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Topic-Based Inßuence Computation in Social
Networks under Resource Constraints
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Abstract ÑAs social networks are constantly changing and evolving, methods to analyze dynamic social networks are becoming more
important in understanding social trends. However, due to the restrictions imposed by the social network service providers, the
resources available to fetch the entire contents of a social network are typically very limited. As a result, analysis of dynamic social
network data requires maintaining an approximate copy of the social network for each time period, locally. In this paper, we study the
problem of dynamic network and text fetching with limited probing capacities, for identifying and maintaining inßuential users as the
social network evolves. We propose an algorithm to probe the relationships (required for global inßuence computation) as well as posts
(required for topic-based inßuence computation) of a limited number of users during each probing period, based on the inßuence
trends and activities of the users. We infer the current network based on the newly probed user data and the last known version of the
network maintained locally. Additionally, we propose to use link prediction methods to further increase the accuracy of our network
inference. We employ PageRank as the metric for inßuence computation. We illustrate how the proposed solution maintains accurate
PageRank scores for computing global inßuence, and topic-sensitive weighted PageRank scores for topic-based inßuence. The latter
relies on a topic-based network constructed via weights determined by semantic analysis of posts and their sharing statistics. We
evaluate the effectiveness of our algorithms by comparing them with the true inßuence scores of the full and up-to-date version of the
network, using data from the micro-blogging service Twitter. Results show that our techniques signiÞcantly outperform baseline
methods (80% higher accuracy for network fetching and 77% for text fetching) and are superior to state-of-the-art techniques from the
literature (21% higher accuracy).

Index Terms ÑEstimation, evolving social networks, dynamic network probing, incomplete graphs, topic-sensitive inßuence.
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1 INTRODUCTION

Analysis of social networks have attracted signiÞcant research
attention in recent years due to the popularity of online social
networks among users and the vast amount of social network
data publicly available for analysis. Applications of social network
analyses are abound, such as inßuential user detection, community
detection, information diffusion, network modeling, user recom-
mendation, to name a few.

Inßuential user detection is a key social analysis used for
opinion mining, targeted advertising, churn prediction, and word-
of-mouth marketing. Social networks are dynamic and constantly
evolving via user interactions. Accordingly, the inßuence of users
within the network are also dynamic. Beyond the current inßuence
of users, tracking the inßuence trends provides greater insights
for deeper analysis. By combining the patterns of the past with
the current information, comprehensive analysis on customers,
marketing plans, and business models can be performed more
accurately. For example, forecasting future user inßuences can be
used to detect Ôrising starsÕ, who can be employed in upcoming
on-line advertisement campaigns.

In this paper, we address the problem of identifying and
tracking inßuential users in dynamic social networks under real-
world data acquisition resource limits. The current approaches
for inßuence analysis mostly assume that the graph structure
is static, or even when it is dynamic, the data is completely
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known and stored in a local database. However, in many cases,
analysts are third-party clients and do not own the data. They
cannot keep the data completely fresh as changes happen, since
it is typically gathered from a service provider with limitations
on resources or even on the amount of data provided. Third-
party data acquisition tools access the data via rate-limited APIs,
which constraint the fetching capacity of clients. These externally
enforced limits prevent the collection of entire up-to-date data
within a predetermined period. To this end, we present an effective
solution to rate-limited fetching of evolving network relations and
user posts. Our system maintains a local, partially fresh copy of the
data and calculates inßuence scores based on inferred network and
text data. The proposed solution probes limited number of active
users whose inßuence scores are changing signiÞcantly within the
network. By combining previous and the newly probed network
data, we are able to calculate the current user inßuences accurately.
The local network copy is maintained while consuming resources
within allowed limits, and at the same time, inßuence values of
the users are computed as accurately as possible.

While computing and maintaining inßuence scores, we con-
sider both global and topic-based inßuence. Active and inßuential
users mostly affect the general opinion with respect to their topics
of authority. For instance, a company marketing sports goods will
be interested in locating users who have high inßuence in sports,
rather than the global community. While this leads us to consider
topic-based analyses in our problem setting, general inßuence
scores of users are still of interest as well. For instance, a politician
would prefer a broader audience and identify a list of globally
inßuential users to promote her cause. In our system, we utilize
both global and topic-based networks and compute global as well
as topic-based inßuences.



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, XXX 2016 2

To demonstrate the effectiveness of our solutions, we use
Twitter [1]. Twitter is a good Þt for research on dynamic user
inßuence detection due to its large user base and highly dynamic
user activity. One can collect two-way friendship relations as well
as one-way follow, re-tweet, and favorite relations via the publicly
available Twitter APIs. These APIs have well-deÞned resource
limits [2], which motivates the need for our probing algorithms.
We calculate PageRank [3] on the Twitter network as the inßuence
score for the users. To generate topic-based inßuence scores, we
adapt the weighted PageRank [4], and adjust the initial scores
and transition probabilities based on topic relevance scores of the
users. The topic relevance scores are computed based on user
posts, using text mining techniques, as well as the re-tweet and
favorite counts of the tweets.

To further improve the accuracy of our network inference,
we perform link prediction using trends on user relationships.
The proposed solution shows increased accuracy on Twitter data
when compared with other methods from the literature. Estimated
network structure is shown to be very close to the actual up-to-date
network, with respect to inßuential users. The proposed solutions
address not only the limitations of data fetching via public APIs,
but also local processing when the resources are limited to fetch
the entire data. We summarize our major contributions as follows:

¥ We estimate global and topic-based inßuence of users within
a dynamic social network. For topic-based inßuence estima-
tion, we construct topic-based networks via semantic analy-
ses of tweets and the use of re-tweet and favorite statistics for
the topic of interest.

¥ We propose efÞcient algorithms for collecting dynamic net-
work and text data, under limited resource availability. We
leverage both latest known user inßuence values, as well
as the past user inßuence trends in our probing strategy.
We further improve our probing techniques by applying link
prediction methods.

¥ We evaluate our proposed algorithms and compare results
to several alternatives from the literature. The experimental
results for relationship fetching used for inßuence estimation
show that the proposed algorithms perform80% better than
the baseline methods, and21%better than the state-of-the-art
method from the literature in terms of mean squared error. For
tweet fetching methods used for topic-based inßuence detec-
tion, our algorithms perform77% better than the alternative
baselines in terms of the Jaccard similarity measure.

The rest of this paper is organized as follows. Section 2
describes the resource constraint problem for data collection. Sec-
tion 3 gives the overall system architecture and presents inßuence
estimation techniques. Section 4 explains algorithms and strategies
proposed for the network and text fetching problems. Section 5
discusses results obtained from experiments run on real data.
Section 7 discusses related work. Section 8 concludes the paper.

2 PROBLEM DEFINITION

Our goal is to determine top-m inßuential users in the network,
under a constrained probing setting. Among various methods
to calculate a userÕs inßuence in the network, we have chosen
PageRank based methods, since PageRank is well understood and
used widely in the literature for various network structures. While
computing inßuence, PageRank naturally considers the number of
followers a user has, but more importantly it takes into account
the topological place of the user within the network. Therefore,
we assume that a userÕs inßuence in the network corresponds

to its PageRank score. As a result, the top-m inßuential user
determination problem turns into identifying the top-m users with
the highest PageRank scores. One can also utilize other approaches
that can outperform PageRank for estimating social inßuence
within our framework. These approaches need to produce a single
score that will be calculated periodically for every user.

PageRank score calculation requires having access to all the
relationships present between the users of the network. This means
that we need to have the complete network data to compute
exact PageRank scores. Moreover, if the network is dynamic, the
calculation needs up-to-date network data for each time step in
order to perform accurate inßuence analysis.

Our system continuously collects social network data (rela-
tions, tweets, re-tweets, etc.) via the publicly available Twitter
API. Twitter enforces certain limitations on data acquisition using
the Twitter APIs. There are different limitations for different types
of data acquisition requests:

¥ Relations1: 15 calls per 15 minutes, where each call is for
retrieving a userÕs relations. Moreover, if the user has more
than5K followers, we need an extra call for each additional
5K followers. This means that we can update relations with
a maximum rate of1 user per minute (Rrel = 1 user/min).

¥ Tweets: 180 calls per 15 minutes, where each call is for
retrieving a userÕs tweets. Moreover, if the user has more
than 200 tweets, we need an extra call for each additional
200 tweets. This means that we can update tweets with
a maximum rate of12 users per minute (Rtwt = 12
user/min).2.

Assuming that we update the network with a period ofP days,
we need the following condition to hold, in order to be able to
capture the entire network of relations:

Number of Users! Rrel áP á1440 (1)

For getting the recent tweets of the users, we need:

Number of Users! Rtwt áP á1440 (2)

One can easily calculate that for a network as small as250K
users, we need174 days to update the complete network in the
best case3. This analysis shows that the rate limits hinder the
timeliness of the data collection process, which in turn affects the
timeliness of the calculation process to Þnd and track inßuential
users in the network. Furthermore, Twitter is a highly dynamic
network that evolves at a fast rate, which means that refreshing the
network infrequently will result in signiÞcant degradation in the
accuracy of the inßuence scores. Current resource limits prohibit
the system to collect the network data in a reasonable period of
time. Therefore, the evolving networkÕs relationships and the tweet
sets are not fully observable at every analysis time step.

To overcome this limitation, we propose to determine a small
subset of users during each data collection period, whose infor-
mation is to be updated. This data collection process, which does
not violate the rate limits of the API, is sufÞcient to maintain
an approximate network with a reasonable data collection period,
while at the same time providing good accuracy for the estimated
inßuence scores.

1. For the relations, Twitter provides two different APIs: one for fetching the
user IDs for every user following a speciÞed user, and another for fetching the
user IDs for every user a speciÞed user is following. Our system utilizes both
APIs, however for brevity of the rate limit calculations details are omitted.

2. the best case, if all users have! 200 tweets on their timelines
3. if all users have! 5K followers, requiring a single call per user.
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We apply the concept ofprobing for efÞcient fetching of the
dynamic network and the user tweets. We denote a network at time
t asGt = { Vt , Et } , whereVt is the set of users andEt " Vt # Vt
is the set of edges representing the follower relationship within the
network. In other words,(u, v) $ Et means that the useru $ Vt
is following the userv $ Vt . Our model uses an evolving set of
networks in time, represented as{ Gt | 0 ! t ! T} . However,
we assume that we have fully4 observed the network only at time
t = 0 . Gt wheret > 0, can only be observed partially by probing.
At each time period, we use an algorithm to determine a subset of
k users and probe them via API calls. We then update the existing
local network with the new information obtained from the probed
users. In effect, we maintain a partially observed networkG

!

t ,
which can potentially differ from the actual networkGt . Largerk
values bring the partial networkG

!

t closer to the actual network
Gt . However, using largek values is not feasible due to rate limits
outlined earlier. Our probing strategy should select a relatively
small number of users to probe, so that the data collection process
can be completed within the periodP (as determined by Eq. 1).
Furthermore, these probed users should bring the most value in
terms of performing accurate inßuence detection.

Dynamic Network Fetching Problem DeÞnition: We assume
that complete network information is available only at time0, i.e.,
G0 is known. The problem is deÞned as determining a subset of
users of sizek at time t (wheret % 1), denoted byUN

t " Vt
s.t. |UN

t | = k, by analyzing the local graphG!
t " 1. The system

will retrieve the partial graph related withUN
t , which is denoted

asGp
t (UN

t ) = ( V p
t , E p

t ) whereV p
t = UN

t , and update the rela-
tionships of the users included in this subset to construct the local
network at timet, that isG!

t . We deÞne the additions and deletions
to the network as!( UN

t ) = G!
t " 1 \ Gp

t (UN
t ) and "( UN

t ) =
Gp

t (UN
t ) \ G!

t " 1, respectively. Using these deÞnitions we can Þnd
the network at timet, asG!

t = G!
t " 1 & !( UN

t ) \ "( UN
t ).

We aim to chooseUN
t such that the inßuence scores of the

estimated networkG!
t will be as close as possible to the true scores

of the real networkGt . We summarize the problem as follows:

argmin U N
t

(Inf luence (G!
t ) ' Inf luence (Gt ))

whereG!
t = G!

t " 1 & !( UN
t ) \ "( UN

t )

The Þnal objective is to estimate the PageRank scores
PR!

v (t), ( v $ Gt as accurately as possible, using partial knowl-
edge aboutGt " 1, that isG!

t " 1, since we have used Pagerank as
the indication of inßuence in this study.

Dynamic Tweet Fetching Problem DeÞnition: Given the tweets
T0 of all users in the network at time0, the problem is deÞned
as determining a subset of users of sizek at time t (where
t % 1), denoted byUT

t " Vt s.t. |UT
t | = k, by analyz-

ing the tweet setT !
t " 1 and the local graphG!

t " 1. The system
will retrieve the partial tweet set forUT

t , which is denoted as
Tp

t (UT
t ) = ( V p

t , E p
t ) whereV p

t = UT
t , and update the tweet

sets of the users included in this subset to construct the tweet set
at timet, that isT !

t .
In this paper, we mainly focused on effective ways of handling

edge additions and removals. However, node changes are also
dynamically happening in the social network. The system handles

4. The initial probing of the network can be accelerated via the use of
multiple cooperating fetchers. However, this is clearly not a sustainable and
feasible approach for continued probing of the network, as it requires large
number of accounts, which are subject to bot detection and suspension.

node changes by periodically renewing the seed list5. For brevity
and in order to focus on the more prominent issue of edge
additions and removals, seed list updates are not performed as
part of our experiments.

Fig. 1: Overall system architecture.

3 OVERALL SYSTEM ARCHITECTURE

In this section we brießy describe our system architecture, which
depicted in Figure 1.

3.1 Social Network Data Collection

We use the Twitter network and tweets to analyze user inßuence. A
Twitter network is a directed, unweighted graph where the nodes
represent users and the edges denote follower relationships in
Twitter. When a useru follows another userv, u can see what
v is posting, and thusv is considered to have an inßuence onu.
Moreover, the useru also would have an effect onvÕs inßuence,
since the number of peoplev reaches would potentially increase.
This interaction has an effect on both usersÕ inßuence scores. In
order to construct our network, we Þrst determine a small set
of users called thecore seeds. For illustration, we started with
some popular Turkish Twitter accounts including newspapers, TV
channels, politicians, sport teams, and celebrities. Second, we
collect one- hop relations of the core seeds and add the unique
users to a set called themain seeds. We iterate once more to
collect one-hop relations of the main seeds with a Þlter to avoid
unrelated and inactive users. This Þlter has three conditions:a) a
user must have at least Þve followers,b) a user must have at least
one tweet within the last three months, andc) the tweet language
of a user must be Turkish. As a result of this process, we have
determined ourseed usersset, which includes approximately2.8
million unique users. In the Þnal step of the data collection phase,
we acquire the relations of the seed users to determineG0, that is
the social network graph at time0. Furthermore, we collect tweets
of the seed users in order to constructT0, that the tweet set at time
0.

We implemented the proposed methods using a distributed
system with HBase and HDFS serving as the database and Þle
system backends. The system consists of six main parts:a) local
copy of the social network data on HDFS,b) data fetcher,

5. this period is a conÞguration that can be adjusted by a system administra-
tor.
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Fig. 2: Past global and topic-based (politics) inßuence scores of the
presidency of the Republic of Turkey and the newly elected president

c) dynamic prober,d) score estimator,e) semantic analyzer, and
f) visualizer. Data fetcher component, as the name implies, fetches
the data (network relations and tweets) via rate-limited Twitter
APIs, periodically. Dynamic prober makes a dynamic probing
analysis, decides which users are going to be fetched and notiÞes
data fetcher to bring the information, accordingly. Score estimator
calculates usersÕ inßuence and the related parameters of the pro-
posed algorithms, which are essential parts of the probing method.
Semantic analyzer performs keyword extraction and calculates the
related parameters for constructing topic-based networks. Finally,
visualizer provides a graphical user interface for result analysis.

3.2 Score Analysis

We calculate inßuence scores of users based on their relationships
and the overall impact of their tweets in the network. We analyze
topic activities of the users from their tweets and determine topic-
based user inßuence scores. Overall, we are using two types of
scores, namelyglobal inßuenceandtopic-based inßuence, which
can be interpreted together for a more detailed analyses.

Global Inßuence Score. This score is a measure of the userÕs
overall inßuence within the network. For this purpose we use the
PageRank (PR) algorithm. PageRank valueP Rv (t) at timet for
a userv $ Gt directly corresponds to the global inßuence score
of it and will be used interchangeably throughout the paper.

Figure 2 illustrates the evolving nature of the inßuence score
by showing the global and topic-based inßuence scores (calculated
on true snapshots) history of users, which are selected by our
algorithm as one of the most important users that should be
probed. These are the ofÞcial accounts of the presidency of the
Republic of Turkey and the newly elected president. Besides
their high impact, we observe that their inßuence also varies
signiÞcantly over time, which further justiÞes the need to probe
these accounts frequently. A reason of the variation in inßuence
score is that the time period shown in the Þgure matches with the
elections for the Presidency (10 August 2014). After becoming the
new president, the president accountÕs global inßuence has further
increased. During this period, it is always selected as a top user
to be probed by our proposed approach. This is intuitive, as it is a
popular account with changing inßuence scores over time. We can
also observe the impact of presidential change on the presidency
account. During this change, its global score slightly decreases
and then starts to increase.

Topic-Based Inßuence Score. The system calculates topic-based
inßuence scores representing user activity and impact on a speciÞc

topic. We perform semantic analysis on user tweets by taking re-
tweets and favorite counts into consideration as well. A re-tweet
(RT) is a re-posting of someone elseÕs tweet, which helps users
quickly share a tweet that they are inßuenced by or like. A favorite
(FAV) is another feature that represents inßuence relation between
users, wherein a user can mark a tweet as a favorite. These two
features help estimate the inßuence of an individual tweet. Since
Twitter is a micro-blogging platform, users are generally tweeting
on speciÞc topics. While many tweets are mostly conversational
and reßect self- information [5], [6], some are being used for
information sharing, which is important in harvesting knowledge.
RTs and FAVs are effective in separating relevant and irrelevant
tweets. Accordingly, we use them in our topic weight analysis to
estimate inßuence of a tweet on a speciÞc topic.

Topic-based network construction process consists of three
main phases:a) keyword extraction on tweets,b) correlation of
keywords with topic dictionaries, andc) weight calculation.

In the Þrst phase, keywords are extracted from tweets by using
information retrieval techniques, including word stemming and
stop word elimination. The output from this phase is a keyword
analyzed tweet corpus for each individual user and the related
histogram which captures the frequencies of the related keywords
(K ). These corpora are further analyzed in the second phase.

We have created a keyword dictionary (D j ) for each topic
(Cj ), in order to score tweets against topics. Each dictionary
contains approximately 90 to 130 words. In order to create a
dictionary for a topic, we Þrst compose a representative word list
for the topic. We then divide these words into groups according
to context similarity and assign weights to word groups within
a scale (such as in range[1. . . 10]). Context similarity can be
determined by a domain expert utilizing knowledge about the
taxonomy. Similarly, we repeat the process for all topics. As part
of each dictionary, we have assigned normalized weights to words,
representing their topic relevance. In the second phase, using the
weights from the dictionaries and the usersÕ keyword histograms,
we obtain the normalized raw topic scores of users for each one
of the topics.

In the third phase, we calculate a value called the RT-FAV
total for each user, which is the summation of the number of re-
tweets and favorites received by a userÕs tweets. We then multiply
the normalized raw topic score by the RT-FAV total of the user,
in order to Þnd the number of RT-FAVs the user gets on a topic
of interest. The Þnal normalized results are used as the in-edge
weights of the users on each topic, when forming the topic-based
network.

Once the topic-based network construction is complete, we
execute the weighted PageRank [4] (W P R) algorithm which also
considers the importance of the incoming and outgoing edges
in the distribution of the rank scores. The resulting weighted
PageRank values of users, denoted byW P Rv (t) at time t for
v $ Gt , is assigned as their topic-based inßuence scores.

Due to the nature of the PageRank algorithm, some of the
globally inßuential users also turn out to be highly inßuential for
most or all of the topics. These users have a lot of followers and
they are also followed by some of the inßuential accounts of the
speciÞc topics, which cause them to score high for topic-based
analysis as well. Therefore, they can get high topic-based inßuence
scores even if they do not actively tweet about the topic itself.
To eliminate this effect, we apply one more level of Þltering to
remove these globally effective accounts from the topic-sensitive
inßuence lists. In particular, if the number of tweets a user posted
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that are related with the topic at hand is less than a predeÞned
percentage, e.g.,%406, of the total number of tweets posted by
the user, then the user is discarded for that topicÕs score list.
This Þltering process signiÞcantly reduces the noise level in the
analysis.

As a result, for each topic, we construct a weighted network
in which an edge ((u, v)) represents the amount of topic-speciÞc
inßuence a user (v) has on a follower user (u). Thus, the results of
weighted PageRank algorithm gives us the overall topic-inßuence
scores on the network.

Figure 2 also shows the topic-based score history of the ofÞcial
account of the presidency of the Republic of Turkey and the newly
elected president. We can see from the Þgure that the change in
the topic-based scores are more dramatic compared to the global
scores. This is intuitive, as the topic-sensitive scores are depending
on usersÕ tweets and sharing statistics. A user might be very active
on some weeks about a speciÞc topic such that her inßuence on
the topic might increase dramatically. Likewise, when she posts
something important, it might achieve high sharing rates. On the
other hand, when she just posts regular tweets which are not
shared, her inßuence on the topic might decrease quickly.

4 DYNAMIC DATA FETCHING

In this section, we introduce our algorithms for probing dynamic
social networks. In order to efÞciently determine a subset of
vertices to probe, we develop heuristics for both dynamic network
fetching and dynamic tweet fetching problems given in Section 2.

Since we have chosen the PageRank score as the indicator of
inßuence in a social network, we analyze its change as the network
evolves. PageRank value of a speciÞc vertexv is given as follows:

PR(v) = !
!

#(u,v )$ E in (v)

P R(u)
|Eout (u)|

+
1 ' !

n
, (3)

wherePR(v) denotes the PageRank value,Ein (v) denotes the
in-edge set, andEout (v) denotes the out-edge set forv.

Figure 3 shows an example network, which will be used to
demonstrate the effects of network changes on PageRank values.

(a) Previous state of the network before new edge.

(b) Current state of the network after new edge.

Fig. 3: A sample network for analysis.

Assume that an edge(u, v) is added to the state in Figure 3a
due to the evolving nature of the network. The resulting current
state is shown in Figure 3b. Here, we analyze the effect of this
addition on the PageRank values of the out neighbors ofu. We
see that the PageRank value ofv is as follows per Eq. 3:

P Rnew (v) = !

"

#
!

#( i,v )$ E in (v)

PR(i )
|Eout (i )|

+
PR(u)

|Eout (u)| + 1

$

% +
1 ' !

n

= PR(v) + !
PR(u)

|Eout (u)| + 1

6. Note that a tweet can be related to zero or more topics.

We can easily extend this analysis to multiple new
edges since the total effect will be a superposition of
the effect of the new individual in-edges of vertexv.

PRnew (v) = P R(v) + !
!

#(u,v )$ E new
in (v)

PR(u)
|Eout (u)| + 1

PageRank values of out neighbors ofu other
than v, such as w, are impacted as follows:

PR(w) = !

"

#
!

#( i,w )$ E in (w ) \ (u,w )

PR(i )
|Eout (i )|

+
PR(u)

|Eout (u)|

$

% +
1 ' !

n

PRnew (w) = !

"

#
!

#( i,w )$ E in (w ) \ (u,w )

PR(i )
|Eout (i )|

+
PR(u)

|Eout (u)| + 1

$

% +
1 ' !

n

PRnew (w) = PR(w) ' !
PR(u)

|Eout (u)|.(|Eout (u)| + 1)

These effects are the immediate responses on the vertices that
are considered. These residual PageRanks will ripple out to all
the vertices in all the paths fromv andw in each iteration of the
PageRank algorithm. But the effect will decease as the residuals
will be divided by the number of outgoing edges for each vertex
visited. We will analyze the effects of the Þrst iteration of the
algorithm to simplify the problem and to get a general feel of
the change in PageRank values. Considering expected value of
Eout = E [|Eout (u)|] as the average out-degree for vertices, the
differential PageRanks are given as follows:

) PR(v) = !
PR(u)
Eout

(4)

) PR(w) = ' !
PR(u)

Eout
2 (5)

We can see from Eqs. 4 and 5 that we should select the vertices,
sayu, with the following properties for accurateG!

t andPR!
u (t)

estimations:
¥ vertices with high PageRank values (PR(u));
¥ vertices whose PageRank values change over time;
¥ vertices with high out-degrees (Eout (u));
¥ vertices whose out-degrees change over time.
PageRank, when computed until the values converge in steady

state, considers both incoming and outgoing edges. The parame-
ters related to out-degree values are intrinsically taken into account
when PageRank is computed. Hence, in our dynamic fetching
approach, we focus only on PageRank values and their changes
to cover all the cases listed above.

Based on these observations, we will deÞne a utility function
that incorporates the above Þndings. We will Þnd the vertices that
maximize this utility function, which will be probed and used to
estimate the inßuence scores of the evolving network. We analyze
two sub-problems of the general case speciÞc for our application:
network fetching and tweet fetching. These sub-problems and the
solutions will be addressed in the subsequent sections.

4.1 Dynamic Network Fetching using Inßuence Past

We aim to probe a subset,UN
t , update the edges incident on

vertices in UN
t to form G!

t , and calculate PageRank values
PR!

v (t), ( v $ Gt . In order to determine this subset, we use
a time series of past PageRank values for a vertexv, named the
inßuence pastof v. Formally, we haveIP v = [ . . . , PR!

v (t '
2), PR!

v (t ' 1)].
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In our strategy for determiningUN
t , we consider the vertices

whose PageRank values change considerably over time. We Þrst
explored building time-series models over sequences of scores to
forecast their future values. There are some well-known method-
ologies in the literature for forecasting using this kind of time-
series data, such as ARIMA models [7]. However, these models
typically require much longer sequences for accurate predictions.
Therefore, in order to quantify thischangefor a vertexv, we
calculate the standard deviation of the time seriesIP v , that is:

Changev = " IP v =
&

V ar(P R!
v ) (6)

Choosing the best vertices to probe can be performed by
calculating a score that is a linear combination of the PageRank
value and the change in PageRank values, as given in Eq. 7.
Here,# parameter balances the importance of the two aspects. We
assume that inßuence past that contains at least two data points is
available for every user, in order to calculate the score changes.

Score(v) = (1 ' #)P R!
v (t ' 1) + # Changev (7)

After the selection of the users with respect to the ranking of
Score(v), we probe their current relations and formG!

t .

Round-Robin & Change Probing. Change Probing could cause
the system to focus on a particular portion of the network and
may discard the changes developing in other parts. This is because
the probing scores of some vertices will be stale and as a result
these vertices may consistently rank below the top-k, despite
changes in their real scores. This bias could end up accumulating
errors in the inßuence scores of these vertices and start to have
an impact on the entire network. Therefore, we propose to use
Change Probing together with Round-Robin Probing, in which
users are probed in a random order with equal frequency. In this
way, we aim to probe every vertex at least once within a speciÞc
period P rr s.t. P rr ! | Vt | * P/ ((1 ' $) * k). Round-Robin
Change algorithm probes some portion of the network randomly
and marks all probed users. Thus, any probed users are not probed
randomly again, until all users are probed at least once withinP.
In this method, we control the balance between change vs. random
selection by using a parameter$ $ [0, 1]. In particular, we choose
$ * k users to probe with Change Probing and(1 ' $) * k users
with Round-Robin Probing.

Network Inference. Since we are able to fetch data only for a
limited number of users, there is a high probability that other
users in the network have changed their connections as well. To
take these possible changes into account, we have incorporated
link predictioninto our solution. Link prediction algorithms assign
a score to a potential new edge(u, v) based on the neighbors of
its incident vertices, denoted as#u and#v . The basic idea behind
these scores is that the two verticesu and v are more likely to
connect via an edge if#u and#v are similar, which is intuitive.
Considering social networks, two people are likely to be friends
if they have a lot of common friends. There are different scores
used in the literature, including the common neighbors, JaccardÕs
coefÞcient, Adamic/Adar, and Resource Allocation Index (RA).
We use RA as part of our approach, since it was found successful
on a variety of experimental studies on real-life networks [8]. One
could also adopt more advanced prediction algorithms such as [9],
in order the increase effectiveness of this approach.

RA is founded on the resource allocation dynamics of complex
networks and gives more weight to common neighbors that have

ALGORITHM 1: Algorithm for Dynamic Network Fetching

Input: G!
t " 1 , IP , P R! (t ! 1), ! , " " [0, 1], k, rrRecord

Output: G!
t

// Fetch network
for all v " Vt do

#IP v =
!

V ar(IP !
v )

Score(v) = (1 ! ! )P R!
v (t ! 1) + ! á#IP v

end for
UN

t # $
while |UN

t | % k á" do
v # argmax v # Vt " 1 Score(v)
UN

t # UN
t & { v} , Vt " 1 # Vt " 1 \ { v}

end while
while |UN

t | % k do
v # randomly choose fromVt " 1

if v /" rrRecord then
UN

t # UN
t & { v} , Vt " 1 # Vt " 1 \ { v}

rrRecord # rrRecord & { v}
end if

end while
ProbeUN

t for relationships, FormG!
t

// Infer network
CalculateRA u,v , ' (u, v) " "E = Vt ( Vt

for Eg timesdo
(u, v) # argmax ( u,v ) # E t RA u,v

Et # Et & { (u, v)}
end for
OutputG!

t

low degree. For an edge(u, v) between any two verticesu andv,
RA is deÞned as follows:

RA u,v =
!

w$ ! u
!

! v

1
degree(w)

,

where#v is the neighbors ofv

(8)

The RA score,RA u,v for the edge(u, v), is proportional
to the probability of an edge being formed between the vertices
u and v in the future. Based on this, we rank all the calculated
RA scores. Since the edges in our network are not deÞned
probabilistically and are deÞned deterministically as existent or
non-existent, we need to determine how many of these scored
edges should be selected. Therefore, we deÞne a growth rate,
Eg, which is the average change in the number of edges (|E |)
between snapshots of the network after excluding the changes due
to UN

t . After calculating RA scores for all possible new edges,
we chooseEg edges with the highest scores. Using this method,
we add new connections to the current graph, to Þnally have the
estimated graphG!

t . The pseudo code of the network inference
based probing algorithm we use to selectk vertices to probe is
given in Algorithm 1.

4.2 Dynamic Tweet Fetching using Topic-Based Inßu-
ence Past

Our dynamic tweet fetching solution makes use of the weighted
PageRank values and comprises of two steps. First, we infer
the evolving relationships of the network using the methods
explained earlier in the previous section. This way we can track
and estimate the changing relationships. Second, we select a subset
of users to fetch their tweet data. SpeciÞcally, we aim to probe
a subset,UT

t , collect their tweets, and update the edge weights
for the users inUT

t ; all in order to form W Gj !

t for a given
topic Cj . We then compute weighted PageRank values to Þnd
W P Rj !

v (t), ( v $ W Gj
t for a given topicCj . To select the subset
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ALGORITHM 2: Dynamic tweet fetching viaG-W G

Input: T j !

t " 1 , T IP j , W P Rj !
(t ! 1), ! , " " [0, 1], k, rrRecord

Output: T j !

t
for all Cj do

for all v " V j
t " 1 do

#T IP v =
!

V ar(T IP !
v )

Scorej (v) = (1 ! ! )W P Rj !

v (t ! 1) + ! á#T IP j
v

end for
Uj

t # $
while |Uj

t | % k á" do
v # argmax v # V j

t " 1
Scorej (v)

Uj
t # Uj

t & { v} , V j
t " 1 # V j

t " 1 \ { v}
end while
while |Uj

t | % k do
v # randomly choose fromV j

t " 1
if v /" rrRecord then

Uj
t # Uj

t & { v} , V j
t " 1 # V j

t " 1 \ { v}
rrRecord # rrRecord & { v}

end if
end while
ProbeUj

t for tweets, FormT j !

t

OutputT j !

t
end for

of users inUT
t , we use a time series of the past weighted PageRank

values, named thetopic-based inßuence pastof v. Formally, we
have T IPv = [ . . . , W PRj !

v (t ' 2), W PRj !

vi
(t ' 1)]. This is

performed independently for all topics of interest,{ Cj } .
There are two different approaches we employ to track the

topic-based inßuence scores:
¥ Use the global network parameters for network fetching and

the topic-sensitive network parameters for tweet fetching.
This is named as theG-W G method, where globalGt is
used for network fetching, and topic-sensitiveW Gt is used
for tweet fetching.

¥ Use the topic-sensitive network parameters for both network
and tweet fetching. This is named as theW G-W G method.

The Þrst approach,G-W G, is useful for cases where globally in-
ßuential users are tracked, but with minimal additional resources,
topic-based inßuential users are to be determined as well. This
might be the only viable option if the bandwidth is not enough
for selecting and updating the vertices separately for each topic,
especially if the number of topics is high. For the second approach,
that isW G-W G, we construct separate networksW Gj for each
topic and evolve them separately. We update each network at the
end of a probing period, using the new tweets fetched to track
the most inßuential vertices for each topicCj . The high-level
algorithm for theG-W G method is given in Algorithm 2. The
algorithm forW G-W G is very similar, and is omitted for brevity.

5 EXPERIMENTS AND RESULTS

In this section, we present the experimental setup and the results
of our evaluation of the proposed algorithms. We also present
experiments analyzing the sensitivity of the parameters used.

5.1 Data Sets

We collected data using the public Twitter API, as described in
Section 3. These API calls are restricted by rate limit windows.
These windows represent15 minute intervals and the allowed
number of calls within each window can vary with respect to
the call type. Our system makes three different calls,a) ÒGET

followers/idsÓ, which returns user IDs for every user following
the speciÞed user,b) ÒGET friends/idsÓ, which returns user IDs
for every user the speciÞed user is following, andc) ÒGET
statuses/usertimelineÓ, which returns the most recent Tweets
posted by the speciÞed user.. For the Þrst two call type, we are
allowed to make15 calls per window. Every call can return up
to 5K followers/friends. For the users who have more than5K
followers/friends, we have to make multiple calls, accordingly.
For the third type, we are allowed to make180calls per window.
Each call can return200 tweets of the queried user. Details of
the calls are also presented in Section 2 with the accompanying
analysis.

We collected the network between the end of August 2014
and the beginning of January 2015, with a period of15-20 days.
As a result, we have obtained11 snapshots of the Turkish usersÕ
network with progressing timestamps. We collected the relations
of 2.8 million users, which amounts to a total of310 million
edges on average. Users are recrawled for each snapshot so that
snapshots contain exact information with respect to the network.
We took the Þrst snapshot as the initial network to calculate the
probing scores (see Eq. 7) and the rest of the snapshots were used
as ground truth for the evaluation of the probing algorithms. For
the topic-based inßuence estimation, we also collected the tweets
of our seed users in the same period. We constructed a dataset
formed of11 snapshots containing5.5 billion tweets in total. We
take the Þrst snapshot as the initial tweet set as in the case of
the relationship network analysis. From this data, we built up the
topic weighted networks and calculated probing scores (see Eq. 7),
accordingly.

In our probe simulation module, we fetch the connections of
the users we have selected for probing, from the real networkGt
at timet. We then update these connections (adding new ones and
deleting old ones) on the previously observed networkG

!

t " 1 at
time t ' 1, in order to obtain the estimated networkG

!

t at time
t. Finally, we compare the inßuence estimation results from the
observed networkG

!

t with the ones from the real networkGt .
Same procedure is also applied for the tweet sets.

In order to include extensive number of experiments in our
evaluation, we focused on the top250K inßuential users and
restricted the network on which the scores are computed to the
network formed by these users.

Figure 4 shows the in-edge distribution of the original and the
pruned network. Both follow a power-law distribution. Impact of
the pruning process on the network structure seems to be minimal
and has not created any anomalies in the analysis. We also pruned
the tweet list according to the same top250K inßuential users,
which reduced the total size of the tweet sets to200M . Figure 5
shows how much the network has changed over each iteration with
respect to the previous snapshot (|E t \ E t " 1 |

|E t " 1 | ) and with respect to

the original one (|E t \ E 0 |
|E 0 | ). Here, change w.r.t. previous snapshots

is deÞned in order to have an insight about the experimental data
and it cannot be compared with the experimental results of the
any probing strategy. It represents the case where exact snapshots
of the network exist locally, which is not the case in a real-
world scenario. In a probing scenario where the exact network
is not available, network error is expected to increase, as we are
continuously building on top of the previous partial network which
also contains some amount of error. Therefore, iterative change
w.r.t. original network better matches a real-world scenario.
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Fig. 4: In-edge distributions of the original network (on the left) and
the pruned network (on the right).
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Fig. 5: Change rate of the network over each iteration w.r.t the
previous one and w.r.t. the original one.

5.2 Evaluation of Dynamic Network Fetching

We have implemented several algorithms to compare the perfor-
mance of the proposed techniques. The details of the algorithms
used are given as follows:

NoProbe and Random Probing. These are two baseline algo-
rithms. NoProbe algorithm assumes that the network does not
change over time and uses the fully observed network at time
t = 0 for all time points without performing any probing. It rep-
resents the worst case scenario for dynamic network fetching. The
second baseline algorithm isRandom Probingalgorithm which
randomly choosesk users to probe with uniform probability. In
the experiments, this baseline method is run 10 times and the
average values of these runs are used in the evaluation.

Indegree Probing.This is our third baseline algorithm that uses
a very similar idea to our proposed technique from Eq. 7. This
baseline method utilizes the same formula with one change,
instead of using PageRank values it uses the indegree values of
the users (Score(v) = (1 ' #)Deg!

v (t ' 1) + # " IP Deg
v

).

MaxG. As described in [10], users are probed with a probabil-
ity proportional to the Òperformance gapÓ, which is deÞned as
the predicted difference between the results of the approximate
solution and the real solution. Brießy, the method incrementally
probes users which will bring the largest difference in the results.
It assumes that the inßuence of a speciÞc user is related to the
output of thedegree discount heuristic. Although their inßuence
determination function is different than ours, we use the MaxG
algorithm for performance evaluation of our proposed algorithms.

Priority Probing. As described in [11], this algorithm chooses
users to probe according to a value proportional to their priorities.
Priority of a node is deÞned as the value of its PageRank score.
For every iteration of the method, if a node is not probed, the
current PageRank value is added to its priority and if the node is
probed, its priority is reset to 0.

Change Probing. This is our Þrst proposed method, which

choosesk users to probe with value proportional to their scores,
as computed by Eq. 7. The network is then constructed via Alg. 1.
RRCh Probing. This is our second proposed method, which
chooses$ ák users to probe with Change Probing and(1 ' $) ák
users with Round-Robin Probing. When# = 0 in Eq. 7 for the
Change Probing part, the method becomes similar to [11]. The
difference is that Priority Probing increases the probe possibility
of a node by its PageRank value in every step if it is not probed,
so that at some point the probe possibility becomes1.

We evaluate performance by comparing the quality of the
inßuential users found by each approach with that of the ideal
case. For this purpose, we use two different evaluation measures:

¥ Jaccard similarity between the correct and estimated top-k
most inßuential users lists.

¥ The mean squared error (Eq. 9) of the PageRank scores. The
reported values with respect to the probing capacities of MSE
are the average values of all 11 snapshots. The values with
respect to time are the average values of different probing
capacities. Additionally, standard deviations of the values are
also reported in the discussions.

MSE =

'(
(
)

1
|Vt + V !

t |

!

#v$ V !
t %Vt

(PR!

t (v) ' PRt (v))2 (9)

5.3 Evaluation of Dynamic Tweet Fetching

We evaluate the performance of the proposed tweet fetching
technique with two baselines algorithms, namelyNoProbeand
Random Probing. The details of these baselines are given below:
NoProbe. This algorithm assumes that the tweet set does not
change over time and use the fully observed tweet set at timet = 0
for all time points without any probing. This method represents the
worst case scenario for the dynamic tweet fetching problem.
Random Probing. This algorithm randomly choosesk users to
collect tweets with uniform probability at each time step.
RRCh Probing. This is the algorithm we proposed, which greed-
ily choosesk users to collect tweets with value proportional
to their scores describe in Eq. 7. Differently from the network
fetching method, scores are calculated by usingW P Rj

v for the
topic Cj , instead ofPRv .

5.4 Experimental Results and Discussion

This section compares and discusses the performance of the
proposed network and tweet probing methods with the state-
of-the-art and baseline methods using experiments executed on
real datasets. We also provide an empirical interpretation of the
calculated topic-based inßuence scores.

5.4.1 Experimental Setup

As indicated by Eqs. 1 and 2, given the resource limits permitted
by the service providers, one cannot probe a signiÞcant portion
of the network. We have executed our experiments with different
probing capacities and used0.001%, 0.01%, 0.1%and1%of the
network as the size of the probe set. For the analysis of the effect
of the # parameter used in Change Probing, we set:a) # = 0 ,
meaning PageRank proportional scores are used;b) # = 0 .5,
meaning equally weighted PageRank and inßuence past scores
are used;c) # = 1 , meaning only inßuence past scores are used.
For the RRCh algorithm we tested the ratio parameter$ with three
values, which control the fraction of vertices proved via random
selection:0.4, 0.6, and0.8.
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(b) Average Jaccard similarity for all snapshots.

Fig. 6: Performance of Change Probing w.r.t.! .

5.4.2 Change Probing Performance w.r.t. #

Figure 6 depicts the performance of Change Probing algorithm for
the average Jaccard similarity and MSE measures. As expected,
Change Probing algorithm signiÞcantly outperformsNoProbeal-
gorithm. For the optimization of the# parameter, we test Change
Probing algorithm under three different# conÞgurations:

¥ Using the MSE measure,# = 0 .5 setting performs8%better
than # = 0 setting and19% better than# = 1 setting.
Overall, it performs83%better thanNoProbe.

¥ Using the Jaccard distance measure,# = 0 .5 setting is3%
better than# = 0 setting and5%better than# = 1 setting. In
the overall case,# = 0 .5 outperformsNoProbeby 43%. We
also note that as the probing capacity increases, performance
of the Change Probing algorithm becomes less dependent on
the setting of#.

We also illustrate the change in error as the network evolves,
in order to see how the performance of different algorithms are
affected as the seed network data ages. Figures 7a and 7b7 show
the performance of Change Probing as a function of time for
the mean squared error (MSE) and Jaccard similarity measures,
respectively. We observe thatNoProbehas an increasing error as
time passes. Change Probing gives a more robust and stable perfor-
mance with respect to time. As the number of past inßuence points
increases, the algorithm can estimate the inßuence variability of
the users more accurately, which compensates the deteriorating
effect of aging of the baseline network data. Since# = 0 .5
outperforms the other cases, we use# = 0 .5 conÞguration in
the subsequent experiments with other algorithms. We also note
that y-axis contains relatively small values because the PageRank

7. Jaccard similarity reports the average values of all three probing capacity
settings.
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Fig. 7: Performance of Change Probing as a function of time.

values are normalized. We have assumedNoProbealgorithm as
the reference point for normalization.

5.4.3 RRCh Probing Performance w.r.t. $

Figure 8 shows the performance results for the Round-Robin
Change (RRCh) Probing algorithm under different round-robin
ratios. We use the Change Probing algorithm (with# = 0 .5
setting) as the baseline reference point.

We observe that the RRCh algorithm performs poorly for small
probing capacities, such as0.001% and 0.01%. Randomness
impacts the performance more with smaller number of probed
users, since we are not able to probe the inßuential users with
great inßuential power, thus lowering the performance. For MSE,
$ = 0 .8 conÞguration performs7%better than$ = 0 .6 and12%
better than$ = 0 .4. For the Jaccard similarity measure, it is2%
better than$ = 0 .6 and 7% better than$ = 0 .4. Although, it
performs worse than Change Probing in the short term, it reaches
the performance of Change Probing in the long term, as show
in in Figures 9a and 9b. Moreover, it guarantees the probing of
every node within a time frame, preventing the system to focus on
only a limited section of the network and missing other regional
changes that might accumulate and start to affect the network
in the global sense. We would have seen this phenomenon more
explicitly if the number of snapshots were larger, which was the
case in [10]. The results are slightly better when the ratio is set
to $ = 0 .8. Therefore, we choose to use this algorithm (with
# = 0 .5 and$ = 0 .8 conÞgurations) instead of Change Probing
for the comparison with others in the following sections.

Figure 10 shows both the percentages of edges that were not
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Fig. 8: Performance of RRCh w.r.t." .

present in the the true network but were assumed to be present
by the algorithm (false positives) and the percentages of edges
that were present in the true network but were not captured by the
algorithm (false negatives). The Þndings indicate that the proposed
technique is doing a good job at capturing the structure of the
network by having on average12% false positives and6% false
negatives rates for all snapshots.

5.4.4 Comparison with the State-of-the-Art

Figure 11 compares the performance of RRCh method (with# =
0.5 and$ = 0 .8 settings) against the baselines and the state-of-
the-art methods from the literature. RRCh achieves better results
for all performance measures used for comparison in our paper. It
reduces MSE by21%(see Figure 11a) when compared to Priority
Probing,41%when compared to Indegree Probing and49%when
compared to the MaxG method. Priority Probing suffers especially
for low probing capacities, since the priority of a user is set to0
after probing. A probed user can regain its priority very late in the
process, which prevents it to track quick changes in the scores of
the highly inßuential users. Therefore, after probing an important
user in terms of inßuence, that user is not being probed for some
time, even if the inßuence of the user is changing very fast. RRCh
always probes$ portion of the users according to their inßuence
impact and change over time, so that the important users are in the
probe set at each step.

Overall, our proposed method gives80%higher performance
than the NoProbe and Random Probing algorithms for the MSE
measure. As seen in Figure 11b, RRCh shows better results for
the top-k set similarities as well. It is5% better than Priority
Probing,7% better than Indegree Probing and11% better than
MaxG method on average. RR Change performs35% better
against baselines when Jaccard similarity is considered. Since it
also considers the change in the inßuence over time, it is also able
to preserve its accuracy while the performance of other methods
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Fig. 9: Performance of RRCh as a function of time.
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degrade over time (see Figures 12a and 12b).
As mentioned before, in real-world scenarios one might not

be interested in the exact rank of the inßuential users but instead
might select top-k users and evaluate them by personal observa-
tion, because the ranking may not be so accurate. Yet, we also
compared the probing techniques against a rank-aware similarity
measure. Figure 13 shows the performance of alternative probing
strategies based on the Kendall Tau-b metric. The results are the
average values from all of the snapshots. RRCh gives73%higher
performance than Random probing,58% higher than Indegree
Probing,47% higher than MaxG method and40% higher than
Priority Probing.

5.4.5 Evaluation of the Network Inference Method

To assess the prediction quality of the link prediction algorithm,
we plotted the histogram of the edges proposed by RA index
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(b) Average Jaccard similarity for all snapshots.

Fig. 11: Comparison of the probing strategies.

that has really occurred in the real network. This is shown in
Figure 14. The histogram indicates the accuracy of the RA index
used for network inference. The edges that were determined by
the prediction algorithm as more likely to happen were found
to be existent in the future network with a higher probability.
However, when we analyzed the incorrectly predicted edges, we
have observed that the algorithm predicts links between users who
are unlikely to follow each other in real life. For example, the
algorithms predict an edge between two pop stars since they have
many common neighbors. However, they would not follow each
other because they are main competitors. Furthermore, some of
these users are not willing to follow anybody at all. This is the
same issue studied in [12]. Link prediction algorithms typically do
not consider these facts in social networks. In addition to indexes
which they use to calculate similarities between users, they should
also consider the tendency of the users to make new connections.
Therefore, we apply a Þltering process such that we only consider
users who follow more than a threshold number of users in order
to determine users who are likely to follow somebody. We add
the predicted edges only to these selected users. As a result, we
improve the RRCh method by3% for MSE and2% for the set
similarities on average. Since the improvements are not signiÞcant,
we omit the plots of those results for brevity. Here, adaptation of
more advanced (like mentioned in 4) prediction algorithms could
potentially increase the accuracy of this technique. Moreover,
the computational overhead of the link prediction task is not
signiÞcant due to the pruning process applied for the experiments.
The task takes less than a hour for one iteration. The time would
signiÞcantly increase for the size of original networks.

5.4.6 Evaluation of the Topic Inßuence Estimation

We evaluated the inßuence of users with respect to four different
topics: a) Politics, b) Sport, c) Health, andd) Cultural and Art
Activities. This section provides a qualitative discussion about
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Fig. 12: Comparison of the Probing strategies with respect to time.
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Fig. 14: Accuracy of the link prediction algorithm.
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the accounts which were found to be inßuential by the proposed
methods. Table 1 shows the accuracy of topic relevance of the
top-10 users found by the system for the speciÞc topics.

Topics Topic Relevance Some selected accounts

Politics 10 out of 10
RT Erdogan, kilicdarogluk,

06melikgokcek

Sport 8.5 out of 10
Fenerbahce, GalatasaraySK,

ntvspor

Health 4 out of 10
saglikbakanligi, YYDtr,

istabip
Cultural and Art

Activities 9 out of 10
CMYLMZ, AtlasTarihDergi,

Siirler sokakta

TABLE 1: Estimated inßuential accounts.

For the evaluation of the results, we performed a small sur-
vey containing 10 people chosen among graduate students who
are closely interested in social media. We asked participants to
evaluate the users with respect to their topic relevance and their
inßuence on the topic. All participants were shown all inßuential
account for all topics. In order to identify inßuence of a user, we
asked participants to mark one of the following categories:a) very
inßuential (1),b) inßuential (.5),c) not inßuential (0). Results are
aggregated as average and rounded by.5 precision. We used the
results of the survey to provide an evaluation of the selected users
for the Turkish Twitter network, on a per-topic basis.

For the topic Politics, the results are very accurate for top-
10. We have observed that the dictionaries constructed for each
topic has a big impact on the results. For example, we observe
that the dictionary constructed for Politics topic contains many
keywords that are related only with politics without any ambiguity.
These keywords have increased the performance of the semantic
analysis, which in turn increased the accuracy of the topic-based
network inßuence analysis. Top-10 list contains the president
of Turkish Republic (RTErdogan), the chairman of one of the
opposition parties (kilicdarogluk), and the mayor of the capital city
(06melikgokcek). It is fair to assume that these users, who give
political messages in their tweets and who have lots of followers,
should be in the top-10 inßuential list on Turkish Politics topic.

The inßuential accounts for the Sport topic were the biggest
sport clubs of Turkey (Fenerbahce, GalatasaraySK) and one of the
highest rating sport channel (ntvspor). Their tweets were mostly
related to the sport competitions, news from clubs, etc. They have
a lot of followers who actively pay attention to what they tweet.
Thus, they achieve high RT and Fav statistics, which shows that
they have a big impact on their followers. It is very reasonable that
they are the top inßuential accounts on this topic.

As intuitively expected, the inßuential accounts for the Health
topic are mostly doctor associations and governmental authorities.
One of the accounts is Republic of Turkey Ministry of Health
(saglikbakanligi), which mainly tweets about hospitals, doctors,
and health regulations. Its follower numbers can be considered
as relatively high and is followed by other inßuential accounts.
Since its tweets have critical news potential, it has considerable
number of RTs about the health topic. The other two are doctor
associations (YYDtr, istabip). They are followed by many doc-
tors, which also have some potential impact on the Health topic.
In this topic, accurate relevance ratio is relatively low because the
constructed dictionary for this topic is not speciÞc enough, causing
errors in semantic analyses that propagates to the latter phase of
inßuence estimation.

The Cultural and Art Activities topic includes users which
tweet about movies, art, books, history, etc. The top-10 inßuential
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Fig. 15: Performance of Change Probing for dynamic tweet fetching.

users are perfectly matched with the keywords. CMYLMZ is
a very famous Turkish comedian, actor and producer. He also
has one of the highest follower numbers in the Turkish Twitter
network. AtlasTarihDergi is a history magazine tweeting mainly
about historical events and information which has considerable
amount of followers and RTs. The third user (Siirlersokakta)
shares street poems and mottos, and itÕs posts receive many RTs
and Favs.

5.4.7 Evaluation of Dynamic Tweet Fetching

We have used the same default parameter settings from the net-
work fetching experiments to evaluate our proposed tweet fetching
methods. For the simplicity, we only evaluate the case of topic
Politics.

Figure 15 shows the performance of the RRCh method for
dynamic tweet fetching. For the MSE measure, global network
basedG-W G method performs78% better, and topic network
basedW G-W G method performs40%better than the baselines,
on average, respectively. In Figure 15b, we see that as the prob-
ing capacities increase,G-W G method achieves almost perfect
similarity against the results obtained using the original network,
for the top-10 inßuential users. For the top-1000inßuential users
experiment, it reaches close to0.9 similarity. Together withW G-
W G method, they quickly reach close to their top performance
at around1% capacity, except for the top-10 case. For the latter,
W G-W G method does not enjoy the quality increase that the
G' W G method enjoys with increasing capacities. When we look
at the Jaccard similarity based results,G-W G achieves77%better
and W G-W G achieves65% better results than the baselines.
Overall, the results show us that using the globally maintained
network is more advantageous.

Although G-W G method outperformsW G-W G method
when we compare the top-10 results for the two methods, they are
similar in terms of the topic relevance of their top inßuential users.
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Table 2 shows the topic relevance ratios for the two methods. Top-
10selected users are found to be related with the topics of interest
and are popular accounts in the topic area.

Topics Topic Relevance
Politics 10 out of 10 10 out of 10
Sport 8 out of 10 9 out of 10
Health 5 out of 10 4 out of 10

Cultural and Art
Activities 9 out of 10 9 out of 10

G " W G method W G " W G method

TABLE 2: Top-10 topic relevance ratios forG-W G andW G-W G
for dynamic tweet fetching.

6 FUTURE DIRECTIONS

In this section we discuss improvements and extensions to our
work that are left as future research directions.

First, the simulation technique used in this study for evaluating
the probing strategies does not take into account the following
two aspects:i ) a snapshot of the network collected as ground
truth data does not represent an instantaneous snapshot and instead
is the result of crawling, which takes non-negligible amount of
time, andii ) the simulation of probing strategies assumes that the
network does not change as the probing happens, but in a real-
world scenario the network can evolve during this time. A future
direction for having more accurate simulation results is to consider
the probing time explicitly as part of the simulation, while at the
same time modeling the network change as a random process.

Second, this study focuses on effectively probing the network
for capturing edge updates, which constitutes the majority of the
change in the social network. Yet, node additions and deletions
also take place in a dynamic network. Our proposed system
handles node updates by periodically repeating the seed list
construction process. We leave it as a future work to integrate
node update into the edge probing process.

Third, for the topic-based network construction, we ignore the
impact of individual tweets. We maintain a keyword corpora for
user tweet sets and perform our topic analysis over these corpora.
For approximating a userÕs inßuence on a particular topic, we
scale her RT and FAV statistics with the relative relevance of her
tweet set with the given topic. This is not as accurate as analyzing
individual tweets. This is because a user may be tweeting mostly
about one topic, yet receiving most of her RTs and FAVs for
tweets posted about another topic. Integrating a topic classiÞer
that works at the granularity of individual tweets is left as a future
work. Luckily, such a classiÞer can be easily plugged into our
framework. Similarly, topic classiÞcation techniques that are more
advanced than the weighted keyword dictionaries we employed in
this study can be integrated into our framework with ease.

Last, another interesting future research direction is utilizing
a technique that can dynamically adjust#, which controls the
balance between the last PageRank score and the change in recent
PageRank scores in Eq. 7. Here, one can use an adaptive value
at each iteration, tuned for each user based on some heuristic. An
intelligent way of performing adaptive# control could potentially
improve the accuracy of the proposed techniques.

7 RELATED WORK

Increases in the popularity of social networks and the availability
of public data acquisition tools for them have put social networks
on the spotlight of both academic and industrial research. Inßu-
ential user estimation problem is studied by many researchers

following a wide variety of different methodologies. Within this
context, some studies introduce centrality measures in order to
reßect inßuence of users. [13] introduces several deÞnitions,
such asdegree centrality, betweenness centrality, and closeness
centrality. For viral marketing applications, [14] develops meth-
ods for computing network inßuence from collaborative Þltering
databases by using heuristics in a general descriptive probabilistic
model of inßuence propagation. [15] addresses a similar problem
by studying the linear threshold and independent cascade models,
and [16] presents a simple greedy algorithm for maximizing the
spread of inßuence using a general model of social inßuence,
termed the decreasing cascade model.

Recently, researchers have studied extracting textual informa-
tion associated with social networks. [17] studies topic modeling
in social networks and proposes a solution for text mining on the
network structure. [18] introduces the topic-based social inßuence
problem. Their proposed model takes the result of any predeÞned
topic modeling of a social network and constructs a network rep-
resenting topic-based inßuence propagation. Distributed learning
algorithms are used for this purpose, which leverage the Map-
Reduce concept. Thus, their methodology scales to large networks.
[19] combines heterogeneous links and textual content for each
user in order to mine topic-based inßuence. In another seminal
work, [20] studies topic-speciÞc inßuence by using PageRank.

Another recent study [21] uses a PageRank-like measure to
Þnd inßuential accounts on Twitter. They extend PageRank by
using topic-speciÞc probabilities in the random surfer model.
Although their method is similar to ours, their inßuence measure
utilizes the number of posts made on a speciÞc topic. However,
this is an indirect measure that cannot reliably capture inßuence.
Therefore, we use topic distributions of user posts along with
their sharing statistics (re-tweets and favorites in Twitter), which
provides robust results, as it takes into account the real impact
of posts. [22] conducts an empirical study of different topic
modeling strategies based on standardLatent Dirichlet Allocation
(LDA) [23]. [24] proposes joint probabilistic models of inßuence
and topics. Their methodology performs a topic sampling over
textual contents and tracks the topic snapshots over time. [25] uses
re-tweets in measuring popularity and proposes machine learning
techniques to predict popularity of Twitter posts. [26], [27], [28]
propose solutions for predicting popularity of online content. [29]
studies the topic-aware inßuence maximization problem. Within
this context, in this work we introduce a new method that com-
bines topic-based analyses of posts with their sharing popularity
for the purpose of topic-based inßuential user estimation.

Dynamic graph analysis has also attracted a lot of attention
recently. In order to maintain dynamic networks, [30], [31],
[32], [33], [34] propose algorithms for determining web crawl-
ing schedules. [35] studies the microscopic evolution of social
networks. [36] studies incremental PageRank on evolving graphs.
Researches have also investigated probing strategies for analyzing
evolving social networks. [11] proposes inßuence proportional
probing strategies for the computation of PageRank on evolving
networks and [10] uses a probing strategy to capture observed
image of the network by maximizing a performance gap function.
[37], [38], [39] study sampling over social networks. However,
these studies only focus on current image of a network in their
probing strategies. In contrast, we propose a method which also
considers evolution of the probing metrics, so that the network
could be probed more effectively.

In the context of network inference, [40] proposes representa-
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tions for structural uncertainty and use directed graphical models
and probabilistic relational models for link structure learning.
However, their methodologies are not scalable. [41], [42], [43]
use time evolving graph models for social network estimation.
They apply time-varying dynamic Bayesian networks for mod-
eling evolving network structures. [44] shows that third-parties
can reach a userÕs information by searching a few friends. [45]
develops a scalable algorithm to infer inßuence and diffusion
network based on an assumption that all users in the network
inßuence their neighbors with equal probability. [46] removes
this assumption and addresses the more general problem by
formulating a maximum likelihood problem and guarantee the
optimality of the solution. [47] proposes a linear model to predict
how diffusion unfolds over time and [48] proposes the notion of
diffusion centrality. [49], [50] studies a different problem related to
network inference. Different from these works, we use friendship
weighting method in order to infer link structures, similar to [51],
[52], [53]. However, we use friendship weights only to infer edges
between users. [54] proposes a kernel based method and [55] uses
a continuous time model for inference. Moreover, one can also
use more informative features such as content-based inßuential
effects. [56] studies diffusion of tweets throughout the Twitter
network. This kind of technique could also be used in order to
estimate impact of posts.

8 CONCLUSION

The rate restrictions enforced by social network service providers
have a negative impact on the third-party evolving network
analysis tasks. Therefore, we proposed probing algorithms to
dynamically fetch network topology and text data from social
networks under limited probing capacities. Our proposed solutions
use the past inßuence trends of the users, as well as their current
inßuences, in order to determine the best users to probe, with the
aim of maximizing the inßuence estimation accuracy. In particular,
we observed that highly inßuential users and users with strong in-
ßuence trends affect the overall inßuence estimations the most. We
have leveraged these two metrics across our probing algorithms.
Experimental results have shown that considering past trends in
the probing strategy increases the overall accuracy of inßuence
prediction. Furthermore, we improved our probing strategies by
inferring possible relations between users via link prediction
algorithms. We also developed techniques for estimating topic-
based user inßuence in dynamic social networks. For computing
topic-based inßuence, we proposed methods that consider both
the place of the user in the network topology, as well as the topic
analysis performed on the user posts and the sharing statistics
of these posts. Our experimental results performed on Twitter
network data has shown improved accuracy compared to state-
of-the-art methods from the literature.
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