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Topic-Based InfRBuence Computation in Social
Networks under Resource Constraints

Kaan Bingel, Bahaeddin Eravcd, @Q @r6Ozgené Etemagiu, Hakan Ferhatosmanogiu, Bugra Gedik

Abstract NAs social networks are constantly changing and evolving, methods to analyze dynamic social networks are becoming more
important in understanding social trends. However, due to the restrictions imposed by the social network service providers, the
resources available to fetch the entire contents of a social network are typically very limited. As a result, analysis of dynamic social
network data requires maintaining an approximate copy of the social network for each time period, locally. In this paper, we study the
problem of dynamic network and text fetching with limited probing capacities, for identifying and maintaining inBuential users as the
social network evolves. We propose an algorithm to probe the relationships (required for global inBuence computation) as well as posts
(required for topic-based inBuence computation) of a limited number of users during each probing period, based on the inBuence
trends and activities of the users. We infer the current network based on the newly probed user data and the last known version of the
network maintained locally. Additionally, we propose to use link prediction methods to further increase the accuracy of our network
inference. We employ PageRank as the metric for inBuence computation. We illustrate how the proposed solution maintains accurate
PageRank scores for computing global inBuence, and topic-sensitive weighted PageRank scores for topic-based inf3uence. The latter
relies on a topic-based network constructed via weights determined by semantic analysis of posts and their sharing statistics. We
evaluate the effectiveness of our algorithms by comparing them with the true inBuence scores of the full and up-to-date version of the
network, using data from the micro-blogging service Twitter. Results show that our techniques signibcantly outperform baseline
methods (80% higher accuracy for network fetching and 77% for text fetching) and are superior to state-of-the-art techniques from the
literature (21% higher accuracy).

Index Terms NEstimation, evolving social networks, dynamic network probing, incomplete graphs, topic-sensitive inRuence.
|

1 INTRODUCTION known and stored in a local database. However, in many cases,

Analysis of social networks have attracted signibcant resear‘?:'ﬁalyStsk are trk]urdd-party chelnts lanfd dr? . r(])wn thehdata. Thgy
attention in recent years due to the popularity of online soci,ﬁi",nnOt Keep the data completely resh as changes happen, sinc
networks among users and the vast amount of social netwdrits typically gathered from a service provider with limitations

data publicly available for analysis. Applications of social networR" ESOUrCes or even on the amount of data provided. Third-

analyses are abound, such as inBuential user detection, commuPitY data acquisition too!s access _the dat.a via rate-limited APIs,
detection, information diffusion, network modeling, user recont? ch constraint the fetching capacity of clients. These externally
mendation. to hame a few. enforced limits prevent the collection of entire up-to-date data

InRuential user detection is a key social analysis used f\(L)/Ilthmapredetermlned period. To this end, we present an effective

opinion mining, targeted advertising, churn prediction, and worgdolution to rate-limited fetching_ of evolving ne_twork relations and

of-mouth marketing. Social networks are dynamic and constanH?er posts. Our syst(_am maintains a local, parna!ly fresh copy of the
evolving via user interactions. Accordingly, the inBuence of useg?tadand c_?LcuIates mBgen(ie Scores Eas?_d on (ljnferreg net:york_ an
within the network are also dynamic. Beyond the current inRuenf@! data. The proposed solution probes limited number of active

of users, tracking the inBuence trends provides greater insight"™> vl\ihose inBu;npe scores are cr:janr?ing sigi*;nibca;nt(ljy within Lhe
for deeper analysis. By combining the patterns of the past witftWerk- By combining previous and the newly probed networ

the current information, comprehensive analysis on custome ta, we are able to calculate the current user inBuences accurately

marketing plans, and business models can be performed mof .Iocil net\évcla.rklfopy '3 mta:Etalned W?'le cgngummg reslourcefs
accurately. For example, forecasting future user inBuences can’'fe'" &'owed Iimits, and at the same time, Iniuence vajues o

used to detect Orising starsO, who can be employed in upcom sers are computed as accurately as possible.
on-line advertisement campaigns. hile computing and maintaining inBuence scores, we con-

:a'der both global and topic-based infRuence. Active and inRuential

In this paper, we address the problem of identifying an - . . :
tracking inBuential users in dynamic social networks under redlSers mostly affect the general opinion with respect to their topics

world data acquisition resource limits. The current approachgtsaumonty' Fc_)r msta_nce, a company markgtlng sports gQOdS will
for inRuence analysis mostly assume that the graph struct interested in locating users who have high inBuence in sports,

is static, or even when it is dynamic, the data is completef{?‘ther than the global gommunlty. While thl.:‘:‘, leads us to gon3|der
topic-based analyses in our problem setting, general inBuence

¥ K. Bingol, B. Eraved, H. Ferhatosmaglo, and B. Gedik are with the scores of users are still oflntgrest as weI.I. For.|nstar.1ce, a politician
Department of Computer Engineering, Bilkent University, Bilkent, Ankardvould prefer a broader audience and identify a list of globally
Turkey. Contact e-mail: kbingol@icloud.com. inBuential users to promote her cause. In our system, we utilize
¥ @.0.Etemalu is with Terk Telekom, Istanbul, Turkey. both global and topic-based networks and compute global as well
as topic-based inBuences.
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To demonstrate the effectiveness of our solutions, we uge its PageRank score. As a result, the top-m inBuential user
Twitter [1]. Twitter is a good bt for research on dynamic usetetermination problem turns into identifying the top-m users with
inlBuence detection due to its large user base and highly dynaitiie highest PageRank scores. One can also utilize other approache
user activity. One can collect two-way friendship relations as welhiat can outperform PageRank for estimating social inBuence
as one-way follow, re-tweet, and favorite relations via the publickyithin our framework. These approaches need to produce a single
available Twitter APIs. These APIs have well-debPned resourseore that will be calculated periodically for every user.
limits [2], which motivates the need for our probing algorithms. PageRank score calculation requires having access to all the
We calculate PageRank [3] on the Twitter network as the inBuenedationships present between the users of the network. This mean:
score for the users. To generate topic-based inRBuence scoresthaé we need to have the complete network data to compute
adapt the weighted PageRank [4], and adjust the initial scomsact PageRank scores. Moreover, if the network is dynamic, the
and transition probabilities based on topic relevance scores of taculation needs up-to-date network data for each time step in
users. The topic relevance scores are computed based on oseer to perform accurate inBuence analysis.
posts, using text mining techniques, as well as the re-tweet and Our system continuously collects social network data (rela-
favorite counts of the tweets. tions, tweets, re-tweets, etc.) via the publicly available Twitter

To further improve the accuracy of our network inferencé\PI. Twitter enforces certain limitations on data acquisition using
we perform link prediction using trends on user relationshipthe Twitter APIs. There are different limitations for different types
The proposed solution shows increased accuracy on Twitter dafalata acquisition requests:
when compared with other methods from the literature. Estimatedy Relationd: 15 calls per 15 minutes, where each call is for
network structure is shown to be very close to the actual up-to-date retrieving a userOs relations. Moreover, if the user has more
network, with respect to inBuential users. The proposed solutions than5K followers, we need an extra call for each additional
address not only the limitations of data fetching via public APIs, 5K followers. This means that we can update relations with
but also local processing when the resources are limited to fetch a maximum rate of user per minuteR,e; = 1 user/min).
the entire data. We summarize our major contributions as follows:y Tweets 180 calls per 15 minutes, where each call is for

¥ We estimate global and topic-based inRuence of users within
a dynamic social network. For topic-based inRuence estima-
tion, we construct topic-based networks via semantic analy-

retrieving a userOs tweets. Moreover, if the user has more
than 200 tweets, we need an extra call for each additional
200 tweets. This means that we can update tweets with

ses of tweets and the use of re-tweet and favorite statistics for a maximum rate ofl2 users per minute Ry = 12
the topic of interest. user/miny.

¥ We propose efpcient algorithms for collecting dynamic net-  Assuming that we update the network with a perio®Podays,
work and text data, under limited resource availability. We need the following condition to hold, in order to be able to
leverage both latest known user inBuence values, as W@thure the entire network of relations:
as the past user infuence trends in our probing strategy.

We further improve our probing techniques by applying link Number of User$ Re &P 41440 D
prediction methods. _ For getting the recent tweets of the users, we need:

¥ We evaluate our proposed algorithms and compare results o
to several alternatives from the literature. The experimental Number of Userd Ryt aP al440 )

results for relationship fetching used for inBuence estimation One can easily calculate that for a network as smaRB@K
show tha.t the proposed algorithms perfaB@ better than users, we need74 days to update the complete network in the
the baseline methods, a@d%better than the State'Of'the""‘rtbest casé This analysis shows that the rate limits hinder the
{nethto fd Ir(;]m the Iliﬁragure m(;cefrmts Of. mt? an qu.u z;r\gred erroorl. 't:f%eliness of the data collection process, which in turn affects the
weet fetching methods use oor opic-based INbuence deltreiness of the calculation process to bnd and track infBuential
tion, our a_Igonthms perforrﬁ?/obet.ter th.an the alternative users in the network. Furthermore, Twitter is a highly dynamic
baselines in tgrms of th? Jaccarq similarity measure. . network that evolves at a fast rate, which means that refreshing the
The rest of this paper is organized as follows. Section gonyork infrequently will result in signibcant degradation in the
describes the resource constraint problem for data collection. Sgez, racy of the inRuence scores. Current resource limits prohibit
tion 3 gives the overall system architecture and presents infSUefge system to collect the network data in a reasonable period of
estimation techniques. Section 4 explains algorithms and strategjgs, Therefore, the evolving networkOs relationships and the twee!
proposed for the network and text fetching problems. Sectiongaig are not fully observable at every analysis time step.
discusses results obtained from experiments run on real data.Ty gvercome this limitation. we propose to determine a small
Section 7 discusses related work. Section 8 concludes the papg(;pset of users during each data collection period, whose infor-
2 PROBLEM DEFINITION mation is to be updated. This data collection process, which does
éot violate the rate limits of the API, is sufbcient to maintain

O:(;e?ogl ('i‘_);Ost?;tnirg]'nfog?ﬁ'ms:ar;?#enfrlngiers ;r;_ct)hz r;ﬁ;vtvﬁc: h approximate network with a reasonable data collection period,
u Ined probing setling. g variou Rile at the same time providing good accuracy for the estimated
to calculate a userOs inBuence in the network, we have cha

. . IRRUence scores.
PageRank based methods, since PageRank is well understood an

used widely in the literature for various network structures. While 1. For the relations, Twitter provides two different APIs: one for fetching the
Computing inRuence, PageRank naturally considers the numbebgstr IDs for every user foIIowm_g a spe(:lb_ed user, and another for f(e_tphlng the
followers a user has. but more importantly it takes into accouu er IDs for every user a specibed user is following. Our system utilizes both
0 . ! p. ; y Hbis, however for brevity of the rate limit calculations details are omitted.

the topological place of the user within the network. Therefore, 2. the best case, if all users have200 tweets on their timelines

we assume that a userOs inBuence in the network corresporglsf all users havé 5K followers, requiring a single call per user.



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2016 3

We apply the concept gfrobing for efbcient fetching of the node changes by periodically renewing the seed. IBbr brevity
dynamic network and the user tweets. We denote a network at tiamed in order to focus on the more prominent issue of edge
t asG; = {4, E{}, whereV, isthe setof users artek " Vi # V; additions and removals, seed list updates are not performed as
is the set of edges representing the follower relationship within tpart of our experiments.
network. In other words(u, v) $ E; means that the user$ \;
is following the usenv $ V;. Our model uses an evolving set of

networks in time, represented §&; | 0! t ! T}. However, Visualizer

we assume that we have fullpbserved the network only at time pocore > i‘ig‘;;gf
t = 0. G; wheret > 0, can only be observed partially by probing. —

At each time period, we use an algorithm to determine a subsel m 1

k users and probe them via API calls. We then update the existi Yy

local network with the new information obtained from the probe HDFS ‘
users. In effect, we maintain a partially observed netwGrk [ HBase [ Graph ] + Dg,’:(‘i"e“r"
which can potentially differ from the actual netwa@. Largerk Framework

values bring the partial networ@ closer to the actual network 7 I
G;. However, using largk values is not feasible due to rate limits \ i
outlined earlier. Our probing strategy should select a relative Twitter AP Fotcher
small number of users to probe, so that the data collection proc »

can be completed within the perid®l (as determined by Eq. 1). % % »| | Network Text
Furthermore, these probed users should bring the most valuel —— [——] » | _Fetoher Fetcher
terms of performing accurate infuence detection.

Dynamic Network Fetching Problem DebnitioiVe assume
that complete network information is available only at tife.e.,
Gy is known. The problem is dePned as determining a subset of
users of sizek at timet (wheret % 1), denoted byU;" " V; 3 OVERALL SYSTEM ARCHITECTURE
s.t. JUN| = k, by analyzing the local grap;. ;. The system In this section we brieRy describe our system architecture, which
will retrieve the partial graph related witd]N , which is denoted depicted in Figure 1.
E’.ISGP(.U‘N) = (W, Etp.) Where\./tp - Ut* , and update the rela- 3.1 Social Network Data Collection
tionships of the users included in this subset to construct the local
network at timet, that isG;} . We debne the additions and deletion¥Ve use the Twitter network and tweets to analyze user inBuence. A

Fig. 1: Overall system architecture.

to the network ag( UN) = G} ;\ GP(UN) and"( UN) = Twitter network is a directed, unweighted graph where the nodes
GP(UM\ G 4, respectively Using these debnitions we can brigpresent users and the edges denote follower relationships in
the network at time, aSGt =Gl &I UM\ (UMY, Twitter. When a useu follows another usev, u can see what

We aim to choose!Jt such that the inRuence scores of th¢ is posting, and thuy is considered to have an inBuence wn
estimated networa} will be as close as possible to the true score¥oreover, the useu also would have an effect orOs inRuence,

of the real networIGt We summarize the problem as follows: Since the number of peoplereaches would potentially increase.
This interaction has an effect on both users® inRuence scores. i

argmin yn (Influence (Gi)' Influence (Gy)) order to construct our network, we brst determine a small set
whereG; = Gj. ; &!( UN)\ "( UN) of users called theore seedsFor illustration, we started with
some popular Turkish Twitter accounts including newspapers, TV
The Pnal objective is to estimate the PageRank scorgsannels, politicians, sport teams, and celebrities. Second, we
PRy (1),(v$ G as accurately as possible, using partial knowkg|lect one- hop relations of the core seeds and add the unique
edge abouGy 1, that isGi- 1, since we have used Pagerank agsers to a set called thmain seedsWe iterate once more to
the indication of inBuence in this study. collect one-hop relations of the main seeds with a blter to avoid
Dynamic Tweet Fetching Problem Debniti@iven the tweets nrelated and inactive users. This blter has three conditares:
To of all users in the network at tim@, the problem is dePned yser must have at least bve followesya user must have at least
as determining a subset of users of sizeat time t (where gne tweet within the last three months, agjdhe tweet language
t % 1), denoted byUt " Vi st |UT| = k, by analyz- of 4 user must be Turkish. As a result of this process, we have
ing the tweet sefl;. ; and the local grapiGt 1- The system getermined ouseed userset, which includes approximateB8
will retrieve the partial tweet set fOUt » Which is denoted as mjllion unique users. In the bnal step of the data collection phase,
TP(UT) = (", EP) whereV” = U], and update the tweet e acquire the relations of the seed users to deter@inehat is
sets of the users included in this Subset to construct the tWeett?@SOC'al network graph at t|n&3 Furthermore we Collect tweets
at timet, that isT}. of the seed users in order to constriligf that the tweet set at time
In this paper, we mainly focused on effective ways of handling,
edge additions and removals. However, node changes are alsowe jmplemented the proposed methods using a distributed
dynamically happening in the social network. The system handlggstem with HBase and HDFS serving as the database and ble

system backends. The system consists of six main prtecal
4. The initial probing of the network can be accelerated via the use Y Y =)

multiple cooperating fetchers. However, this is clearly not a sustainable APy of the social network data on HDF®) data fetcher,

feasible approach for continued probing of the network, as it requires large

number of accounts, which are subject to bot detection and suspension. 5. this period is a conbguration that can be adjusted by a system administra-
tor.
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0025 ————— topic. We perform semantic analysis on user tweets by taking re-
*—e residenc . Inf. . . . .
—r pres.denJ Pol. Inf. tweets and favorite counts into consideration as well. A re-tweet
0020 =" New President Gib. Inf. (RT) is a re-posting of someone elseOs tweet, which helps user
+— New President Pol. Inf.

quickly share a tweet that they are inBuenced by or like. A favorite
°'°15//\/\/ (FAV) is another feature that represents inf3uence relation between

users, wherein a user can mark a tweet as a favorite. These twc
features help estimate the inBuence of an individual tweet. Since
Twitter is a micro-blogging platform, users are generally tweeting
on specibc topics. While many tweets are mostly conversational
and reRRect self- information [5], [6], some are being used for
\‘\;\"p\} 0@1“"’ &w“&“ “@1"“’ information sharing, which is important in harvesting knowledge.
Vowee T v RTs and FAVs are effective in separating relevant and irrelevant
tweets. Accordingly, we use them in our topic weight analysis to
timate inBuence of a tweet on a specibc topic.
Topic-based network construction process consists of three

main phasesa) keyword extraction on tweetd) correlation of

¢) dynamic proberd) score estimatorg) semantic analyzer, and keywords with topic dictionaries, arg) weight calculation.
f) visualizer. Data fetcher Component, as the name implies, fetCheS|n the brst phase, keywords are extracted from tweets by using
the data (network relations and tweets) via rate-limited Twittgkformation retrieval techniques, including word stemming and
APIs, periodically. Dynamic prober makes a dynamic probingop word elimination. The output from this phase is a keyword
analysis, decides which users are going to be fetched and notiRgglyzed tweet corpus for each individual user and the related
data fetcher to bring the information, accordingly. Score estimatgjstogram which captures the frequencies of the related keywords
Ca|CU|ateS UserSO |nBuence and the related parametel’s Of the(RrP These Corpora are further analyzed in the Second phase
posed algorithms, which are essential parts of the probing method.\we have created a keyword dictionar;() for each topic
Seman“c analyzer performs keyWOTd eXtI’aCtlon and Ca|CU|ateS t@) |n Order to score tweets agalnst top|cs Each d|Ct|0nary
related parameters for constructing topic-based networks. F|naﬂﬁmams approximately 90 to 130 words. In order to create a
visualizer provides a graphical user interface for result analysisgictionary for a topic, we Prst compose a representative word list
3.2 Score Analysis for the topic. We then divide these words into groups according

0_context similarity and assign weights to word groups within
We calculate inBuence scores of users based on their relatlonsrél Seale (such as in raride..10). Context similarity can be

and the overall impact of their tweets in the network. We analyﬁeetermlned by a domain expert utilizing knowledge about the
topic activities of the users from their tweets and determine top| nomy. Similarly, we repeat the process for all topics. As part

based user inBuence scores. Overall, we are using two types éf ch dictionary, we have assigned normalized weights to words,
scores, namelglobal inBuenceand topic-based inBuencevhich representing their topic relevance. In the second phase, using the
can be interpreted together for a more detailed analyses. weights from the dictionaries and the usersO keyword histograms
Global InRuence Score This score is a measure of the user® obtain the normalized raw topic scores of users for each one
overall inBuence within the network. For this purpose we use tioéthe topics.
PageRankR R) algorithm. PageRank valuleR,,(t) at timet for In the third phase, we calculate a value called the RT-FAV
a userv $ G; directly corresponds to the global inBuence scori@tal for each user, which is the summation of the number of re-
of it and will be used interchangeably throughout the paper.  tweets and favorites received by a userOs tweets. We then multiply
Figure 2 illustrates the evolving nature of the inBuence scollee normalized raw topic score by the RT-FAV total of the user,
by showing the global and topic-based inRuence scores (calculate@rder to Pnd the number of RT-FAVs the user gets on a topic
on true snapshots) history of users, which are selected by @frinterest. The bnal normalized results are used as the in-edge
algorithm as one of the most important users that should eights of the users on each topic, when forming the topic-based
probed. These are the ofpcial accounts of the presidency of trawork.
Republic of Turkey and the newly elected president. Besides Once the topic-based network construction is complete, we
their high impact, we observe that their inBuence also variegecute the weighted PageRank M P R) algorithm which also
signibcantly over time, which further justibes the need to prolsensiders the importance of the incoming and outgoing edges
these accounts frequently. A reason of the variation in inRuenicethe distribution of the rank scores. The resulting weighted
score is that the time period shown in the Pgure matches with fRegeRank values of users, denotedWy R, (t) at timet for
elections for the Presidency (10 August 2014). After becoming the$ G, is assigned as their topic-based inBuence scores.
new president, the president accountOs global inBuence has furthdpue to the nature of the PageRank algorithm, some of the
increased. During this period, it is always selected as a top ugépbally inBuential users also turn out to be highly inBuential for
to be probed by our proposed approach. This is intuitive, as it isrost or all of the topics. These users have a lot of followers and
popular account with changing inRuence scores over time. We dhry are also followed by some of the inBuential accounts of the
also observe the impact of presidential change on the presidespgciPc topics, which cause them to score high for topic-based
account. During this change, its global score slightly decreastsalysis as well. Therefore, they can get high topic-based inBuence
and then starts to increase. scores even if they do not actively tweet about the topic itself.

. . o eliminate this effect, we apply one more level of Pltering to
Topic-Based InBuence ScoreThe system calculates toplc-baseJ PPy d

. . - . ve these globally effective accounts from the topic-sensitive
inBuence scores representing user activity and impact on a Spe?%ﬁjence lists. In particular, if the number of tweets a user posted

Scores

0.010)

0.005)

N B M
oY 3 314
v ® *® 0 ®
S e® ot ot

Fig. 2: Past global and topic-based (politics) inBuence scores of the
presidency of the Republic of Turkey and the newly elected pre&de%t
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that are related with the topic at hand is less than a predebned

percentage, e.g%4C, of the total number of tweets posted bYve can easily extend this analysis to multiple new
the user, then the user is discarded for that topicOs score dighes since the total effect will be a superposition of

This bltering process signibcantly reduces the noise level in #  effect of the new individual in-edges of vertex.
analysis. |

As a result, for each topic, we construct a weighted network p pnew (y) = pR(y) + ! ' PR(u)
in which an edge({u, v)) represents the amount of topic-specibc HUV)SEM (v) |[Eout (U)| +1
inBuence a usewf has on a follower useu). Thus, the results of PageRank values of out neighbors ofi other
weighted PageRank algorithm gives us the overall topic-inBuenggin v, such as w, are impacted as follows:

scores on the network. | _
! PR() , PR(U) ¢, 1" !

Figure 2 also shows the topic-based score history of the OpriFIR(w) - # _
account of the presidency of the Republic of Turkey and the newly i) En (w () [Eout (DI [Eout (U)] n
elected president. We can see from the bgure that the change in " $
the topic-based scores are more dramatic compared to the global ;, Lew W)= 1 # ! PR() PR(U) o, 1!
scores. This is intuitive, as the topic-sensitive scores are depending s )SEn (w10t (D1 [Eou (W] +1 n
on usersO tweets and sharing statistics. A user might be very active PR(u)

new — '
on some weeks about a specibc topic such that her inBuence on" R W)= PRw)" !

" |Eout (U)]-(IEout ()] +1)
the topic might increase dramatically. Likewise, when she posﬁ

thing i tant. it miaht achi hiah shari tes. On t ese effects are the immediate responses on the vertices tha
something important, 1t might achieve high sharing rates. £n g?e considered. These residual PageRanks will ripple out to all
other hand, when she just posts regular tweets which are

. S . ﬂ% vertices in all the paths fromandw in each iteration of the
shared, her inBuence on the topic might decrease quickly. PageRank algorithm. But the effect will decease as the residuals
4 DyYNAMIC DATA FETCHING will be divided by the number of outgoing edges for each vertex
isited. We will analyze the effects of the brst iteration of the
Irgorithm to simplify the problem and to get a general feel of

vertices to probe, we develop heuristics for both dynamic netw e change in PageRank values. Considering expected value of

fetching and dynamic tweet fetching problems given in Section 204t = _El[lFI)EOU‘ gj)”kas the gveragef ollljt—de.gree for vertices, the
Since we have chosen the PageRank score as the indicato |gprent|a ageranks are given as 1oflows.
inBuence in a social network, we analyze its change as the network PR(u)

In this section, we introduce our algorithms for probing dynami
social networks. In order to efpciently determine a subset

evolves. PageRank value of a specibc vevtéxgiven as follows: ) PR(v) = ! out )
! PR(U) 1' ! _ . PR
PR(V) = ! + , 3 ) PR(w) =" > (5)
v Eow@ 0 O ”

#(UV)$Ein (V)
We can see from Eqs. 4 and 5 that we should select the vertices,
whereP R(v) denotes the PageRank valllg,, (v) denotes the sayu, with the following properties for accura@; andP R}, (t)

in-edge set, ané o (v) denotes the out-edge set for estimations:
Figure 3 shows an example network, which will be used to )

demonstrate the effects of network changes on PageRank values¥ Vertices with high PageRank valudsR(u)); _
¥ vertices whose PageRank values change over time;

¥ vertices with high out-degreek §; (u));
GX ¥ vertices whose out-degrees change over time.

PageRank, when computed until the values converge in steady
state, considers both incoming and outgoing edges. The parame:
ters related to out-degree values are intrinsically taken into account
when PageRank is computed. Hence, in our dynamic fetching
approach, we focus only on PageRank values and their changes
to cover all the cases listed above.

Based on these observations, we will debPne a utility function
that incorporates the above bndings. We will Pnd the vertices that
Fig. 3: A sample network for analysis. maximize this utility function, which will be probed and used to

Assume that an edg@i, v) is added to the state in Figure 3aestimate the inBuence scores of the evolving network. We analyze

due to the evolving nature of the network. The resulting curreFW0 sub-problgms of the generallcase specibc for our application:
state is shown in Figure 3b. Here, we analyze the effect of t gtwork fetching and tweet fetching. These sub-problems and the

addition on the PageRank values of the out neighbors. aVe solutions will be addressed in the subsequent sections.
see that the PageRank valuevois as follows per Eq. 3:$ 4.1 Dynamic Network Fetching using InBuence Past

(a) Previous state of the network before new edge.

(b) Current state of the network after new edge.

! PR(i) PR(U) o 1! We aim to probe a subset), update the edges incident on
0+

PRM™W(v)=1 # E i in UN !
v) Eou ) [Eom (W] + 1 o vertices inU{ to form G;, and calculate PageRank values

#IVISER (V) PR, (1), (v $ G;. In order to determine this subset, we use
= $ 1 PR(u) a time series of past PageRank values for a vertexamed the
PR(v)+ !
[Eout (U)| +1

inBuence pasbf v. Formally, we havdP, = [...,PR}(t"'
1 ]
6. Note that a tweet can be related to zero or more topics. 2),PR,(t" 1)].
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In our strategy for determining\' , we consider the vertices ALGORITHM 1: Algorithm for Dynamic Network Fetching
whose PaggR_ank yalues _change considerably over time. We Prgfput. GL ,, 1P, PR(t! 1),!," " [0,1], k, rrRecord
explored building time-series models over sequences of scores tQutput: G;
forecast their future values. There are some well-known method+/ Fetch network
ologies in the literature for forecasting using this kind of time- forall v" M do
series data, such as ARIMA models [7]. However, these models #ie, = Var(IPy) \ 3

: - o Score(v) = (1 ! 1)PRL(t! 1)+ ! &#p
typically require much longer sequences for accurate predictions, v

Therefore, in order to quantify thishangefor a vertexv, we E?ud Lo;
calculate the standard deviation of the time selieg, that is: while |UN | %k &" do
& v # argmaxysv,. , Score(v)
Change, = "jp, = Var(PR}) (6) UM # UN &{v}, Vir 1 # Vi 1\{ V}
end while

Choosing the best vertices to probe can be performed by o IUN | %k do
calculating a score that .is a linear combination of the ngeRank v # randomly choose fromv;- 1
value and the change in PageRank values, as given in Eq. 7. if v rrRecord then
Here # parameter balances the importance of the two aspects. We UM # U &{v}, V- 1 # Vi 1\{ v}
assume that inBuence past that contains at least two data points is  fRecord # rrRecord &{v}

available for every user, in order to calculate the score changes. en(ejnvc\j/rgle

Scorgv) = (1 ' #PR,(t' 1)+ #Changsg @) ProbeU" for relationships, FornG;
/I Infer network
After the selection of the users with respect to the ranking of CalculateRA v ,' (u,v) " E = Vi ( W

Scorg(v), we probe their current relations and fof®j. for E4 timesdo
. . ) (u,v) # argmax uy)se, RAuy
Round-Robin & Change Probing. Change Probing could cause Ei# E¢&{(u,v)}

the system to focus on a particular portion of the network andend for

may discard the changes developing in other parts. This is becaus@utputG

the probing scores of some vertices will be stale and as a result

these vertices may consistently rank below the top-k, despite

changes in their real scores. This bias could end up accumulatifyy degree. For an eddel, v) between any two verticas andv,
errors in the inRuence scores of these vertices and start to hRAeis dePned as follows:

an impact on the entire network. Therefore, we propose to use RA . = ! 1

Change Probing together with Round-Robin Probing, in which o 1 degredw)’ (8)
users are probed in a random order with equal frequency. In this W$_! oy .

way, we aim to probe every vertex at least once within a specipc where#, is the neighbors o¥

periodPrr st. Prr ! | V| * P/((1"' $) * k). Round-Robin The RA score,RA,, for the edge(u,V), is proportional
Change algorithm probes some portion of the network randontty the probability of an edge being formed between the vertices
and marks all probed users. Thus, any probed users are not probeghd v in the future. Based on this, we rank all the calculated
randomly again, until all users are probed at least once within RA scores. Since the edges in our network are not debned
In this method, we control the balance between change vs. randprobabilistically and are debned deterministically as existent or
selection by using a paramet®$ [0, 1]. In particular, we choose non-existent, we need to determine how many of these scored
$ * k users to probe with Change Probing gid $) * k users edges should be selected. Therefore, we debne a growth rate
with Round-Robin Probing. Eg, which is the average change in the number of edfe$) (
Network Inference. Since we are able to fetch data only for betCJNEen :?tnapshlotsl O.f the network af]Eer e>ﬁclud|n%rhe changes dug
limited number of users, there is a high probability that othi? ¢ - After calcu atln_g RA scores for all possible hew edges,
users in the network have changed their connections as well. chooseE edges \.N'th the highest scores. Using this method,
take these possible changes into account, we have incorpora\l'flgdadd new connections to the current graph, to Pnally have the

! .
link predictioninto our solution. Link prediction algorithms assigneStImateOI grap}Gt. The pseudo code of the petwork mfere.nce
based probing algorithm we use to sel&cvertices to probe is

a score to a potential new ed{e, v) based on the neighbors of " . -

its incident vertices, denoted &g and#, . The basic idea behind given in Algorithm 1.
these scores is that the two vertioesandv are more likely to 4.2 Dynamic Tweet Fetching using Topic-Based InRu-
connect via an edge #, and#, are similar, which is intuitive. ence Past

Considering social networks, two people are likely to be friendsyr dynamic tweet fetching solution makes use of the weighted

if they have a lot of common friends. There are different SCOrgHgeRank values and comprises of two steps. First, we infer
used in the Iiteratqre, including the common neighbors, Jaccarg{as evolving relationships of the network using the methods

coefbcient, Adamic/Adar, and Resource Allocation Index (RA}engained earlier in the previous section. This way we can track

We use RA as part of our approach, since it was found succesgfh estimate the changing relationships. Second, we select a subs
on a variety of experimental studies on real-life networks [8]. Ong ysers to fetch their tweet data. Specibcally, we aim to probe

pould also aglopt more advgnced pred|ct.|on algorithms such as L’f\’]subset,UtT, collect their tweets, and update the edge weights

in order the increase effectiveness of this approach. for the users inUT; all in order to formWG! for a given

RA is founded on the resource allocation dynamics of compl ¥pic C: . We then compute weighted PageRank values to bnd
networks and gives more weight to common neighbors that h PR{,J 1), (v$ WGjt for a given topicC; . To select the subset
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ALGORITHM 2: Dynamic tweet fetching vi&-W G followers/idsO, which returns user IDs for every user following
Input: Ti. ., TIP1, WPRI (t! 1),1," " [0,1], k, mRecord the specibped useh) OGET friends/id_sO, which returns user IDs
output: T for every user the §peC|b_ed user is following, ar)dOGET
for all C; tdo statuses/usgnmellngo, which returns the most recent Tweets

forall v ., do posted by the speciPed user.. For the prst two call type, we are
#rp, = Var(TIPy) allowed to makel_5 calls per window. Every call can return up
Scord (v)= (1 | 1)WPRJ (t! 1)+ ! & to 5K followers/friends. For the users who have more tt
end for v followers/friends, we have to make multiple calls, accordingly.
Ul #3$ For the third type, we are allowed to mak80 calls per window.
while |U! | % k &' do _ Each call can returr200 tweets of the queried user. Details of
V# argmax,,.; 1SCOVe’ (v) the calls are also presented in Section 2 with the accompanying
Ul # Ul &{v}, VL # VL (v} analysis.
end while We collected the network between the end of August 2014
while [U{ | % k do _ and the beginning of January 2015, with a periodl6£20 days.
v # randomly choose fromv/. ; As a result, we have obtaindd. snapshots of the Turkish usersO
if v l/ rrRejcord thenj j network with progressing timestamps. We collected the relations
rL:tRe#colga 8#;{¥r}é;/g();d#&\{/t\;}l \vh of 2.8 million users, which amounts to a total 810 million
end if edges on average. Users are recrawled for each snapshot so th:
end while . snapshots contain exact information with respect to the network.
ProbeU! for tweets, Forn) We took the brst snapshot as the initial network to calculate the
Outputth! probing scores (see Eq. 7) and the rest of the snapshots were use
end for as ground truth for the evaluation of the probing algorithms. For

the topic-based inBuence estimation, we also collected the tweets

T ) ) ) of our seed users in the same period. We constructed a datase
of usersinJ; , we use a time series of the past weighted PageRaftmed of11 snapshots containir5 billion tweets in total. We
values, named theopic-based inBuence past v. Formally, we  tae the prst snapshot as the initial tweet set as in the case of

haveTIP, = [...,WPR| (t' 2),WPR| (t' 1)]. Thisis e relationship network analysis. From this data, we built up the

performed independently for all topics of interefs; } . topic weighted networks and calculated probing scores (see Eq. 7),
There are two different approaches we employ to track ﬂé"ccordingly.
topic-based inBuence scores: In our probe simulation module, we fetch the connections of

¥ Use the global network parameters for network fetching anfle users we have selected for probing, from the real net@erk
the topic-sensitive network parameters for tweet fetchingt timet. We then update these connections (adding new ones and
This is named as th&-WG method, where globaB: is  deleting old ones) on the previously observed netwBrk ; at
used for network fetching, and topic-sensitMéG is used timet' 1, in order to obtain the estimated netwad at time
for tweet fetching. t. Finally, we compare the inBuence estimation results from the
¥ Use the topic-sensitive network parameters for both netwoggserved networIG!t with the ones from the real netwoi®;.
and tweet fetching. This is named as IMG-W G method. sgme procedure is also applied for the tweet sets.
The Prst approactz-W G, is useful for cases where globally in-  In order to include extensive number of experiments in our
Buential users are tracked, but with minimal additional resourcesaluation, we focused on the t&b0K in3uential users and
topic-based inRuential users are to be determined as well. Théstricted the network on which the scores are computed to the
might be the only viable option if the bandwidth is not enoughetwork formed by these users.
for selecting and updating the vertices separately for each topic, Figure 4 shows the in-edge distribution of the original and the
especially if the number of topics is high. For the second approaghuned network. Both follow a power-law distribution. Impact of
that isW G-W G, we construct separate netwoM&G! for each the pruning process on the network structure seems to be minimal
topic and evolve them separately. We update each network at #mel has not created any anomalies in the analysis. We also prune
end of a probing period, using the new tweets fetched to trattke tweet list according to the same t@8p0K inf3uential users,
the most inBuential vertices for each togl;. The high-level which reduced the total size of the tweet set2@M . Figure 5
algorithm for theG-W G method is given in Algorithm 2. The shows how much the network has changed over each iteration with
algorithm forW G-W G is very similar, and is omitted for brevity. respect to the previous snapshéﬁl—‘&%‘l”) and with respect to

5 EXPERIMENTS AND RESULTS the original one J(%). Here, change w.r.t. previous snapshots
In this section. we present the experimental setup and the resliﬁtcsjebned in order to have an insight about the experimental data

IS section, we p P . P and it cannot be compared with the experimental results of the
of our evaluation of the proposed algorithms. We also presen

experiments analvzing the sensitivity of the parameters used. &Y probing strategy. It represents the case where exact snapshot
P yzing y P " of the network exist locally, which is not the case in a real-

5.1 Data Sets world scenario. In a probing scenario where the exact network
We collected data using the public Twitter API, as described IR "0t available, network error is expected to increase, as we are
Section 3. These API calls are restricted by rate limit window§ontinuously building on top of the previous partial network which
These windows represedts minute intervals and the allowed@SC contains some amount of error. Therefore, iterative change
number of calls within each window can vary with respect t¥-r.t. original network better matches a real-world scenario.

the call type. Our system makes three different ca)sOGET
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107 Original 106 Pruned choosek users to probe with value_proportional to their_scores,
108 . 11l | as computed by Eqg. 7. The network is then constructed via Alg. 1.
105 & U ol ‘e, ] RRCh Probing. This is our second proposed method, which
10t f , choosess &k users to probe with Change Probing 4dd $) &k
z w0 102 ] i users with Round-Robin Probing. Whén= 0 in Eq. 7 for the
10? 107 3 Change Probing part, the method becomes similar to [11]. The
10! 10"} 1 difference is that Priority Probing increases the probe possibility
10° TR T RTERT TR AT 10° 010" 1o 1o 1o 1ot s 1oe Of @ node by its PageRank value in every step if it is not probed,

# In-Edge # In-Edge so that at some point the probe possibility becothes
We evaluate performance by comparing the quality of the
Fig. 4: In-edge distributions of the original network (on the left) anqnryential users found by each approach with that of the ideal
the pruned network (on the right). case. For this purpose, we use two different evaluation measures:
¥ Jaccard similarity between the correct and estimatedktop-
* 9 most inBuential users lists.
¥ The mean squared error (Eq. 9) of the PageRank scores. The
reported values with respect to the probing capacities of MSE
are the average values of all 11 snapshots. The values with
respect to time are the average values of different probing
capacities. Additionally, standard deviations of the values are
also reported in the discussions.

Change Rate (%)

[AVAVAVAVAY|
FIR VAVAVAVAVAVAVAVAVAN]

I
Fig. 5: Change rate of the network over each iteration w.r.t the MSE = § 1 ' (P R!t (V)" PR(v))2 (9)

previous one and w.r.t. the original one. Ve + V| \
#v$V, %V,

5.2 Evaluation of Dynamic Network Fetching 5.3 Evaluation of Dynamic Tweet Fetching

We have implemented several algorithms to compare the perfWSa e_valuate_ the performance of t_he proposed tweet fetching
mance of the proposed techniques. The details of the aIgorithFﬁghnlque W'th two basel_lnes algorithms, _namel;aPr_obe and
used are given as follows: Random ProbingThe details of these baselines are given below:
NoProbe and Random Probing. These are two baseline algo_NoProbe. This algorithm assumes that the tweet set does not

rithms. NoProbe algorithm assumes that the network does n cthange over time and use the fully observed tweet set attime

change over time and uses the fully observed network at tir?% all time points without any probing. This method represents the

t = 0 for all time points without performing any probing. It relo_worst case scenario for the dynamic tweet fetching problem.

resents the worst case scenario for dynamic network fetching. TR@ndom Probing. This algorithm randomly choosds users to
second baseline algorithm Random Probingalgorithm which collect tweets with uniform probability at each time step.
randomly choosek users to probe with uniform probability. In RRCh Probing. This is the algorithm we proposed, which greed-
the experiments, this baseline method is run 10 times and ihe choosesk users to collect tweets with value proportional
average values of these runs are used in the evaluation. to their scores describe in Eq. 7. Differently from the network
Indegree Probing. This is our third baseline algorithm that usedetching method, scores are calculated by ust Ry, for the

a very similar idea to our proposed technique from Eq. 7. ThigPic Cj, instead o Ry .
baseline method utilizes the same formula with one chande4 Experimental Results and Discussion

instead of using PageRank values it uses the indegree valuesiQk section compares and discusses the performance of the
the usersgcore(v) = (1 * #Deg,(t' 1)+ #"p oe ). proposed network and tweet probing methods with the state-
MaxG. As described in [10], users are probed with a probabibf-the-art and baseline methods using experiments executed or
ity proportional to the Operformance gapO, which is dePnedrexl datasets. We also provide an empirical interpretation of the
the predicted difference between the results of the approximaticulated topic-based inBuence scores.

solution and the real solution. BrieRy, the method incremental§{4_1 Experimental Setup

probes users which will bring the largest difference in the results. ) o )
It assumes that the inBuence of a specibc user is related to fffgndicated by Egs. 1 and 2, given the resource limits permitted
output of thedegree discount heuristidlthough their inRuence PY the service providers, one cannot probe a signiPcant portion
determination function is different than ours, we use the Max@ the network. We have executed our experiments with different
algorithm for performance evaluation of our proposed algorithmRl©bing capacities and us€d01% 0.01% 0.1% and1% of the

. . . . . . network as the size of the probe set. For the analysis of the effect
Priority Probing. As described in [11], this algorithm choosesmc the # parameter used in Change Probing, we spt# = 0
users to probe according to a value proportional to their prioritier%. aning PageRank proportional scores aré ubpdt = 0 5’
Priority of a node is debPned as the value of its PageRank Sc%eéaning equally weighted PageRank and inRuence pas.t ’score<
For every iteration of the method, if a node is not probed, the '

; . o . are usedp) # = 1, meaning only inRuence past scores are used.
current PageRank value is added to its priority and if the node#%r the RF\ZCh algorithm wgtestZd the ratio ;E)ararrﬁtwfrth three
probed, its priority is reset to O.

values, which control the fraction of vertices proved via random
Change Probing. This is our Prst proposed method, whichselection:0.4, 0.6, andO.8.
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5.4.2 Change Probing Performance w.r.t. # Time Stamps

Figure 6 depicts the performance of Change Probing algorithm for ~ (P) Average Jaccard similarity for all probing capacities.
the average Jaccard similarity and MSE measures. As expected,Fig. 7: Performance of Change Probing as a function of time.
Change Probing algorithm signibcantly outperforeProbeal-

gorithm. For the optimization of th# parameter, we test Change . .
Probing algorithm under three differeficonbgurations: values are normalized. We have assurh&Probealgorithm as

i . the reference point for normalization.
¥ Using the MSE measuré#,= 0.5 setting perform8% better
than# = O setting and19% better than# = 1 setting. 9-4-3 RRCh Probing Performance w.r.t. $
Overall, it performs83% better tharNoProbe Figure 8 shows the performance results for the Round-Robin
¥ Using the Jaccard distance measufes 0.5 setting is3% Change (RRCh) Probing algorithm under different round-robin
better thar# = O setting andb% better thar = 1 setting. In ratios. We use the Change Probing algorithm (with= 0.5
the overall case# = 0.5 outperformsNoProbeby 43% We  setting) as the baseline reference point.
also note that as the probing capacity increases, performancewe observe that the RRCh algorithm performs poorly for small
of the Change Probing algorithm becomes less dependentgBbing capacities, such @001% and 0.01% Randomness
the setting of#. impacts the performance more with smaller number of probed
We also illustrate the change in error as the network evolvessers, since we are not able to probe the inBuential users with
in order to see how the performance of different algorithms aggeat inRuential power, thus lowering the performance. For MSE,
affected as the seed network data ages. Figures 7a dnshdty  $ = 0.8 conbguration performg% better thars = 0.6 and12%
the performance of Change Probing as a function of time foetter thars = 0.4. For the Jaccard similarity measure, itA%6
the mean squared error (MSE) and Jaccard similarity measurastter than$ = 0.6 and 7% better than$ = 0.4. Although, it
respectively. We observe thhlioProbehas an increasing error asperforms worse than Change Probing in the short term, it reaches
time passes. Change Probing gives a more robust and stable petf@-performance of Change Probing in the long term, as show
mance with respect to time. As the number of past inRuence poifitsn Figures 9a and 9b. Moreover, it guarantees the probing of
increases, the algorithm can estimate the inBuence variability efery node within a time frame, preventing the system to focus on
the users more accurately, which compensates the deterioratindy a limited section of the network and missing other regional
effect of aging of the baseline network data. Sifte= 0.5 changes that might accumulate and start to affect the network
outperforms the other cases, we use= 0.5 conbguration in in the global sense. We would have seen this phenomenon more
the subsequent experiments with other algorithms. We also neuplicitly if the number of snapshots were larger, which was the
that y-axis contains relatively small values because the PageR&ake in [10]. The results are slightly better when the ratio is set
to $ = 0.8. Therefore, we choose to use this algorithm (with
7. Jaccard similarity reports the average values of all three probing capagit= 0 5 and$ = 0.8 conbgurations) instead of Change Probing
settings. . . . . .
for the comparison with others in the following sections.
Figure 10 shows both the percentages of edges that were nof
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present in the the true network but were assumed to be present Time Stamps
by the algorithm (false positives) and the percentages of edges
that were present in the true network but were not captured by the
algorithm (false negatives). The Pndings indicate that the proposed ~ Fig. 9: Performance of RRCh as a function of time.
technique is doing a good job at capturing the structure of the

network by having on averagE2% false positives an®% false
negatives rates for all snapshots.

5.4.4 Comparison with the State-of-the-Art

Figure 11 compares the performance of RRCh method (#ith

0.5 and$ = 0.8 settings) against the baselines and the state-of-
the-art methods from the literature. RRCh achieves better results
for all performance measures used for comparison in our paper. It

(b) Average Jaccard similarity for all probing capacities.

reduces MSE b1% (see Figure 11a) when compared to Priority
Probing,41%when compared to Indegree Probing @#¥when Fig. 10: False positives and false negatives rates for every snapshot in
compared to the MaxG method. Priority Probing suffers especially time.

for low probing capacities, since the priority of a user is seb to
after probmg_. A probed user can regain its priority very late in th8e1grade over time (see Figures 12a and 12b).
process, which prevents it to track quick changes in the scores o

he highlv inR ial Theref ﬁ bi . As mentioned before, in real-world scenarios one might not
the \ghly in uer_ma users. 1herefore, after probing an IMPOrtapl jnterested in the exact rank of the inBuential users but instead
user in terms of infBuence, that user is not being probed for so

. . . ) . ?ght select top-k users and evaluate them by personal observa-
time, even if the inBuence of the user is changing very fast. RR

| bes . f th di heir inR n, because the ranking may not be so accurate. Yet, we also
always probes portion of the users according to their in uenc%ompared the probing techniques against a rank-aware similarity

|mp§ct and chanli]e over time, so that the important users are in mgasure. Figure 13 shows the performance of alternative probing
probe set at each step. om0 i strategies based on the Kendall Tau-b metric. The results are the
Overall, our proposed method give8% higher performance average values from all of the snapshots. RRCh gig®s higher

than the NoProbe and Random Probing algorithms for the Msgrformance than Random probing8% higher than Indegree

measure. As seen in Figure 11b, RRCh shows better results Bbing 47% higher than MaxG method an0% higher than
the top-k set similarities as well. It i8% better than Priority Priority I,Drobing

Probing, 7% better than Indegree Probing add % better than i
MaxG method on average. RR Change perfom better 545 EValuathn Of the NetVVOI’k |nference Method

against baselines when Jaccard similarity is considered. Sincgdtassess the prediction quality of the link prediction algorithm,

also considers the change in the infSuence over time, it is also aile plotted the histogram of the edges proposed by RA index
to preserve its accuracy while the performance of other methods
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that has really occurred in the real network. This is shown in
Figure 14. The histogram indicates the accuracy of the RA index
used for network inference. The edges that were determined
the prediction algorithm as more likely to happen were foun
to be existent in the future network with a higher probability.
However, when we analyzed the incorrectly predicted edges, we
have observed that the algorithm predicts links between users who
are unlikely to follow each other in real life. For example, the
algorithms predict an edge between two pop stars since they have
many common neighbors. However, they would not follow each
other because they are main competitors. Furthermore, some of
these users are not willing to follow anybody at all. This is the
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same issue studied in [12]. Link prediction algorithms typically do o0 e NoProbe|
not consider these facts in social networks. In addition to indexes g 0o . M
which they use to calculate similarities between users, they should o +—+ Indogree
also consider the tendency of the users to make new connections. 002 : T ety

Therefore, we apply a bltering process such that we only consider
users who follow more than a threshold number of users in order
to determine users who are likely to follow somebody. We adgig. 13:
the predicted edges only to these selected users. As a result, we
improve the RRCh method b$% for MSE and2% for the set
similarities on average. Since the improvements are not signibcant,
we omit the plots of those results for brevity. Here, adaptation of
more advanced (like mentioned in 4) prediction algorithms could
potentially increase the accuracy of this technique. Moreover,
the computational overhead of the link prediction task is not
signibcant due to the pruning process applied for the experiments.
The task takes less than a hour for one iteration. The time would
signibcantly increase for the size of original networks.

5.4.6 Evaluation of the Topic Inuence Estimation

We evaluated the inBuence of users with respect to four different
topics: a) Politics, b) Sport, c) Health, andd) Cultural and Art
Activities. This section provides a qualitative discussion about

0.008

10'%

10'2
Probing Capacity (%)

10"

(b) Average Jaccard similarity for all probing capacities.

?{g. 12: Comparison of the Probing strategies with respect to time.

Comparison of the probing strategies with respect to average
Kendall Tau-b measure.

Fig. 14:

Accuracy of the link prediction algorithm.

Probabilities
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the accounts which were found to be inBuential by the proposed

methods. Table 1 shows the accuracy of topic relevance of the = - hWT

top-10 users found by the system for the specibc topics. w

Topics Topic Relevance Some selected accounts

" RT_Erdogan, kilicdarogluk, T
Politics 10 out of 10 o6melikgokcek o
Fenerbahce, GalatasaraySK, 02

Sport 8.5 out of 10 ntvspor L " " ]
Health 4 out of 10 saglikbakanligi, YYDtr, o
istabip (a) MSE
Cultural and Art 9 out of 10 CMYLMZ, AtlasTarihDergi, top 100
Activities u Siirler_sokakta Lo e

09 -
08 R 1
07 .//k/'
06 //‘
05 q
04 i
03

TABLE 1: Estimated inRuential accounts.

For the evaluation of the results, we performed a small sur-
vey containing 10 people chosen among graduate students who

are closely interesteq in social media: We .asked participants tg O [ BT L -
evaluate the users with respect to their topic relevance and their 10 top 1000, Probing Capacity (%)
inBuence on the topic. All participants were shown all inRuential o e e —.—_—.,—,

- . o %‘0‘8/" 7 e—e NoProbe
account for all topics. In order to identify inBuence of a user, we L ¥—v Random
asked participants to mark one of the following catego@gsery g o0 ] - ggg: e
inBuential (1)b) inRuential (.5),c) not infRuential (0). Results are Zo4 1 —
aggregated as average and roundedSogrecision. We used the ot . .

. . 103 0?2 ot @

results of the survey to provide an evaluation of the selected users ' Probing Capaciy (0§)

for the Turkish Twitter network, on a per-topic basis.

For the topic Politics, the results are very accurate for top-
10. We have observed that the dictionaries constructed for eddp. 15: Performance of Change Probing for dynamic tweet fetching.
topic has a big impact on the results. For example, we observe

that the dictionary constructed for Politics topic contains manysars are perfectly matched with the keywords. CMYLMZ is
keywords that are related only with politics without any ambiguity, very famous Turkish comedian, actor and producer. He also

These keywords have increased the performance of the semaplic one of the highest follower numbers in the Turkish Twitter
analysis, which in turn increased the accuracy of the topic-ba ork. AtlasTarihDergi is a history magazine tweeting mainly

network inBuence_ analysis. Top-10 list cpntains the presideffo ¢ historical events and information which has considerable
of Turkish Republic (RTErdogan), the chairman of one of the;ount of followers and RTs. The third user (Siirlsokakta)

opposition parties (kilicdarogluk), and the mayor of the capital Cityy5res street poems and mottos, and itOs posts receive many R
(0O6melikgokcek). It is fair to assume that these users, who gi¥g 4 Fays.

political messages in their tweets and who have lots of followers, ) ) )
should be in the top-10 inRuential list on Turkish Politics topic. 2-4-7 Evaluation of Dynamic Tweet Fetching
The inBuential accounts for the Sport topic were the biggegte have used the same default parameter settings from the net
sport clubs of Turkey (Fenerbahce, GalatasaraySK) and one of fasrk fetching experiments to evaluate our proposed tweet fetching
highest rating sport channel (ntvspor). Their tweets were mostyethods. For the simplicity, we only evaluate the case of topic
related to the sport competitions, news from clubs, etc. They hawelitics.
a lot of followers who actively pay attention to what they tweet. Figure 15 shows the performance of the RRCh method for
Thus, they achieve high RT and Fav statistics, which shows thitnamic tweet fetching. For the MSE measure, global network
they have a big impact on their followers. Itis very reasonable thedsedG-W G method performs’8% better, and topic network
they are the top inBuential accounts on this topic. basedW G-W G method perform#&0% better than the baselines,
As intuitively expected, the inlRuential accounts for the Healtbn average, respectively. In Figure 15b, we see that as the prob-
topic are mostly doctor associations and governmental authoritiggy capacities increas&-W G method achieves almost perfect
One of the accounts is Republic of Turkey Ministry of Healtlsimilarity against the results obtained using the original network,
(saglikbakanligi), which mainly tweets about hospitals, doctorfpr the top10 inBuential users. For the tapB00inRuential users
and health regulations. Its follower numbers can be consideredperiment, it reaches close @® similarity. Together with\V G-
as relatively high and is followed by other inBuential accounty¥/ G method, they quickly reach close to their top performance
Since its tweets have critical news potential, it has consideralliearoundl% capacity, except for the topo case. For the latter,
number of RTs about the health topic. The other two are doct®f G-W G method does not enjoy the quality increase that the
associations (YYDtr, istabip). They are followed by many doc-G' W G method enjoys with increasing capacities. When we look
tors, which also have some potential impact on the Health topit.the Jaccard similarity based resusW G achieves 7%better
In this topic, accurate relevance ratio is relatively low because thad W G-W G achieves65% better results than the baselines.
constructed dictionary for this topic is not specibc enough, causiagerall, the results show us that using the globally maintained
errors in semantic analyses that propagates to the latter phasaeivork is more advantageous.
inBuence estimation. Although G-WG method outperformsV G-WG method
The Cultural and Art Activities topic includes users whiclwhen we compare the tapd results for the two methods, they are
tweet about movies, art, books, history, etc. The top-10 inBuentgiilar in terms of the topic relevance of their top inBuential users.

(b) Jaccard similarity
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Table 2 shows the topic relevance ratios for the two methods. TdpHowing a wide variety of different methodologies. Within this
10selected users are found to be related with the topics of interesttext, some studies introduce centrality measures in order to

and are popular accounts in the topic area. reect inBuence of users. [13] introduces several debpnitions,
Topics Topic Relevance such a_sdegree _centralitybgtweenljess_ centraljtynd closeness
Politics 10 out of 10 10 out of 10 centrality. For viral marketing applications, [14] develops meth-
Sport 8 out of 10 9 out of 10 ods for computing network inBuence from collaborative pltering
Health 5 out of 10 4 out of 10 databases by using heuristics in a general descriptive probabilistic
C“'f:éfi‘\'/f‘tig‘i Art 9 out of 10 9 out of 10 model of inBuence propagation. [15] addresses a similar problem
G™ WG method | WG ™ WG method by studying the linear threshold and independent cascade models

. ] ] and [16] presents a simple greedy algorithm for maximizing the
TABLE 2: Top-10topic relevance ratios fdB-WG andWG-WG  gnreaq of inBuence using a general model of social inRuence,

for dynamic tweet fetching. termed the decreasing cascade model.
Recently, researchers have studied extracting textual informa-

6 FUTURE DIRECTIONS tion associated with social networks. [17] studies topic modeling
In this section we discuss improvements and extensions to dmisocial networks and proposes a solution for text mining on the
work that are left as future research directions. network structure. [18] introduces the topic-based social inBuence

First, the simulation technique used in this study for evaluatiigfoblem. Their proposed model takes the result of any predePned
the probing strategies does not take into account the followittgPic modeling of a social network and constructs a network rep-
two aspectsi) a snapshot of the network collected as groungesenting topic-based inBuence propagation. Distributed learning
truth data does not represent an instantaneous snapshot and ingigdithms are used for this purpose, which leverage the Map-
is the result of crawling, which takes non-negligible amount dfeduce concept. Thus, their methodology scales to large networks.
time, andii ) the simulation of probing strategies assumes that tf9] combines heterogeneous links and textual content for each
network does not change as the probing happens, but in a réiger in order to mine topic-based inf3uence. In another seminal
world scenario the network can evolve during this time. A futur&ork, [20] studies topic-speciPc inBuence by using PageRank.
direction for having more accurate simulation results is to consider Another recent study [21] uses a PageRank-like measure to
the probing time explicitly as part of the simulation, while at th&@nd inBuential accounts on Twitter. They extend PageRank by
same time modeling the network change as a random process.using topic-specibc probabilities in the random surfer model.

Second, this study focuses on effectively probing the netwofdthough their method is similar to ours, their inRuence measure
for capturing edge updates, which constitutes the majority of thélizes the number of posts made on a specibc topic. However,
change in the social network. Yet, node additions and deletiothés is an indirect measure that cannot reliably capture inBuence.
also take place in a dynamic network. Our proposed systerherefore, we use topic distributions of user posts along with
handles node updates by periodically repeating the seed IRgir sharing statistics (re-tweets and favorites in Twitter), which
construction process. We leave it as a future work to integra€ovides robust results, as it takes into account the real impact
node update into the edge probing process. of posts. [22] conducts an empirical study of different topic

Third, for the topic-based network construction, we ignore th®odeling strategies based on standaatent Dirichlet Allocation
impact of individual tweets. We maintain a keyword corpora foiLDA) [23]. [24] proposes joint probabilistic models of inBuence
user tweet sets and perform our topic analysis over these corpévad topics. Their methodology performs a topic sampling over
For approximating a userOs inBuence on a particular topic, igstual contents and tracks the topic snapshots over time. [25] uses
scale her RT and FAV statistics with the relative relevance of heg-tweets in measuring popularity and proposes machine learning
tweet set with the given topic. This is not as accurate as analyziigghniques to predict popularity of Twitter posts. [26], [27], [28]
individual tweets. This is because a user may be tweeting moggifppose solutions for predicting popularity of online content. [29]
about one topic, yet receiving most of her RTs and FAVs fattudies the topic-aware inRuence maximization problem. Within
tweets posted about another topic. Integrating a topic classiltis context, in this work we introduce a new method that com-
that works at the granularity of individual tweets is left as a futureines topic-based analyses of posts with their sharing popularity
work. Luckily, such a classiPer can be easily plugged into ofer the purpose of topic-based inBuential user estimation.
framework. Similarly, topic classibcation techniques that are more Dynamic graph analysis has also attracted a lot of attention
advanced than the weighted keyword dictionaries we employedrgcently. In order to maintain dynamic networks, [30], [31],
this study can be integrated into our framework with ease. [32], [33], [34] propose algorithms for determining web crawl-

Last, another interesting future research direction is utilizingg schedules. [35] studies the microscopic evolution of social
a technique that can dynamically adjgst which controls the networks. [36] studies incremental PageRank on evolving graphs.
balance between the last PageRank score and the change in rddefaearches have also investigated probing strategies for analyzin
PageRank scores in Eq. 7. Here, one can use an adaptive v&N@lving social networks. [11] proposes infBuence proportional
at each iteration, tuned for each user based on some heuristic.%@bing strategies for the computation of PageRank on evolving
intelligent way of performing adaptiv control could potentially networks and [10] uses a probing strategy to capture observed

improve the accuracy of the proposed techniques. image of the network by maximizing a performance gap function.
7 R W [37], [38], [39] study sampling over social networks. However,
ELATED WORK these studies only focus on current image of a network in their

Increases in the popularity of social networks and the availabiliprobing strategies. In contrast, we propose a method which also
of public data acquisition tools for them have put social network®nsiders evolution of the probing metrics, so that the network
on the spotlight of both academic and industrial research. Infizsuld be probed more effectively.

ential user estimation problem is studied by many researchers In the context of network inference, [40] proposes representa-
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tions for structural uncertainty and use directed graphical modg# W. Xing and A. Ghorbani, OWeighted pagerank algorithmCommu-
and probabilistic relational models for link structure learning.  nication Networks and Services Research, 2004. Proceedings. Second

. . Annual Conference on IEEE, 2004, pp. 305D314.
However, their methodologies are not scalable. [41], [42], [4%] M. Naaman, J. Boase, and C.-H. L;?Ols it really about me?: Message

use time evolving graph models for social network estimation. content in social awareness streams,@rateedings of the 2010 ACM
They apply time-varying dynamic Bayesian networks for mod- Conference on Computer Supported Cooperative Waek CSCW O10.

; ; ird- ; New York, NY, USA: ACM, 2010, pp. 189D192. [Online]. Available:
eling evolving network structures. [44] shows that third-parties http://doi.acm.org/10.1145/1718918.1718953

can reach a userOs information by searching a few friends. [#p] p." Analytics, OTwitter studyPaugust 20098an Antonio, TX:
develops a scalable algorithm to infer inBuence and diffusion Pear Analytics. Available at: www. pearanalytics. com/blog/wp-

network based on an assumption that all users in the network content/uploads/2010/05/Twitter-Study-August-2009. 2089.

. . . . s ] M. Hibon and S. Makridakis, OArma models and the boxBjenkins method-
inBuence their neighbors with equal probability. [46] removed ology,0 1997.

this assumption and addresses the more general problemd)y L. Lw and T. Zhou, OLink prediction in complex networks: A survey,O
formulating a maximum likelihood problem and guarantee the Physica A: Statistical Mechanics and its Applicatiorsl. 390, no. 6,

optimality of the solution. [47] proposes a linear model to prediié] pp. 115091170, 2011.

h diffusi fold . d 148 h . L. Backstrom and J. Leskovec, OSupervisgd random walks: predicting
ow diffusion unfolds over time and [48] proposes the notion and recommending links in social networks,®iioceedings of the fourth

diffusion centrality. [49], [50] studies a different problem related to  ACM international conference on Web search and data miningCM,
network inference. Different from these works, we use friendshiﬁ)o] 2011, pp. 635D644.

s . . ; . H. Zhuang, Y. Sun, J. Tang, J. Zhang, and X. Sun, OInRuence maximiza-
weighting method in order to infer link structures, similar to [51]E tion in dyﬂamic social net?NorkS’O D%ta Mining (ICDM), 2013 IEEE

[52], [53]. However, we use friendship weights only to infer edges  13th International Conference pbec 2013, pp. 1313D1318.
between users. [54] proposes a kernel based method and [55] dsEsB. Bahmani, R. Kumar, M. Mahdian, and E. Upfal, OPagerank on an
a continuous time model for inference. Moreover, one can also evolving graph,O iRroceedings of the 18th ACM SIGKDD international

. . . ., conference on Knowledge discovery and data mini M, 2012, pp.
use more informative features such as content-based inBuential 543> 9 i nac PP

effects. [56] studies diffusion of tweets throughout the Twitte2] H. Li, S. S. Bhowmick, and A. Sun, OCasino: towards conformity-aware
network. This kind of technique could also be used in order to social inBuence analysis in online social networks,®roteedings of
; ; the 20th ACM international conference on Information and knowledge
estimate impact of posts. management ACM, 2011, pp. 100791012
8 CONCLUSION [13] S. WassermanSocial network analysis: Methods and applications
Cambric_!ge university press, 1994, vol. 8
The rate restrictions enforced by social network service providdig] P. Domingos and M. Richardson, OMining the network value of cus-

. . . . tomers,O irProceedings of the seventh ACM SIGKDD international
have a negative impact on the third-party evolving network conference on Knowledge discovery and data miningA\CM, 2001,

analysis tasks. Therefore, we proposed probing algorithms to pp. 57p66.
dynamically fetch network topology and text data from socidl5] D. Kempe, J. Kleinberg, an&. Tardos, OMaximizing the spread of

networks under limited probing capacities. Our proposed solutions nfuence through a social network,OFroceedings of the ninth ACM
h tink trends of the users. as well as their current SI}G‘KDD international conference on Knowledge discovery and data
use the past inlSuence trends o ' mining ACM, 2003, pp. 137D146.

inBuences, in order to determine the best users to probe, with th@ NN, OInBuential nodes in a diffusion model for social networks,O in
aim of maximizing the inRuence estimation accuracy. In particular, Automata, languages and programming Springer, 2005, pp. 11278

- : ; - . 1138.
we observed that highly inBuential users and users with strong 141 Q. Mei, D. Cai, D. Zhang, and C. Zhai, OTopic modeling with network

Buence trends affect the overall inuence estimations the most. We regularization,0 ifProceedings of the 17th international conference on
have leveraged these two metrics across our probing algorithms. World Wide Web ACM, 2008, pp. 1019110. N
Experimental results have shown that considering past trendd%#l J- Tang, J. Sun, C. Wang, and Z. Yang, OSocial inSuence analysis in large-

th bi trat . th I fink scale networks,0 Proceedings of the 15th ACM SIGKDD international
€ probing strategy Increases the overall accuracy or INlSUeNnCe ¢qnference on Knowledge discovery and data miningCM, 2009, pp.

prediction. Furthermore, we improved our probing strategies by 8o7psuise. .
inferring possible relations between users via link predictio#9] L. Liu, J. Tang, J. Han, M. Jiang, and S. Yang, OMining topic-level

algorithms. We also developed techniques for estimating topic- MBuence in heterogeneous networks,Gripceedings of the 19th ACM
international conference on Information and knowledge management

based user inBuence in dynamic social networks. For computing acm, 2010, pp. 199D208. i
topic-based inBuence, we proposed methods that consider bi@th T. H. Haveliwala, OTopic-sensitive pagerank Prateedings of the 11th
the place of the user in the network topology, as well as the tOFiiC international conference on World Wide WeACM, 2002, pp. 517D526.

Vsi f d th t d th hari tati 21% J. Weng, E.-P. Lim, J. Jiang, and Q. He, OTwitterrank: Pnding topic-
analysis perrormed on the user posts and the sharing sStatistiCs ggngitive inRuential twitterers,O roceedings of the third ACM inter-

of these posts. Our experimental results performed on Twitter national conference on Web search and data miningCM, 2010, pp.
network data has shown improved accuracy compared to state- 2619270.

tho ; [22] L. Hong and B. D. Davison, OEmpirical study of topic modeling in
of-the-art methods from the literature. twitter,O inProceedings of the First Workshop on Social Media Analytics

ser. SOMA 010. New York, NY, USA: ACM, 2010, pp. 80D88.
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