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Information Mining Over Heterogeneous and
High-Dimensional Time-Series Data in Clinical

Trials Databases
Fatih Altiparmak, Hakan Ferhatosmanoglu, Selnur Erdal, and Donald C. Trost

Abstract—An effective analysis of clinical trials data involves
analyzing different types of data such as heterogeneous and high
dimensional time series data. The current time series analysis meth-
ods generally assume that the series at hand have sufficient length
to apply statistical techniques to them. Other ideal case assump-
tions are that data are collected in equal length intervals, and while
comparing time series, the lengths are usually expected to be equal
to each other. However, these assumptions are not valid for many
real data sets, especially for the clinical trials data sets. An addi-
tion, the data sources are different from each other, the data are
heterogeneous, and the sensitivity of the experiments varies by the
source. Approaches for mining time series data need to be revis-
ited, keeping the wide range of requirements in mind. In this paper,
we propose a novel approach for information mining that involves
two major steps: applying a data mining algorithm over homoge-
neous subsets of data, and identifying common or distinct patterns
over the information gathered in the first step. Our approach is
implemented specifically for heterogeneous and high dimensional
time series clinical trials data. Using this framework, we propose
a new way of utilizing frequent itemset mining, as well as clus-
tering and declustering techniques with novel distance metrics for
measuring similarity between time series data. By clustering the
data, we find groups of analytes (substances in blood) that are most
strongly correlated. Most of these relationships already known are
verified by the clinical panels, and, in addition, we identify novel
groups that need further biomedical analysis. A slight modification
to our algorithm results an effective declustering of high dimen-
sional time series data, which is then used for “feature selection.”
Using industry-sponsored clinical trials data sets, we are able to
identify a small set of analytes that effectively models the state of
normal health.

Index Terms—Clinical trials, information mining, time series.

I. INTRODUCTION

THE most expensive parts of drug development are the
Phase III clinical trials, which are performed to prove

efficacy via statistical significance tests. Traditionally, data
collection and analytical rigor have been applied to statistical
analysis of efficacy, while the safety measurements are
counted and presented only as descriptive statistics, leaving the
conclusions about safety of a new drug to clinical judgment.
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These safety signals tend to be detected when millions of
patients have been exposed after the drug goes on the market.
An effective mining of drug data collected under the current
conditions is crucial to find subtle signals that heretofore went
undernoticed. However, mining such clinical trial data is a
challenging task, given its high dimensionality, the amount of
missing data, noise in data, heterogeneity, differences in its data
sources, and also differences in the number of data points and
attributes. Within the mining process of clinical trials, medical
professionals note themselves that “There are no diseases, but
there are patients,” which means diseases may occur in many
varieties due to both patient biology and environmental effects
on the patient. Even the psychological state of the patient could
effect the measurements from one patient to another.

Recently, the U.S. Food and Drug Administration (FDA) re-
ported that “examples of tools that are urgently needed include
better predictors of human immune responses to foreign anti-
gens” [1]. For this reason, one of the actions taken by FDA
was to mine available databases to identify molecular substruc-
tures with potentially negative toxicologic properties early in
development process. The purpose was to enhance the safety of
transplanted human tissues, and find new techniques for access-
ing drug liver toxicity. The FDA also highlighted that computa-
tional approaches, such as computer modeling, and the gained
information from such analysis, when combined with predictive
toxicology, may reduce the overall cost of new drug discov-
ered by 50%. Many investigational new molecular entities are
tested in laboratories and ultimately evaluated by industry and
government-funded clinical trials every year. Retrieving as much
information as possible from such trials is very important, since
the cost of investigating a drug is on the order of a billion dollars.
Even though studies are designed with detailed protocols, where
particular patient populations, disease types, and drug regimens
are specified in detail, the actual data are messy because of the
numerous human factors that occur during the conduct of a trial.
Every patient, physician, and medical staff person contributes
to data irregularity. Much energy and expense is applied to min-
imize these factors, but they cannot be avoided. It is virtually
impossible to conduct a study with all the data fields completed
and all the patient measurements occurring as specified. This
creates certain challenges when the time comes to analyze data.

In this paper, we first discuss the challenges of mining clinical
trial data, and then propose a novel approach for mining infor-
mation out of the clinical trial databases. The overall approach
involves two major steps: 1) applying a mining algorithm
over significant and clean (homogeneous) subsets of data, and
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2) joining the information gathered in the first step by iden-
tifying common or distinct patterns found over the mining
results. We implemented this approach for heterogeneous and
high dimensional time series data in clinical trial databases
by utilizing the frequent itemset mining, as well as clustering
and declustering techniques with novel distance metrics. By
clustering the high dimensional time series data, we find groups
of clinical laboratory analytes that are strongly correlated.
A slight modification to our algorithm results in an effective
declustering of high dimensional time series data, which is then
used for “feature selection.”

The rest of the paper is organized as follows: first, we define
and explain the challenges in analyzing clinical trials data by
using the current techniques. We explain our information min-
ing process, and show its application to the grouping of blood
analytes and defining a global panel of analytes that represents
the human health state. We present results and findings of the
proposed algorithms in the context of clinical trial data, which is
a typical application involving heterogeneous and high dimen-
sional time series data. Our algorithms are applicable to other
data with similar characteristics.

II. CHALLENGES

A. Differences Due to Time Series

Depending on the treatment regimen, patients will have dif-
ferent time intervals between their clinical measurements for
many reasons, such as the following.

1) Patient Qualification Criteria: Patients are recruited for a
study over an extended period of time. It is usually imprac-
tical to start everyone on the same day. Therefore, patients
may start on a study on different dates, may have been
measured a variable number of times prior to starting a
treatment, may be exposed to differing environmental con-
ditions, especially seasonal effects, and almost definitely
are in a variable state of the disease being treated.

2) Patient Health Status Change: Generally, clinical trial pro-
tocols require patients to be measured at specified, pos-
sibly unequal, time intervals relative to the randomiza-
tion time. Although all patients are supposed to have the
same measurements at the same time points, this tends
not to happen in practice. Patient and physician availabil-
ity cannot always be scheduled according to the protocol.
Ethically, the health needs of the patient must override
the rigid adherence to the protocol. Adverse events, side
effects, and other illnesses happen to patients during the
study which may cause the patient to drop out of the study,
to have additional therapy, to temporarily or permanently
discontinue the experimental treatment, or to have addi-
tional measurements taken, some of which are the same as
those for the regular protocol times, some of which are dif-
ferent measurements specified by the protocol if adverse
events occur, and some of which are outside the protocol
and are determined by the treating physician.

For all the preceding reasons and several more, we may have
irregular, nonstandard data on patients. This brings us to the

problem of looking into data sets of time series data, where the
length of observation is neither fixed nor standardized.

B. Differences Due to Data Sources

1) Multiple Study Sites: In larger clinical trials it is common
to see studies that are handled by multiple sites because a
single physician cannot recruit all of the subjects needed
for the trial. Even the same physician will use different
terms or even units at different times to describe the same
clinical condition. This problem is exacerbated when stud-
ies are international. under these circumstances.

2) Multiple Lab Sources: Many protocols use multiple clin-
ical laboratories for evaluating a patient’s health status,
and these laboratories may use different methods to quan-
tifying various analytes. Different analytes may also be
collected at different frequencies within a protocol, and
almost certainly across protocols. For instance, hematol-
ogy (blood cells) results from a study may be collected
from a patient at every scheduled visit, while, on the
other hand, clinical chemistry (serum) results may be
obtained at other times with greater frequency. Analytes
may also be related to treatment response, and the tim-
ing could vary for each patient and each measurement
type.

3) Differences in Error Distributions: Different types of lab-
oratory tests and evaluation techniques will be applied to
the patient which could have different frequencies; these
techniques will also bring different levels of errors due to
different procedures that are involved in the process. Even
with the same laboratory test, we may see differences in
results based on the technique.

4) Domain Specific Process: During a drug development
project, it is common that a drug would be tested on
several types of patients, both healthy and nonhealthy.
For example the same drug’s effect might be tested on
patients with colon cancer, lung cancer, and malignant
melanoma. This is due to the fact that drugs might be tar-
geted at different types of cancers with different cell types.
If it were the case, that we were evaluating the quality of
life for each disease, we would certainly get different re-
sults on each patient type. In such cases the observation
and related data that we gather from patients might differ
dramatically.

C. Differences Due to Data Mining or Analysis Techniques

A patient can be evaluated from a molecular level to the
quality of life level. Such an analysis would be highly multi-
dimensional. While the data types and retrieval processes get
broader, the requirements on analysis of such studies get more
challenging. It would be hard, if not impossible, to come up
with a single distance metric or clustering method to solve all
the problems that we have mentioned so far on such a high
dimensional data set while achieving minimal or no classifica-
tion errors during the analysis, and not suffer from the curse of
dimensionality, with all of the standardization and normaliza-
tion errors that we have discussed so far. An additional concern
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is that while some metrics and clustering techniques would give
better results on certain data types, they may suffer and generate
more errors in another data type, resulting in differences in the
level of errors associated with them.

III. FOUNDATIONS

A. Clinical Trial Data

1) Nature of the Data: We will illustrate our algorithms and
results using a sample set of industrial clinical trial data.
The data set is a good example demonstrating the com-
mon problems mentioned previously. The main division
of the data was based on the drugs that were studied for
marketing. For each drug, a sample of patients from dif-
ferent regions with different genders and different ages
were selected. The data set at hand contained more than
28,000 patients for different drugs. Each patient was in
only one study, and was measured at a limited number of
unequally spaced time points. For each visit (time point),
a patient’s blood and urine samples were taken; these sam-
ples are called analytes. Here we define an analyte as any
substance inside the blood or urine that we can measure,
such as hemoglobin, calcium, or phosphate. Each study
has a set of required analytes that needs to be observed for
every patient in the sample. For a given drug, a set of eval-
uated analytes might differ across studies. Furthermore,
within a drug study, patients have differences in number
of observations and intervals of observations; for example,
different patients may have differences in the total num-
ber of visits, and they may have differences in time length
between visits.

2) Analyzing Analyte Relationships: For each analyte, the
range for a normal healthy person is published by numer-
ous sources, such as textbooks and the NIH. However, a
patient who has an observation for an analyte outside the
range of normal cannot be considered to be unhealthy right
away, due to the fact that the values for the range of nor-
mal are decided based on cutoff values from a probability
distribution. However, if we have used a set of analytes
instead of a single one, we might have a better answer
regarding the patient’s state. In this paper, we aim to find
subsets of analytes that are related, and to identify a global
panel of analytes representing the overall health state of a
patient. A practical outcome of this panel is feature selec-
tion. In the data set described in Section III, there are 43 an-
alytes (dimensions), which is too high for many statistical
analysis techniques to be effective. Current dimensionality
reduction techniques define new dimensions that do con-
tain representations of existing dimensions within them.
However, these new dimensions are not actual analytes
anymore, and, as such, are not medically interpretable and
tend to require all the measurements anyway; hence, they
do not provide a good way to reduce the number of tests
necessary for diagnosis.

B. Preprocessing of Data

1) Selection of Appropriate Subset: The subset of data taken
as the input to the algorithm contains the patients that have
at least k observations for each member of a set of analytes,
which is determined as follows. First, for each analyte, the
total number of patients that has at least k observations is
calculated. Second, based on the numbers found in step
one, a threshold is decided, and each analyte that passes
the threshold test is selected as a member of analyte set.
Patients that have at least k observations for each member
of the previously selected analyte set are chosen. k was set
to four after a set of tries in our experiments. The result
of these tries validated two facts: 1) while k increases,
the total number of analytes and patients in the subset
decreases, and 2) while k decreases, the lengths of series
become inadequate to analyze and compare.

2) Separation of Data Sources: Time series data of each ana-
lyte for a single patient, by nature, has a homogeneous for-
mat which then leads to a more accurate analysis. Hence,
we start the proposed information mining process by min-
ing the data within its atomic source (i.e., data for each
patient). Separating the sources is a natural choice, due
also to the difficulties when comparing time series from
different sources in clinical data.

C. Brute-Force Solution

A straightforward data mining process would apply the algo-
rithms globally over the whole data set. For example, to identify
strongly related groups of analytes, one can apply a standard
clustering algorithm over the whole data set where the analytes
are the data objects to be clustered, and the distance between
each analyte is defined by the distance between the correspond-
ing high-dimensional vectors (values) of analytes. One can im-
prove this process by separating each patient’s records to reduce
dimensionality. It is intuitive, after separating the data sources,
that the distance between two analytes can be described as the
sum of distances for each data source. If the total number of
patients (data sources) is p, then to find the distance between
analyte1 and analyte2, the distance between these two analytes
in all (p) patients needs to be summed. Then, according to this
global distance, analytes can be clustered and the clusters, can be
assigned as biological groups. We implemented this approach to
test the level of its effectiveness. Clustering results in different
sizes of clusters, each of which has different levels of correla-
tions. The results had little or no meaning, partially because of
the obvious problems caused by the heterogeneity and incom-
pleteness of the data, and partially because of the difficulty of
interpreting the output of such an analysis.

IV. INFORMATION MINING ALGORITHM

The proposed information mining approach (summarized in
Table I) consists of a simple preprocessing followed by two
major general steps. In step 1, significant, clean, and homoge-
neous subsets of data are identified and analyzed using a data
mining algorithm. For the clinical trials case study proposed in
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TABLE I
ALGORITHM

this paper, this step corresponds to the preprocessing, followed
by the clustering of analytes for each patient. Step 2 is to
join the information gathered in the first step by identifying
common (or distinct) patterns over the results of mining of the
subsets. For our case study, this corresponds to finding strongly
related groups of analytes (or a set of representative analytes
with minimal cross-correlations) by mining common patterns
over the clusters generated in the first step. The algorithm has
two distinct fold results: 1) groups of analytes that are strongly
correlated and 2) a global panel of analytes that can model the
human health state. In this section, we will describe how we
achieve the first result. A minor change in the process results in
the second outcome, which will be described in Section VII.

The first step of the algorithm is to cluster the analytes for each
data source. Any clustering technique can be utilized for this
purpose. We chose the K-Medoid clustering algorithm, since
it has many advantages over others such as the widely-used
hierarchical clustering, including its robustness, the ability to
specify the number of clusters (K), the relative simplicity of the
algorithm, and its minimal use of the computing resources [2].
For each patient, the pairs of analytes that come together in the
same cluster are saved as the output of the first step. The out-
put can be considered as a transaction data (e.g., market basket
data [3]) that includes information about which sets of analytes
appear together. In other words, each cluster is mapped to a
single transaction containing analytes. While clustering the an-
alytes for each patient, short time series, still potentially with
unequal intervals, are compared to each other. Distance met-
rics for comparison of this kind of time series are needed. The
metrics utilized by our algorithm will be discussed in Section V.

In the second step of the algorithm, a frequent item set min-
ing algorithm [3] is run to find strongly related analyte groups,
most of which are shown to have high biological correlation.

Any frequent item set mining algorithm can be used for this
purpose. Frequent item sets are defined as the sets of items that
cooccurred often enough to pass a given threshold called the
support limit. This output itself is usually not very useful, since,
typically, a large number of overlaps and redundancies (such as
subsets) exist. We apply a second level of pruning and select
a set of item sets using the confidence values of their corre-
sponding association rules. Confidence for an association rule
X ⇒ Y is the ratio of the number of transactions that contain
X ∪ Y to the number of transactions that contain X [3]. In our
context, the confidence for an association between a set and
its subset is described as the number of times members of set
cooccurred in the same cluster/number of times members of the
subset co-occurred in the same cluster. While finding a group,
not only the total number of cooccurrences of the group mem-
bers compared with a threshold (support limit), but also, the
ratio between this total to that of each one-item-less subset is
compared with another threshold (confidence limit). A group is
announced if it can pass both tests. Our algorithm finds groups
of size greater than or equal to three. Therefore, the initial sup-
port limit (sp) and the initial confidence limit (cl) given to the
algorithm are used to get the frequent items of size three. While
the size of the set increases, these thresholds are transformed
according to group size (details of this transformation can be
found in the following).

As an example, we examine the rules of being reported as
a group for the {analyte1, analyte2, analyte3} set. Assume that
they come together in the same cluster for 50 data sources
(patients). Thus, 50 must be greater than sp. Then the ratios of
50 to the total number of cooccurrences (support) of each subset
of size two are compared to cl. This means that if the support of
({analyte1, analyte2}) is 60, then that of ({analyte1, analyte3})
is 67, and that of ({analyte2, analyte3}) is 73, then each of
50/60, 50/67, and 50/73 should be greater than or equal to
cl. If all conditions met, {analyte1, analyte2, analyte3} can be
reported as a group; otherwise, not.

As mentioned previously while the size of the set increases,
different support and confidence limits are used by the algo-
rithm. These new limits are obtained from the sp and the cl by
using a special transformation factor for each limit. The one
used for the support limit is called tsp, and the other is tcl. For
a group of size greater than three, the algorithm uses sp-(group
size-3)∗tsp as the support limit and cl + (group size − 3) ∗ tcl
as the confidence limit. So, for the set of four, the support limit
is sp − tsp and the confidence limit is cl + tcl. Whereas, for the
set of five; the support limit is sp − 2 ∗ tsp and the confidence
limit is cl + 2 ∗ tcl, and so on. The confidence limit is increased
until 0.9. Our experiments showed that five is the best value for
tsp and 0.25 is the best one for tcl. As a result of this process,
strongly related item sets of reasonable sizes are the output of
the algorithm.

An additional measure over support and confidence, called
Lift (Correlations), has been proposed [4]–[7]. It is defined as:

Lift(A => B) =
P (AUB)

P (A) ∗ P (B)
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In our case, the probability of a set S(P (S)) is:
Support(S)/total, where total is total # of transactions. Thus:

Lift(A => B)

=
(Support(AUB)/total)

[(Support(A)/total) ∗ (Support(B)/total)]

Lift(A => B)

=
(Support(AUB))

(Support(A) ∗ [(Support(B)/total)

and Lift for a member of a set and remaining can be defined as:

Lift(A − {x} => {x})

=
(Support(A))

(Support(A − {x}) ∗ [(Support({x})/total)]

While clustering analytes for each patient, an analyte shows up
in one of the clusters. Thus, support of an analyte is equal to
the number of patients. We used the K-Medoid algorithm, so
for each patient, there are K transactions (clusters). Therefore,
the total number of transactions is K∗ number of patients. As
a result, for an analyte a, Support(a)/total = 1/K. In our ex-
periment, we compare Support(A)/Support(A − {a}) to con-
fidence limit which is more than 1/K, hence the value of Lift
is greater than 1. Eventually, for each resulting strong group,
we can say with a high degree of assurance that each subset of
the group has a positive correlation greater than cl ∗ K with the
remainder of the group.

Briefly, the algorithm clusters analytes for each patient in the
first step. In the second step, the analytes that occurred together
more than a user-defined support limit and supported by each
“an-item-less subgroup” more than a confidence limit are re-
ported as groups. These groups, which can be used as separate
panels for clinical trials, are expected to be biologically mean-
ingful. We will analyze the algorithm, its extensions, its results,
and how it is relevant to current practice in the Section VI. A
brief description of the algorithm can be found in Table I.

1) Generality of the Algorithm: Our algorithm can be applied
to high dimensional and heterogeneous data sets such as
other pharmaceutical and or microarray data sets. Phar-
maceutical data are generally analyzed patient by patient.
In the first step of the algorithm, data sources are eval-
uated separately so that a natural path of analyzing such
data is followed. Therefore, our algorithm can be used
for any pharmaceutical data that has the same properties
as our dataset: variety of data resources, high dimension-
ality, and a series of observations for each attribute. In
applications of microarray data analysis, expression lev-
els of thousands of genes are compared. Evaluations are
made at the gene level where a series of observations for
each gene are collected. Having these properties makes
microarray data sets a suitable input for our algorithm.
Many researchers are currently combining microarray ex-
periments with patient datasets as well [8].

V. DISTANCE METRICS FOR SHORT TIME SERIES

We utilize several well-established distance functions to mea-
sure similarity between time series data: dynamic time warping
(DTW), Euclidean, correlation coefficient, and qualitative dis-
tance. An important goal is to show the strong relationships
between patterns of analytes regardless of the metric used to
compare them. Therefore, we use metrics that are frequently
used in different disciplines, and that have different capabili-
ties and drawbacks. Among these metrics, DTW and qualitative
use a local distance metric inside. To improve the quality of
these similarity distances, we propose two novel distance met-
rics: mean-wise comparison (MWC) and Slope-wise Compari-
son (SWC). A concise description of each metric will be given in
the following sections. The time series compared by the metrics
are called “series1” and “series2” in all sections.

A. Correlation Coefficient and Euclidean

A correlation coefficient finds the positive correlation be-
tween two length n time series. We used

√
1 − r as a distance

metric, where r is the Pearson correlation coefficient between
two time series. This metric is very good at detecting linear
relationships between entities; however, it cannot be used to de-
tect nonlinear or nonmonotonous relationships [9], [10], and is
poorly estimated for short time series [11].

Euclidian distance metric and correlation coefficient are the
most commonly used metrics for time series analysis. Euclidean
distance defines the distance between two length n time series,
by first finding the distance between ith entries and combining
these n distances. The main drawback of this metric is that it
mainly captures the difference in the scale and baseline.

B. Qualitative Approach

This metric compares movements between all possible (i, j)
pairs; this means that for a series of length n, it compares move-
ments from first entry to each one of remaining n − 1 entries.
Since the movement from first entry to second entry is compared
for the first one, movements from second entry to the remaining
n − 2 entries are compared for the second one, and so on. The
sum of distances of all pairs is divided into the total number of
pairs which is n ∗ (n − 1)/2, and is returned as the qualitative
distance.

The qualitative metric is shown to be effective for short time
series [11]. It captures the similarity between patterns of changes
of time series regardless of whether the nature of the dependence
between them is linear or nonlinear [11]. Qualitative distance
uses a local distance function to compare the relationship be-
tween ith and jth entries of series1 to the relationship between
same entries of series2. So, the local metric must be capable of
comparing the relationship between the movements. We have
proposed slope-wise comparison (SWC), which is discussed in
Section V-D, to make this comparison.

C. Dynamic Time Warping (DTW)

The alignment of temporal patterns by DTW has been exten-
sively used in speech recognition [12] and time series studies
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TABLE II
RULES OF THE SWC METRIC

[13], [14]. DTW uses another metric, which is also called the
local distance metric, to compare point i of series1 to point
j of series2, where i and j do not necessarily need to be
equal. Our algorithm uses two different local metrics: square
of series1(i) − series2(j), where seriesp(r) is the rth entry of
seriesp , and MWC. Since Euclidian distance uses the same
method to compare ith entries of series, the first local metric
was accepted as Euclidian based, and details about MWC can be
found in Section V-E. Due to space limitations, we are not cov-
ering this metric in detail; the details can be found in [13], [14].

D. Slope-Wise Comparison (SWC)

The SWC metric takes four inputs, x1, x2, y1, and y2, and
compares the relationships between x1, x2, and y1, y2. There are
five possible distances which can be assigned: 0, 0.25, 0.5, 0.75,
and 1. The method is called slope-wise comparison, but instead
of the duration, the sum of absolute values of x1, x2 is used to
find an artificial slope. Let AX be the artificial slope between
x1 and x2, and AY the slope between y1 and y2.

AX =
x2 − x1

|x2| + |x1|
and AY =

y2 − y1

|y2| + |y1|
.

These artificial slopes are compared to positive threshold (pt)
and negative threshold (nt) in order to determine the dis-
tance between these two pairs. The rules of SWC are defined
in Table II.

E. Mean-Wise Comparison (MWC)

MWC takes four inputs, Xi,MeanX , Yi , and MeanY , where
Xi and Yi are ith points of the series X and Y , and MeanX

and MeanY are the means of these series. If both Xi and Yi

are more than or less than the mean of their own series, then
distance is set to 0; otherwise, distance is set to 1. There is
also a fuzzy region inserted into algorithm if |(Xi/MeanX ) −
(Yi/MeanY )| is less than a threshold; then distance is also set
to 0. As the functionality of this metric depicts, it is a way of
discretizing each series according to mean of the series itself.

VI. EXPERIMENTAL RESULTS

A. Experiment Setup

A sample of data is taken as input to the software we de-
veloped. Details of how this sample is selected were given in
Section IV. The selected sample for the experiments has 26
analytes and 152 patients and k equals 4; i.e., each patient has
more than four observations for each of the 26 analytes. As a
result, for each patient there are 26 short time series to analyze.
As shown in Table I, inputs for the tool we developed are the

total number of patients (152), total number of analytes (26),
distance metric to compare short time series, confidence limit,
and support limit.

The first output of the algorithm is to find the most intra-
related groups. These groups will be listed for each distance
metric for Sections VI-B to F. The only difference between the
experiments in these sections and the experiments in Section
VI-G is value of the support limit, which was discussed in the
algorithm. For each distance metric of each setup, the output of
the algorithm is compared with a list of clinical panels provided
by the experts.1 New groups will be reported, and the interpre-
tation of experts will be given for each of these new groups.
For the results indicated in the sections except VI-G, the initial
support limit (sp) is 45, and the initial confidence limit (cl) is
0.4.

B. Distance Metric = Correlation Coefficient

Group 1 and Group 5 in Table III are the groups which were
not provided by our experts; however, they were found by the
algorithm. The main function of WBC is to fight infection,
and neutrophils are the main defenders of the body against
acute infection. WBC count is the total number of leukocytes
(white blood cells) per unit volume of blood. Neutrophils (%)
is the proportion of leukocytes that are neutrophils. Neutrophils
(abs) are total number of neutrophils in a unit volume of blood.
Thus Group 1 can be referred to as Acute Infection Group.
Hemoglobin is the main transporter of oxygen in the blood.
Moreover, the main function of red blood cells (RBC) is to carry
the hemoglobin to the tissues. This process is possible through
the RBC containing hemoglobin, which combines easily with
oxygen and releases it at the tissue sites. Hematocrit is the
measurement of the volume percentage of red blood cells in
whole blood. Albumin transports drugs, hormones, calcium,
and many other components of the blood. Hence, Group 5 can
be identified as the Transporter Group. Total Protein, Albumin
and Globulin is the Serum Protein Group. Our algorithm adds
calcium to the first two members of this group in Group 2
because albumin is a major transporter of calcium in the serum.
The same element (calcium) is added to total protein and serum
globulin (Group 3) by the algorithm for the same reason. Since
total protein is albumin plus globulin, Group 2 and Group 3 are
equivalent in some sense.

It seems that the Albumin and Globulin pair does not have
sufficient support to appear in the same group according to the
algorithm. This is reasonable, because albumin is synthesized

1Donald C. Trost, M.D., Ph.D., Pfizer Inc. Andrej Rotter, Ph.D., Department
of Pharmacology at The Ohio State University (OSU).
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TABLE III
CORRELATION COEFFICIENT, SP = 45, CL = 0.4

TABLE IV
EUCLIDEAN, SP = 45, CL = 0.4

only in the liver, while other proteins come from many other
sites. SGOT, SGPT, and LDH (Group 4) are enzymes which
leak from the liver and are given as three members of the Liver
Group. Clinically, alkaline phosphate is usually considered as
the fourth member of this group However, it does not show up as
a member of the Group 4. Since it is prominent in both liver and
bone, and leaves the liver by another route, this is not surprising.
This implies that according to the algorithm, the strength of the
connection between the other three members of Liver Group
and alkaline phosphate is not adequate.

C. Distance Metric = Euclidean

Group 1 and Group 3 (Table IV) are effectively the same
as Group 1 and Group 5 of Section VI-B. Total bilirubin was
added to Hemoglobin, Hematocrit pair to form Group 2 by the
algorithm. This group was consistent, because bilirubin is a
waste product of hemoglobin. However, it was not represented
in Table IX, because this group was only reported by this metric.
Total bilirubin in the blood in also a function of liver metabolism.

D. Distance Metric = Qualitative

After changing the distance metric to qualitative metric, the
total number of significant groups is also 5 like the previous case.
We already know Group 1, Group 3, Group 4, and Group 5
(Table V) from Section VI-B. Platelets and WBC count with
RBC count together forms the Bone Marrow Group. However,
the results (Group 2) indicate that RBC count is not strongly
related to this group according to this distance metric. This
suggests that Group 2 is reflecting granulocyte production in the
bone marrow, rather than RBC production or oxygen transport.
If a new metric could be defined according to the series of
corresponding analytes, then RBC count could show up with
the other members of this group.

E. Distance Metric = DTW (Euclidean)

As discussed in Section V-C, DTW uses a local distance met-
ric to compare point i of series 1 to point j of series 2. For the
experiment in this section, Euclidean is selected as this local
metric. The resulting groups (Table VI) of this combination are
also reported earlier. Group 1 corresponds to the Group 1 of Sec-
tion VI-D and Group 2 corresponds to Group 3 of Section VI-D.

TABLE V
QUALITATIVE(SWC), SP = 45, CL = 0.4

TABLE VI
DTW (EUCLIDEAN), SP = 45, CL = 0.4

TABLE VII
DTW (MWC), SP = 45, CL = 0.4

F. Distance Metric = DTW (MWC)

Group 1 and Group 6 (Table VII) are equal to Group 1 and
Group 2 of Section VI-E. In addition to hemoglobin and RBC
count (from Group 1), the algorithm adds the albumin member
of “serum protein group” and forms Group 2. The backbone
of Groups 3 to 5 is hematocrit, and RBC count. In Group 3,
total protein was added to this backbone, while albumin was
added in Group 4 and calcium in Group 5 by the algorithm.
Members of Groups 2 to 5 are subsets of the union of Group 3
and Group 1 of Table IX. These four groups may show that the
inner relationship between these two groups is too high.

G. Metric-Independent Results

1) Common Groups: Although each distance metric captures
certain types of similarities, when the support limit is suf-
ficiently high, the proposed algorithm consistently gives
the same set of groups independent of the underlying dis-
tance metrics. When the support limit is set to 60 with a
confidence of 0.4, there are two groups left for all distance
metrics, as presented in Table VIII. This clearly states that
the intrarelationships for these groups are significantly
higher than intrarelationships of others. After evaluating
the results of experiments with five different distance met-
rics, our algorithm concludes that the strength of the inner
relationships within these two groups does not depend
on the distance metric, but on the nature of the analytes
in these sets. This result confirms the existence and the
strength of these groups, which were not given by the
experts, but found by the algorithm.

2) Ensemble Algorithm: Each similarity metric results in dif-
ferent sets of clusters. We further consider the set of clus-
ters by each metric as a different data source, and give it as
an input to our algorithm. As a result, the first step of our
algorithm produces five times more sets of clusters than
when a single distance is used. Table IX shows the result
of this algorithm on our data set. Four groups of analytes
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TABLE VIII
ALL METRICS SP = 60, CL = 0.4

TABLE IX
ENSEMBLE GROUPS

are identified. Not surprisingly, the two common groups
still show up with two more groups shown in Table IX.

VII. FEATURE SELECTION ALGORITHM

Utilizing the proposed algorithm, we now propose a method
for feature selection which identifies a global panel that models
human health. Identifying such a panel will not only reduce the
number of analytes to a manageable size; it will also be a key
to define what the normal is. A small change to our algorithm
leads us to find such global panels whose elements have minimal
intrarelationships. After identifying such panels of analytes, we
will also calculate how often the biological groups found in the
previous section (shown in Table IX) are represented in these
panels.

Appearing in the same cluster is the complement of not being
in the same cluster. By the same token, if the algorithm can
determine which analytes occurred in the same cluster more
than the support limit, it can also determine which of them did
not come together more than the difference between the number
of patients (data sources) and the support limit. We define the
new support limit as “complement support limit.”

Complement support limit, which is utilized to find a group
with most unrelated analytes, is calculated by subtracting the
support limit for most related groups (45) from the total number
of patients (data sources). Since increasing support limit does
mean decreasing complement support limit, the results for “60”
will grow and managing this output will become more difficult
when compared to the one for “45.” In order to calculate how
many times the set of analytes dispersed, the first algorithm
calculates how many times they came together, and takes the
complement of this number (the total number of patients minus
this number). Based on these values sets, most unrelated groups
are formed.

Our algorithm gave two analyte-panels of size eight (largest
set for this metric) for the correlation coefficient metric. These
panels are as follows:

1) Selected Features set-1:Hematocrit, Neutrophils(%), To-
tal Bilirubin, Globulin, SGOT(AST), BUN, Creatinine,
Phosphorus; and

2) Selected Features set-2:Hematocrit, Total Bilirubin, Glob-
ulin, SGOT(AST), BUN, Creatinine, Phosphorus, Neu-
trophils(abs).

Intersection of these two groups is seven, and only neu-
trophils(%) and Neutrophils(abs) are different for these two
selected features sets. They are members of the same group

TABLE X
ANALYTES AND THEIR GROUPS

TABLE XI
PERCENTAGE

(Group 3 of Table IX). This results can be interpreted such that
one of them is enough to represent whole group and replacing
one with another also forms a set of selected features. This is
reasonable, because Neutrophil(%) = Neutrophil(abs)/WBC.

Common laboratory tests in liver diseases are divided into
the following groups: liver-related, hematology, electrolytes,
proteins, lipids, renal-related, thyroid, and immune system [15].
Our data set contains seven groups: liver function, liver enzymes,
hematology, electrolytes, proteins, renal-related, and immune
system. A global panel should include at least one representa-
tive from each of these seven groups. The proposed algorithm
has this property. The list of analytes in the global panel, and all
major biological groups and their representatives in this panel,
is given in Table X.

Members of each group shown in Table IX are strongly
correlated. A member of these panels is expected to repre-
sent the behavior of the whole group. Hence, one member
from each group is expected to appear in the global panel. For
each group given in Table IX, the proportion of being repre-
sented in the global panels given by the algorithm is calculated
and presented in Table XI for each distance metric. Note that
the average appearance of a representative from each group is
higher than 80%.

VIII. RELATED WORK

Sequence data mining and clustering [16] have been exten-
sively studied from the perspective of efficiently searching or
extracting rules from them [17]. Das et al. [18] first cluster all
fixed length subsequences of each one-dimensional stock time
series; then, based on the labels of the clusters, a sequence min-
ing algorithm is executed to find interesting rules. A similar
approach can be developed for clinical trials data to see if the
drug has an obvious effect on a single analyte; however, it won’t
capture multivariate relationships between analytes.

There have been several studies directly applying association
rule mining for medical data. Ordonez et al. [6] map patient
data into transactional data, and run an association rule mining
algorithm to find interesting rules. Similarly, Doddi et al. [19]
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obtained association rules that show relationships between med-
ical procedures and the corresponding diagnosis. These algo-
rithms consider only one observation for each attribute, and are
not applicable to multidimensional time-series data. Ohsaki et
al. [20] propose a discretization technique based on sequence
extraction and conversion into patterns by clustering. Since only
a single series per patient is considered, the relationship between
different series of the same patient are not taken into account.
Also, time series are required to have sufficient length for the
algorithm to be applicable.

IX. CONCLUSION

We have proposed a novel approach for mining heteroge-
neous and high dimensional time series data that are commonly
found in a large number of applications. We focused on min-
ing clinical trials data and illustrated our findings on an ex-
ample industry-sponsored data set. Global mining of a clinical
trials data set is infeasible because of the high heterogeneity
and dimensionality of the data. Therefore, the proposed tech-
nique included two steps: first, homogeneous subsets of the
data are identified and locally analyzed, and then information
gathered in this step is mined to identify global patterns. This
two-step process minimizes the differences among time series
caused by source variation and, as a result, local groups of time
series become equal in length, and equal interval. Therefore,
well known distance metrics, such as Euclidean, correlation
coefficient, qualitative, and DTW, that are generally suitable
for equal series, become eligible to find the distances between
heterogeneous series. We have proposed two new similarity
distance metrics that are suitable to the nature of the clinical
trial data. Using these distance metrics, we cluster the series
of attributes in each data source. In the second step, the in-
formation gathered in the first step; i.e., the clusters, is further
mined to find groups of attributes that occur in all subsets.
Thus, we refer to our approach as information mining rather
than data mining; the data are too dirty to be mined as is. Our
results have verified two biological panels (of blood analytes) al-
ready well-known in the medical field. Besides the well-known
groups, we have also identified biological groups that are not
commonly used.

A slight change to our algorithm leads to a novel tech-
nique for feature selection for high dimensional pharmaceu-
tical clinical trials data. It identifies a global panel of ana-
lytes that effectively represents the normal state of health. The
panel consists of eight analytes that are found to be most un-
related. The panel successfully includes at least one instance
from each of the seven major analyte groups present in the
human body.

The proposed algorithm is general and can be applied to
pharmaceutical and clinical data, as well as other high dimen-
sional and heterogeneous data sets. It illustrates the interactions
between blood analytes that is crucial to understand the hu-
man body. Our colleagues involved in this industry-sponsored
project are already using the results of the proposed technique.
The statisticians use the strongly related groups of analytes
and the global panel of analytes in developing accurate data

distribution tests (such as multivariate normality) for high di-
mensional clinical trial data sets. The mathematicians involved
in the project use the results in modeling the behavior of the
human body in response to drug treatments. We expect sev-
eral other uses of these results by researchers in pharmacol-
ogy, biomedicine, and biology. One such use is prediction of
health state, value of an analyte, and diagnosis. The proposed
technique can also be used to significantly reduce the number
of blood analytes needed to be tested in pharmaceutical and
medical studies.
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