genomic and biomedicine by providing a large database
of known associations. Biological relevance of two genes can be quantified with
respect to the significance of their shared GO annotations using the Semantic
Similarity (SS) measure defined by Resnik [18]. Resnik’s measure is preferred
among other semantic similarity measures [11,13], since it has been shown to
outperform the others and suit better to be used for GO analysis [21]. We cal-
culated pairwise semantic similarity for the pairs labeled as similar according
to different similarity/dissimilarity measures. We did not take into considera-
tion relations among unannotated genes since there is not enough information
to speculate about the biological concordance of these genes.

We then constructed association gene networks by linking the most similar
gene pairs identified with respect to alternative similarity definitions. We ob-
tained clusters of densely linked genes from these networks to study their efficacy
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in understanding the molecular and biological processes. The obtained clusters
are evaluated with an enrichment score that shows the statistical significance of
the GO term homogeneity in a cluster. Details of this enrichment score can be
found elsewhere [26].

4 Datasets and Pre-processing

For this study, we employ a well-studied cancer dataset and the Rosetta com-
pendium yeast data (i.e., Saccharomyces cerevisiae) [10]. Our first dataset is com-
posed of gene expression values of 62 colon tissue samples where the Affymetrix
Hum6000 array with 6819 probes is used [1]. 42 of these are collected from colon
adenocarcinoma patients and 20 of them are collected from normal colon tissue
of the patients. Among all probes, 2000 were selected from 6817 by Alon et al ac-
cording to the highest minimum intensity [1]. Our second dataset, Rosetta yeast
data is obtained using a two-color cDNA microarray hybridization assay [10]. It
is composed of 300 compendium experiments on the Saccharomyces cerevisiae
organism. As suggested by the authors, we used the scale factor for our fur-
ther analysis, which is defined as the standard deviation of log10(ratio)/[error of
log10(ratio)] over all experiments. We perform thresholding, log transformation
and normalization (quantile normalization) on these two datasets as suggested
by our analysis. In addition to these, we further standardize datasets using a
robust standardization method, median absolute deviation (MAD). Genes with
zero MAD values implying that they are co-expressed at very similar levels across
all of the samples are excluded from further analysis.

5 Experiments

Throughout this section, we discuss usability of extrinsic measures for microar-
ray analysis. First, we present biological relevance of ‘similar’ gene pairs with
different measures. We then linked these ‘similar’ genes to construct gene co-
expression networks. Each of these networks are partitioned into its functional
modules to study the effect of extrinsic similarity on the quality of information
extracted from these networks.

5.1 Effect on Top ‘Similar’ Pairs

To choose a suitable κ threshold, there are two things that we should take into
consideration. First, we want the neighborhood list of a gene to be composed
only of genes that are within close proximity of that gene. Second, we do not
prefer a set composed of a few genes since this would limit the power of inference
based on common neighbors and increase the impact of noise on the final scores.
Our previous study showed that average size of the neighborhood lists can guide
us while setting the κ parameter [25]. Consequently, we set the κ threshold to
0.5 for the colon cancer dataset and 0.9 for the yeast data, which generates
neighborhood lists of size 40 in average.
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Fig. 1. Average semantic similarity (SS) is calculated for the top ‘similar’ pairs identi-
fied via alternativee measures from (a) Colon cancer and (b) Yeast microarray datasets.
1K represents the top 1000 pairs identified with each measure.

In our first experiment, we compare gene pairs that are labeled as ‘similar’
according to discussed measures. For each measure, gene pairs are sorted start-
ing from the most ‘similar’ (or least ‘dissimilar’) one. We calculated semantic
similarity of all annotated pairs and calculate the average semantic similarity for
the whole set of gene pairs. Different number of top scoring pairs (varying be-
tween 1000 and 20000) are compared based on their average semantic similarity
values. When we analyze the distribution of average semantic similarities, we ob-
serve that extrinsic measures outperform existing measures. For both datasets,
a significant improvement in semantic similarity is observed.

For the colon cancer dataset, we observe that extrinsic measures significantly
overlap with the biological relevance of genes. As can be seen in Figure 1a, the
pairs identified with the SMI measure show greater biological relevance when
compared to the pairs identified by other measures. For the top 1000 pairs, the
improvement in the average semantic similarity score is up to 15%, when an
extrinsic measure is used instead of an intrinsic one. Since semantic similarity
calculations are based on the information content of each GO term which is in
the logarithmic scale, this improvement is significant in real world, as our further
analysis indicate. Although TOM measure is also able to improve the Pearson’s
correlation, this improvement is not as significant as our Mutual Information
based extrinsic measures.

When we analyze the yeast dataset, we again observe that extrinsic measures
identify biologically more relevant gene pairs. As can be seen in Figure 1b, the
improvement is more significant (up to 22%) when top pairs obtained by CMI
measure are compared to top pairs identified by the standard measure. Note
that in contrast to colon cancer dataset, yeast data is obtained using cDNA
assays. Our analysis show that extrinsic measures are effective for analysis of
both cDNA and oligonucleotide arrays. As can be observed in this figure, TOM
contributes even less to standard measure in this case, since mean r values are
higher for this dataset.

Our analysis confirm that extrinsic measures better capture the biological
relevance of two genes when compared to the standard intrinsic measure. We
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believe their power can be attributed to two reasons: the noisy nature of mi-
croarray datasets and the functional modularity of genes. Intrinsic measures
directly possess and reflect the noise inherent in the data since they are purely
defined on the expression levels of genes under study. We also believe that since
TOM measure is also dependent on the intrinsic measure in its definition, it
would also be effected by the noise inherent in these datasets. The poor perfor-
mance of TOM measure with respect to our extrinsic measures can be attributed
to the fact that erroneous measurements will have a more drastic impact on any
intrinsic or intrinsic based measure. On the other hand, extrinsic measures are
dependent on more evidence since similarity of two genes are inferred from their
relative positions with respect to a set of other genes. Hence, we expect the
impact of erroneous measurements to be less severe on the extrinsic similarity
measures. Our experimental results are also in accordance with this expectation
where extrinsic measures produce biologically more relevant pairs. In addition,
inferring similarity of two genes from a set of other genes can benefit from the
group level interactions known to take place between genes and gene products
when accomplishing certain cellular tasks [23].

5.2 Effect on Gene Networks

In this experiment, we constructed gene association networks by linking top
similar pairs identified with each measure. Here, nodes represent genes, and two
nodes are linked if the corresponding genes are ‘similar’ to each other. To keep
the same size for all networks, we only used the top 0.01% of all gene pairs sorted
with respect to a similarity/dissimilarity measure. Accordingly, colon cancer
networks are composed of 12,438 edges and yeast networks are composed of
74,267 edges. Tightly connected subnetworks of a co-expression network can
provide insight into the vital molecular and biochemical processes. Moreover,
groups of genes that are densely linked in gene networks have been theorized to
have similar cellular functions with great implications for gene annotation at a
global scale [9,22,3]. Thus, we extracted and studied densely linked sub-networks
of these networks.

To identify densely interacting subnetworks of these networks, we employ a
graph partitioning algorithm, Graclus [8], that is shown to be effective in analyzing
gene association networks [27]. This algorithm is effective in obtaining balanced-
size clusters while minimizing the normalized cuts criterion. To our knowledge, no
entirely reliable method exists for identifying correct number of partitions (i.e.,
k) in a network. That is why, we partitioned colon cancer networks into 100 clus-
ters, and yeast networks into 200 clusters, to make sure reasonable size clusters will
be generated at the end. In average 20 genes are located into each partition. Each
partitioning is validated using the enrichment score p-value that signifies the ho-
mogeneity of each cluster in terms of its known GO annotations. Smaller p-values
imply that the grouping is not random and is functionally more homogeneous. A
cut-off parameter is used to differentiate significant groups from the insignificant
ones. If a cluster is associatedwith a p-value greater than the cut-off, it is considered
insignificant. We used the recommended cut-off of 0.05 for all our validations. The
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Fig. 2. P-value distribution of significant clusters extracted from (a)Colon Cancer and
(b)Yeast gene networks. The y axis represents the −log of the enrichment score of each
corresponding cluster.

p-value distributions for the significant clusters extracted from various gene associ-
ation networks are shown in Figure 21. As canbe observed fromthe figure, extrinsic
similaritymeasures producemore number of clusters that are significantly enriched
withBiologicalProcessGOtermannotations.For the colon cancerdata,weareable
to identify only 4 clusters that are functionally homogeneous when Pearson corre-
lation is used. However, with the use of extrinsic measures this number increases
to 10 for SMI and 9 for CMI. Similarly, for the yeast data, number of significant
clusters and their significance scores drastically improve when extrinsic measures
are used instead of the intrinsic measure. By using SMI measure instead of Pear-
son’s correlation, number of significant clusters that can be deduced from the same
data increasedmore than threefold. These results suggest that using extrinsic mea-
sure has a twofold enhancement for co-expression network analysis. First, these
measures enhance functional homogeneity of clusters that can be identified with
a standard measure as smaller p-values obtained for extrinsic based networks sug-
gest. Also it enables identification of clusters that cannot be detected by standard
measures, as evident from the increase in number of significant clusters.

6 Discussion

In this section, we investigate the usability of clusters extracted from different gene
similarity networks by running a dataset specific analysis. For this part of our anal-
ysis, we analyze the colon cancer dataset which is composed of tumorous and non-
tumorous tissues of the human colon and rectum. A more detailed analysis of the
significant clusters obtained from the colon cancer data revealed that they can be
very useful in understanding and treating the colorectal cancer. We discuss several
of these clusters and their relation with colon cancer in the rest of this section.

By using the CMI measure, we obtained a cluster that is annotated with ‘alde-
hydedehydrogenase (NAD)activity’.Previous studies showed thatactivity of alde-
hyde dehydrogenase was measured in primary and metastatic human colonic

1 Biological Process GO terms are used for this analysis.
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adenocarcinomas [14]. We also identified clusters annotated with ‘phospholipase
activity’ by employing the CMI measure. It has been shown that Phospholipase D
(PLD) has a possible impact on carcinogenesis and its progression [16]. Another
cluster obtained with CMI measure is annotated with ‘NF-kappaB binding’. NF-
kappaB pathway is shown to be taking part in the regulation of Inhibitors of apop-
tosis (IAP) family in human colon cancers [28]. Identification of clusters that are
known to be related to colon cancer is vital for developing new therapeutic targets
and identifying potential tumor markers for colorectal cancer. However, we cannot
identify such clusters via standard analysis of the same dataset.

From the SMI network, we extracted a cluster that is composed of genes asso-
ciated with the GO term ‘cytoskeleton-dependent intracellular transport’. Recent
evidence indicates that the interaction of a tumor suppressor gene (APC) with the
cytoskeleton might contribute to colorectal tumor initiation and progression [15].
That is why, we believe that locating these genes together in a cluster is triggered by
the role they play in colon cancer tumorigenesis. Unfortunately, it is still unknown
that howAPC interactswith the cytoskeleton andhow their interactionplays a role
in the formation of colorectal tumors [15]. We believe that once functionally coher-
ent clusters are identified, relations between these clusters can be used to reveal
function level interactions vital for understanding the cause of some diseases.

7 Conclusion

In this paper, we have introduced the notion of Mutual Information of genes based
on their relations with other genes. We have presented two extrinsic measures for
microarray analysis based on Conditional Mutual Information and Specific Mu-
tual Information. We also discussed a method to employ a previously suggested
extrinsic measure for market basket datasets in microarray analysis. We have in-
vestigated the efficacy of the proposed measures and run thorough analysis to com-
pare them with standard similarity measures. Our experimental results prove that
by using the extrinsic measures, it is possible to identify gene pairs that are bio-
logically more relevant. In addition, association networks generated based with
these measures are shown to be more informative and useful for further analysis.
These results suggest that different similarity notions can reveal different aspects
of the same dataset. Previously, we have studied different ensemble techniques to
improve clustering results on a scale-free protein interaction network [2]. In the fu-
ture, we plan to investigate an ensemble approach for integrating different aspects
of a dataset captured by different similarity measures.
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