
VQ-Index: An Index Structure for Similarity Searching in
Multimedia Databases

∗

Ertem Tuncel
Electrical and Computer

Engineering
University of California,

Santa Barbara

ertem@ece.ucsb.edu

Hakan Ferhatosmanoglu
Computer and Information

Science
Ohio State University

hakan@cis.ohio-state.edu

Kenneth Rose
Electrical and Computer

Engineering
University of California,

Santa Barbara

rose@ece.ucsb.edu

ABSTRACT

In this paper, we introduce a novel indexing technique based
on efficient compression of the feature space for approximate
similarity searching in large multimedia databases. Its main
novelty is that state-of-the-art tools from the discipline of
data compression are adopted to optimize the complexity-
performance tradeoff in large data sets. The design pro-
cedure optimizes the query access time by jointly account-
ing for both database distribution and query statistics. We
achieve efficient compression by using appropriate vector
quantization (VQ) techniques, namely, multi-stage VQ and
split-VQ, which are especially suited for limited memory ap-
plications. We partition the data set using the accumulated
query history, and each partition of data points is separately
compressed using a vector quantizer tailored to its distrib-
ution. The employed VQ techniques inherently provide a
spectrum of points to choose from on the time/accuracy
plane. This property is especially crucial for large multi-
media databases where I/O time is a bottleneck, because it
offers the flexibility to trade time for better accuracy. Our
experiments demonstrate speedups of 20 to 35 over a VA-
file technique that has been adapted for approximate nearest
neighbor searching.

Keywords

Approximate similarity searching, clustering, indexing, re-
trieved information reduction, retrieved set reduction, vec-
tor quantization.

1. INTRODUCTION
The term “similarity search” refers to seeking data objects

in a database, which are most similar to a given query ob-
ject. This problem is central in a wide range of applications
in multimedia databases, which may contain images, video,

∗This work is supported in part by the National Sci-
ence Foundation under grants no. EIA-9986057 and EIA-
0080134, the University of California MICRO Program,
Dolby Laboratories, Inc., Lucent Technologies, Inc., Mind-
speed Technologies, Inc., and Qualcomm, Inc.

text, music, etc. [43]. Another application is duplicate entry
detection, e.g., elimination of almost identical variants of a
document in the same database. The degree of similarity be-
tween two objects is often measured by a distance function,
e.g., the Euclidean distance, operating on feature vectors ex-
tracted from the data. The user submits a query object to a
search engine, and may either provide a distance threshold
ε, or the number of objects k to be returned. These types
of queries are called ε-range query, and k-nearest-neighbor
(k-NN) query, respectively.

The feature vector dimensionality is usually very high
and the search procedure is subject to Bellman’s notorious
“curse of dimensionality” [5], i.e., the search space grows
exponentially with the number of dimensions. The com-
plexity is further exacerbated by the fact that the number
of entries in the database is very large. However, significant
savings in disk I/O costs are possible if one allows for ap-
proximate search results. Usually, the extraction of feature
vectors from the data objects is itself a heuristic process
that attempts to approximately capture relevant informa-
tion. Moreover, even if the feature vectors represent the
original data with 100% accuracy, users would still differ in
their perceptional capacity and needs, and hence in their
similarity expectations. Thus, rather than incur the ex-
tremely high cost of an exact result, it is more cost-effective
to develop a fast search engine that effectively outputs an
approximate set.

An efficient approximate similarity search engine must re-
duce not only the number of feature vectors retrieved, but
also the information retrieved about each feature vector [19].
In this paper, we employ this paradigm and develop a novel
approximate k-NN search approach. To reduce the size of
the retrieved set of vectors, we exploit the available accumu-
lated query history. We cluster the query distribution and,
for each cluster, collect into a file the union of data points
most likely to be in the answer set. Hence, when a query is
to be processed, an accurate answer can be found by retriev-
ing only the data file corresponding to the cluster into which
the query point falls. To reduce the information retrieved
about each vector, on the other hand, the feature vectors in
each file are quantized separately and efficiently. The idea
of using quantization to overcome the curse of dimension-
ality was first proposed by Weber et al. in [46]. Although
they used a very simple scalar quantization scheme, their
method achieved superior performance for high dimensional
data over other indexing techniques. In general, an efficient
quantization scheme must achieve a good balance between
quality of the vector reconstruction and the number of bits
used to describe the vectors. The best quantization scheme
in this respect is known as vector quantization (VQ) [20].
VQ has been used in several disciplines extensively, includ-



ing indexing and retrieval of high dimensional data sets [19,
21, 23, 32, 44]. However, in those works, VQ has always
been used for reducing the number of retrieved feature vec-
tors, and to the best of our knowledge, never for the purpose
of efficiently reducing the information retrieved about each
data object. In this paper, we propose to design a vector
quantizer for the feature space, and store on disk the bit
descriptions (indices) of the feature vectors. The number of
bits used for each vector is considerably smaller than that
used by the uncompressed feature vector description. In or-
der to process the query, only these small number of bits are
retrieved, and used to reconstruct the approximate feature
vectors via look-up tables that are stored in the computer
memory. The reconstructed (approximate) feature vectors
are used for distance calculations.

It is often desirable to provide the users with a spectrum
of points to choose from on the time/accuracy plane. Such
flexibility is needed when diverse users differ in their time
constraints and precision requirements, and may trade time
for better quality. To accommodate this property, we use
a structure called multi-stage VQ (MSVQ). We also use
a structure called the split-VQ technique, which, together
with the MSVQ structure, allows us to substantially reduce
the memory requirements of the look-up tables.

The organization of the paper as follows: In the next sec-
tion, we discuss related work. In Section 3, the setup phase
and the working principles of the proposed algorithm are
described. Section 4 describes the clustering of the query
distribution. In Section 5, we describe in detail the vec-
tor quantization schemes used in our algorithm. Section 6
demonstrates the superiority of VQ-index with experimen-
tal analysis. We conclude the paper in Section 7 with a
discussion.

2. BACKGROUNDAND PREVIOUSWORK
An important goal to be considered in designing a struc-

ture for similarity searching in large multi-dimensional data
is to minimize the I/O cost during query processing. In
this section, we review approaches that have been proposed
to overcome the I/O bottleneck in multi-dimensional near-
est neighbor queries. We then discuss some techniques in
the literature that support approximate nearest neighbor
queries.

2.1 Exact NN Query Processing
For efficient query processing in large data sets, it is nec-

essary to build an index structure that reduces the size of
the retrieved set needed to answer a query. The general
approach is to prune the search space and eliminate ir-
relevant data objects without accessing the corresponding
pages. This approach is referred to as retrieved set reduc-
tion [19]. Multi-dimensional index trees are very effective
in low dimensions. Therefore, they are widely used in low
dimensional applications such as Geographical Information
Systems (GIS) [13]. However, there are important applica-
tions, e.g., multimedia databases [17, 41], that require high
dimensional support. It has been observed that the query
performance of multi-dimensional index tree structures de-
grades rapidly with increase in feature vector dimension-
ality [9, 7, 46, 10]. To overcome the high dimensionality
problem, two major approaches were proposed in the litera-
ture: dimensionality reduction and scalar quantization. We
refer to these approaches as retrieved information reduction.
In retrieved information reduction approach, the data set is
organized such that only a partial representation (e.g., 2 out
of d dimensions in dimensionality reduction) of each object
is examined.

Index structures: Several index structures have been

proposed for retrieval of multidimensional data. Examples
include kdb-trees [39], hB-tree [34], R-tree [24], R*-tree [4],
SS-tree [47], TV-tree [33], X-tree [9], Pyramid Technique [8],
Hybrid Tree [12]. Various algorithms for similarity search-
ing have been developed in conjunction with these indexing
mechanisms. The techniques developed for these structures
mostly focus on finding the exact result for a query.

A branch-and-bound technique for k−NN queries on in-
dex tree structures, such as R-tree, was proposed in [40].
Hjaltason and Samet proposed an incremental nearest neigh-
bor (NN) searching algorithm [26] and later adapted it to
R-trees [25]. In these techniques, the tree, which consists
of minimum bounding rectangles (MBR), is traversed and
MBRs are pruned if they are guaranteed not to contain the
nearest data point(s).

Dimensionality Reduction: The simultaneous consid-
eration of all the dimensions dramatically degrades the effi-
ciency of high dimensional query processing. A well-studied
solution to this problem is the dimensionality reduction ap-
proach which is a typical example of retrieved information
reduction. Several researchers have used dimensionality re-
duction for scalable query performance [27, 33, 37, 48, 30].
For example, the dimensions of the feature vectors can be
reduced to a desired value such that the underlying index-
ing technique performs more effectively. There is a trade-off
between the accuracy obtained from the information stored
in the index structure and the efficiency. The most com-
mon dimensionality reduction approach in the literature is
based on transformations such as the Discrete Fourier Trans-
form (DFT) [38], the Discrete Cosine Transform (DCT) [29],
the Discrete Wavelet Transform (DWT) [11], and Karhunen
Loeve Transformation (KLT) [28]. Since these transforms
are distance-preserving, if a point is in ε neighborhood of
the query point, it remains in its ε neighborhood after the
transformation. The high dimensional original feature vec-
tors are transformed, and the resulting vectors are truncated
to the first few transform coefficients [1]. The distance calcu-
lations are performed in this truncated transform domain,
and hence the feature vectors are declared to be closer to
the query point than they actually are. This results in extra
data in the returned result, and such false hits are later on
eliminated by checking the original distances.

Scalar Quantization: An alternative approach for re-
trieved information reduction is to reduce the number of
bits that represent the data objects. Rather than reduce
the number of dimensions, which is a crude form of compres-
sion, this approach directly compresses the representation to
a small number of bits. VA-file [46] is an efficient technique
that follows this approach by using a simple scalar quanti-
zation. The VA-file is basically a sequential list of approxi-
mations of feature vectors, based on independent quantiza-
tion of the dimensions of the original feature vectors. The
total size of the feature-vector set is thereby significantly re-
duced. For exact nearest neighbor searching, the set of all
vector approximations is scanned sequentially and lower and
upper bounds on the distance of each vector to the query
vector is computed. A significant subset of the vectors is
eliminated based on these bounds. Then, the real feature
vectors of the candidates are visited to determine the actual
k-NN. Recently, an extension called VA+-file [18] has been
proposed to handle non-uniform and clustered data sets. In
this approach, the creation of a VA-file is improved by first
transforming the data using KLT into an “energy compact-
ing” domain. Available bits are non-uniformly allocated to
the different dimensions and a quantizer is used to exploit
knowledge of the data statistics. These steps result in im-
proved performance, especially for non-uniform data sets.
Berchtold et al. have proposed using VA-files with a parti-
tion based index structure [6]. They apply a number of VA-



files on partitions obtained from a bulk-loading algorithm.
The advantage of this technique over standard VA-files is
due to pruning of empty spaces by local quantizations in-
stead of global quantization. These local quantizations are
performed in the same manner as in the standard VA-file
approach.

2.2 Approximate NN Query Processing
Problems due to the curse of dimensionality in high di-

mensions and scalability problems for very large data sets
can be mitigated by structures that support approximate
searching. An effective approximate searching technique
should organize the data such that acceptable accuracy is
achieved while the I/O cost for a query is minimized. Most
of the techniques herein had originally been proposed for
exact searching, but have recently been extended for ap-
proximate searching.

An obvious and simple approach to implement approxi-
mate searching is to sequentially scan a portion of the data
set. The basic idea is to access the data set progressively
while answering the query based on the data that was read.
Specifically, data pages are read in the order they are stored
and k nearest neighbors can be computed within the data
subset that has been read so far. The search can be in-
teractive, and may be stopped any time, to produce the
answer available at that point. Accuracy of intermediate
answer sets can be improved by storing the data set in a
more appropriate manner. Data points that are more likely
to be accessed can be stored earlier in the sequential file so
that they will be reached earlier in the search process. The
corresponding probabilities may be computed using a query
history sample, or the data set itself if no such history is
available. For each point p, the set of query points that
have p in their k-NN neighborhood is computed. Note that
this procedure itself is equivalent to reverse nearest neigh-
bor queries (RNN), which were proposed as a new query
type that has several applications [31]. The points that have
higher number of RNNs are stored earlier in the sequential
file.

Index structures: Most of the proposed techniques for
approximate nearest neighbor specifically focus on ε-nearest
neighbor (ε-NN) queries. An ε-NN is a neighbor of the query
point within a factor of (1 + ε) of the distance to the true
nearest neighbor. In [14], an algorithm was proposed in
which the error bound ε can be exceeded with a certain prob-
ability δ given prior information on the distance distribution
of the query point. This technique can be classified as a re-
trieved set reduction approach. The retrieved data set size
is first reduced by the underlying index structure. Besides
the irrelevant objects pruned by the index, more objects are
pruned by shrinking the NN query sphere at the expense
of allowing some false dismissals. The technique also adds
a second level of approximation, where more objects can
be pruned by allowing to exceed ε with the probability δ.
In [22], a locality sensitive hashing structure is created by a
randomized procedure and the (1+ε)-approximate NN point
is found with a constant probability. Hashing is used to re-
duce the retrieved set size, therefore improving query time,
again at the expense of false dismissals. This approach is
also based on the retrieved set reduction idea, where hashing
is used instead of a multi-dimensional index tree to identify
the retrieved data set. The disadvantage of this approach,
however, is that ε needs to be known in advance, and some
preprocessing, which is exponential in 1/ε, is needed. In [49],
approximate similarity retrieval with M-trees has been pro-
posed. In [21, 23, 32], retrieved set reduction is achieved by
clustering the data, and for each query, retrieving only a few
clusters which are stored sequentially in the disk.

Dimensionality Reduction: In [16] a dimensionality

reduction approach is proposed for approximate searching.
The majority of the dimensionality reduction techniques in
the literature satisfy the lower-bound filtering rule to avoid
false dismissals [42]. However, [16] intentionally ignores
this rule and concentrates only on close approximation of
distances in the reduced dimensional domain. The results in
the paper establish that high accuracy can be reached when
approximate answers are allowed. The use of approximate
KLT for dimensionality reduction was proposed in [30], and
was shown to be more effective than techniques based on
exact transformations, for dynamic data sets.

Scalar Quantization: Weber and Bohm [45] have pro-
posed an approximate NN searching technique based on VA-
files. To overcome the I/O bottleneck which is crucial in
large databases, they proposed a VA-file based technique
which omits the second step of the exact NN search algo-
rithm. The similarity distances are estimated from the lower
and upper bounds in the first step, and the result set is cre-
ated using only these bounds. This introduces some errors
in the result set, but yields order of a magnitude speedups
over exact NN search. The same approach is applied to
VA+-file in [19].

There are several other works on approximate searching.
Arya et al. proposed an optimal nearest neighbor algo-
rithm for data structures that are stored in the main mem-
ory [3]. An approximate range searching algorithm was pro-
posed in [2]. A more recent technique uses clustering in
the KLT domain for approximate nearest neighbor search-
ing [19]. This clustering-based technique outperforms cur-
rent techniques and achieves significant speedups with accu-
rate results. The results in [19] also show that even simple
techniques can achieve acceptable accuracy at significantly
reduced time relative to exact searching.

3. A VQ-BASED STRUCTURE FOR EFFI-

CIENT APPROXIMATE K-NN SEARCH-

ING
During the processing of a k-NN query in a high dimen-

sional data set, even if a reduced set is retrieved, if the
retrieved information per entry is not reduced, i.e., if the
feature vectors are not compressed, then the system has to
access many pages. Conversely, if all the database is ac-
cessed, no efficient compression scheme will sufficiently re-
duce the I/O cost. Our premise here is that the solution
lies in an appropriate combination of both types of reduc-
tion in order to get accurate results with very few pages
accessed from the disk. We propose an algorithm based on
this premise.

For the retrieved set reduction part, we separate the fea-
ture vectors into subsets, whose union is the entire data set;
retrieved information reduction is achieved by VQ, as dis-
cussed in detail in Sections 4 and 5, respectively. Quantiza-
tion refers to partitioning the space into regions, and assign-
ing to each region a representative, so that data points are
mapped to the representative of the region they fall into. In
scalar quantization, each dimension is quantized separately,
hence the resulting regions are rectangular hyperboxes that
tile the data space (See Figure 1 for a simple two dimen-
sional example.) Because of the geometric simplicity of the
regions, the scalar quantizer is easy to maintain, and hence
was successfully used by the VA-file technique [46] for exact
k-NN queries. However, scalar quantization is potentially a
very suboptimal partition of the space, because it ignores
the correlation between components. On the other hand, as
seen in Figure 1, the resulting regions of a general VQ are
convex polytopes which represent the data more accurately.
The regions are much harder to maintain, but for our pur-



−15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

25
Scalar quantization

−15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

25
Vector quantization

Figure 1: Resultant 16 regions in scalar (left) and vector (right) quantization

poses, it suffices to keep the representatives of the regions,
not the regions themselves.

In Figure 2, the overall system setup is displayed as a
block diagram. Using the query history, the query space
is partitioned into clusters, and the resulting query clusters
induce a partitioning of the data set. Each data subset is
then efficiently compressed using a vector quantizer which is
tailored to specific subset, and the resulting bit descriptions
are written into separate files.

File 2

File M

Database

Query
history

Data
partitioning

Query
clustering

Compression

Compression

Compression

File 1

Figure 2: Block diagram of the setup phase of the
system

As shown in Figure 3, upon receiving a query, the system
accesses only the compressed information about one chosen
subset of data. The algorithm first decides which Voronoi
cell the given query resides in, and only the corresponding
file is retrieved from the disk. The distance calculations,
for the purpose of finding the k nearest neighbors, are then
performed between the query vector and the decompressed
(or reconstructed) feature vectors retrieved from the chosen
file.

4. RETRIEVED SET REDUCTION VIA

DATA PARTITIONING
In this section we discuss how the retrieved set reduction

is accomplished. We use the accumulated query history to
partition the data. If no such history exists, we use the data
set itself for that purpose. A random subset is sampled

i

Query
clusters

Find
nearest
cluster

chosen file
Retrieve Find

k-NNDecompression

File M

File 1

File 2

File iQuery

Figure 3: Block diagram describing the working
principle of the system

from the query history, since the history might be too large
to handle (this is obviously the case if we take the data
set itself as the history). For the sake of faithful statistical
characterization, however, we keep the number of elements
in the sample query set large enough. We then cluster the
sample query set into M clusters. For this purpose, we use
the K-means algorithm [15], because the intuition behind
its iterations match our main objectives. Let Vi denote the
resultant Voronoi cell for the cluster i. For each point q in
the sample query set, let us denote by NL(q) the points in
the data set which are the L nearest neighbors of q. We
create the data subset Si as follows:

Si =
⋃

q∈Vi

NL(q) . (1)

Assuming that the query sample is statistically representa-
tive, if an actual query falls into Vi, there is a high probabil-
ity that its nearest neighbors are in the subset Si. Note that
the same data point may fall into more than one subset, and
some data points may not be covered, i.e., may not fall into
any Si. (This only happens if the data point is not in the
L-nearest neighborhood of any query q.) Since uncovered
data points are statistically among the least likely to be in
the answer set, adopting a simple strategy, we investigate
which Voronoi cell Vi the uncovered point belongs to, and
then include it in the corresponding subset Si.

The choice of M and L is subject to the following consid-
erations:



• If M is too small, then little will be achieved in terms
of retrieved set reduction. If M is too large, however,
the amount of repetition of the same data point in
several Si will be amplified and hence the efficiency
in retrieved set reduction will be compromised. More-
over, since the look-up tables for each subset for fea-
ture vector reconstruction are stored in the memory,
the required memory size will increase.

• If L is too small, then many true nearest neighbors
to the given query will fall into subsets other than
the chosen one and, hence, the accuracy of the ap-
proximate k-NN result will be poor. Moreover, many
points will remain uncovered after the initial partition-
ing, which will also result in decreased accuracy. If L
is too large, on the other hand, then data repetition
will be excessive. For k-NN search queries, k is usually
below a prespecified number, kmax, according to user
expectations, and the readability of the result. Our
experiments show that an appropriate range for L is 5
to 10 times kmax.

5. VQ FOR RETRIEVED INFORMATION

REDUCTION
A vector quantizer Q of dimension d and size N is a map-

ping from a vector in d-dimensional Euclidean space, Rd,
into a finite set C containing N reproduction vectors (also
called codevectors.) The quantizer can be decomposed into
two operations, the encoder, and the decoder. The encoder
E is the mapping from Rd to the set J = {1, 2, . . . , N}, and
the decoder D maps the set J into the reproduction set C
(also called the codebook, or the look-up table.)

For each feature vector subset Si, we design a vector quan-
tizer Qi, and store the corresponding codebook

Ci = {x̂i1 , x̂i2 , . . . , x̂iNi
}

in the memory. For each feature vector x ∈ Si, we write into
disk the encoder output Ei(x) sequentially, and in binary
notation. When the subset Si is chosen to be retrieved for
query processing, the algorithm retrieves the bit encoding
of all x ∈ Si, and then using the codebook Ci, decodes x̂ =
Qi(x) = Di(Ei(x)) for each x. These reconstructed values
are then used for calculating the distance between the query
point and the feature vectors. See Figure 4 for a pictorial
description.

Disk
storage

x̂00111010

00111010 D

CodebookC

x̂x 00111010ε

Figure 4: A vector quantizer

Vector quantization is in fact theoretically the “optimal”

solution for fixed rate compression of a vector set [20]. Al-
though at first glance, the boldness of this statement may
raise some skepticism, it is easy to verify. Any compression
scheme that maps a vector into one of N binary words and
reconstructs the approximate vector from the binary word,
no matter how complicated the encoding/decoding may be,
is trivially implementable by a VQ with a codebook of N
codevectors.

Because of limitations on the computer memory, codebook
sizes, Ni, must be much smaller than the number of feature
vectors in the corresponding Si. Hence, the reconstruction
x̂ is only an approximation to x. Obviously, higher accuracy
in feature vector reconstruction yields better approximation
of the distance between the query point and the feature vec-
tors. The objective of the design of each quantizer Qi is
therefore

min
Qi

∑

x∈Si

d(x,Qi(x)) ,

where d(·, ·) is the distance or distortion function used for
measuring similarity. If we express the objective explicitly
in terms of the encoder and the decoder functions, we get

min
Di

min
Ei

∑

x∈Si

d(x,Di(Ei(x))) . (2)

The objective may also be expressed as

min
Ei

min
Di

Ni∑

j=1

∑

x:Ei(x)=j

d(x,Di(j)) . (3)

Equations (2) and (3) help us determine the best encoder for
a fixed decoder, and the best decoder for a fixed encoder,
respectively. Indeed, if we fix the decoder Di, and hence
the codebook Ci, it follows from (2) that the best encoder is
given by

E∗
i (x) = arg min

j
d(x, x̂ij) . (4)

If we fix the encoder Ei, then from (3), the best decoder
becomes

D∗
i (j) = arg min

x̂

∑

x:Ei(x)=j

d(x, x̂) . (5)

Equations (4) and (5) can be interpreted as follows: When
the codebook is fixed, the best codevector as an approxima-
tion for the given vector x is the nearest one in the code-
book. Similarly, when a group of vectors are assigned to
the same codevector, the best value for that codevector is
the one minimizing its average distance to all vectors in the
group. In the important case of the squared Euclidean dis-
tance (also referred to as “mean squared error”), the best
update becomes

D∗
i (j) = mean{x | Ei(x) = j} . (6)

Iteration of (4) and (6) until convergence is what is com-
monly known as the generalized Lloyd’s algorithm in the VQ
literature [20]. The algorithm is guaranteed to converge, but
it requires a good initialization for convergence to a good so-
lution. A good heuristics is to design the codebook initially
for only a small number of codevectors, say 1, and then to
grow the codebook by each time duplicating and perturbing
a chosen codevector, and reiterating the Lloyd’s algorithm
until convergence.

5.1 Structurally Constrained VQ
Since we store the codebooks Ci for each file in the com-

puter memory, there is a limitation on their sizes. For ex-
ample, assume file i has 65536 feature vectors stored in it.



If we decide to use a codebook of size 65536, the best code-
book then consists of the feature vectors themselves. The
resultant VQ is very efficient in the sense that by retriev-
ing only 16 bits per vector from the disk (instead of 32d,
where d is the dimensionality, and 32 is the number of bits
in floating point representation), one can access the feature
vectors with zero error. However, in most cases, the memory
is much smaller in size (otherwise, there would be no need
for any disk storage in the first place).

VQ1

VQ2

VQn

x̂

x̂

x̂

x̂

x

nx

2

1x 1

2

n

x

Figure 5: Split-VQ algorithm

One approach to mitigate the memory storage barrier is to
impose certain structural constraints on the codebook [20].
This means that the codevectors cannot have arbitrary val-
ues but are distributed in a restricted manner. The simplest
example is the split-VQ structure, where the vectors are split
into a few subvectors, and each subvector is quantized sep-
arately (See Figure 5). For the above example, we can split
the vectors into two parts with equal dimensionality, and
quantize each part with 8 bits. As a result, we still obtain
a quantizer with 256 × 256 = 65536 codevectors, however,
the codebook is a Cartesian product of two codebooks of di-
mensionality d/2 and size 256, and hence the actual degree
of freedom for the codevectors is 256d, instead of 65536d.
Although this constraint causes degradation to the perfor-
mance of the quantizer, it also results in a major (factor of
256) savings in terms of codebook storage. We can split the
vector into more parts in order to further reduce the required
memory storage size. As an extreme example, we can split
each vector into 16 parts and design a codebook of size 2
for each subvector of dimensionality d/16, and hence reduce
the codebook storage down to 2d, while keeping the number
of possible vector reconstructions equal to 65536. Obviously
the complexity-quality trade-off here is due to the fact that
as we split the vector into more and more subvectors, since
we quantize each subvector independently, we further and
further disregard the correlation between the dimensions,
which could have been exploited for reproduction quality.

Another structurally constrained VQ which is used for
codebook storage reduction is known as the multi-stage VQ
(MSVQ). As shown in Figure 6, there are several stages, each
of which quantizes the previous quantization error, i.e., the
residual vector from the previous stage. For the same ex-
ample as above, if we use 2 stages, and design codebooks of
dimensionality d and size 256, we again obtain 65536 pos-
sible codevectors, but this time the codebook storage is re-
duced to 512d, instead of 256d as in the split-VQ case. The
compensation for this less extreme storage reduction is that
at each stage quantized vectors are of full dimensionality,
hence the correlation between dimensions is fully exploited.

The MSVQ structure also provides progressive improve-
ment in the quality of the reconstructed vectors. The recon-
structed values x̂j in Figure 6 gradually approach the un-

VQ1 VQ2Σ
- -

Σ VQn

Σ

Σ

Σ

x +1z z2 + zn

z3 3

zn

1z

z2

1

2

x̂

n

x̂

x̂

x̂

Figure 6: Multi-stage VQ algorithm. The quantized
values x̂j are progressively refined, as j increases.

quantized value x, as j is increased. This is a very desirable
feature, since the users might differ in their time constraints,
i.e., some users might wish to get some approximate answer
in a very short amount of time, while others might trade
time for better quality.

In our algorithm, we employ both the MSVQ and the
split-VQ structures in the same compression scheme, as de-
picted in Figure 7. The design objective of such a system is
to strike a good balance between the number of stages and
the number of subvectors.

1x

nx

x2

x

Σ
-

Σ
-

Σ
-

Σ
-

Σ
-

Σ
-

x̂

x̂ 2

x̂ n

x̂

+
VQ

+
VQ

+
VQ2

+
VQ11

+
VQ21

+
VQn1

12

22

VQ1m

VQ2m

VQnm

1

Figure 7: Split-MSVQ algorithm.

6. EXPERIMENTAL RESULTS
In this section, we provide a performance analysis of the

proposed and current state-of-the-art techniques. We first
discuss the basis for performance comparisons between any
two approximate k-NN searching techniques. The superi-
ority of the proposed algorithm is then demonstrated us-
ing real-world experimental setups from different applica-
tion domains. The first data set, Satellite Image Texture
(LANDSAT), is of size 100,000 with 60-dimensional feature
vectors extracted from satellite images [36]. This data set
is widely used in high dimensional indexing and similarity
searching research [35, 22, 14]. The second data set, HIS-
TOGRAM, is a color image histogram data set of size 10,000
and dimensionality 64. The vectors represent the frequency
of occurrences of colors in each of the 64 sub-cubes in the
Red-Green-Blue color cube.



6.1 The Basis for Performance Comparisons
for Approximate k-NN Searching

For similarity queries, the quality of the result set is usu-
ally measured by two quantities; recall and precision [40].
Recall is a measure of the completeness of the retrieved set,
i.e., the percentage of the retrieved data in the exact an-
swer set. Precision, on the other hand, measures the purity
of the retrieved set, i.e., the percentage of relevant objects
in the answer set. The irrelevant objects in the result set
are called false hits and the relevant objects that are not in
the answer set are called false dismissals. The traditional
measures precision and recall disregard the fact that the ex-
traction of feature vectors is already based on heuristics and,
hence, that the feature vectors represent an approximation
of the real data. These measures are too harsh in their re-
warding and penalizing policies. For example, in Figure 8,
the two nearest neighbors of the query point q are points a
and b. The points c and d are also close to the query point
and are potentially interesting, whereas points e and f are
considerably less likely to interest the user. However, if ap-
proximation techniques A and B return {c, d} and {e, f},
respectively, precision and recall measures will yield 0 for
both techniques, and hence will not differentiate their rela-
tive merits.

q

.

. b

.

.
c

..
.
..

.

.

.
.

.

.

e.

f.

d a

Figure 8: Harshness of recall and precision mea-
sures.

In [45], a measure involving the rankings of the elements
in the answer set in terms of closeness to the query point was
considered. Figure 9 intends to demonstrate how misleading
this measure can be. For example, points g and h are the
third and the fourth nearest neighbors to the query point.
According to any ranking-based measure, therefore, {g, h}
is considered a fairly good answer set, although points g and
h are likely to be uninteresting because of their distance to
the query.

.
.

.
.

q
.

.

.

a

b
.

.
.

.
.

.h

.g

.

Figure 9: Inaccuracy of ranking-based measures.

An alternative quality measure was introduced in [19], and
[49]. We now introduce a slightly more generalized version
of that measure, to be used in our performance comparisons
of various approximate k-NN searching methods. Suppose
the approximate k-NN searching algorithm A returns the
result set {a1,a2, . . . ,ak′} and the actual (or golden) result
set according to the underlying distance function d(·, ·) is
{g1,g2, . . . ,gk}, where k′ ≥ k. We define the error metric
D as the ratio of the average distance of each set to the

query point, i.e.,

DA(q) =
1
k′
∑k′

i=1 d(q,ai)
1
k

∑k
i=1 d(q,gi)

(7)

Note that since k′ ≥ k, it is always true that D ≥ 1, where
equality is satisfied if the approximate answer is equal to
the exact answer. The reason we consider the extra case
k′ > k is because there might be a tie for the k’th nearest
neighbor, in which case we assume the algorithm is allowed
to output all vectors having the same measured distance to
the query point. In general, this phenomenon may occur
for any compression-based scheme, because more than one
point may be reconstructed as the same vector, and hence
assume the same rank with respect to closeness to the query
point.

6.2 Performance Comparisons
For both data sets, we compare the performance of the

proposed method with other approximation techniques, for
different values of k. The comparison is based on the num-
ber of pages accessed in order to achieve results with pre-
scribed acceptable accuracy levels, i.e., given small values
of D. Other approximation techniques used for comparison
are, VA-file [46, 45], VA+-file, and KLT-Domain Cluster-
ing [18, 19]. These techniques have been shown to be very
effective specifically for high dimensional databases, and to
outperform earlier techniques. We refer to our method as
VQ-index.

The capacity of one disk page is taken as 1Kbytes for the
HISTOGRAM set, and 8Kbytes for the LANDSAT set, since
the latter set is larger. These page capacities correspond
to 256 and 2048 floating-point numbers, respectively. The
whole data set fits into 2500 pages for the HISTOGRAM
set, and 2930 pages for the LANDSAT set.

In Figure 10, we display the comparison of number of ac-
cessed pages for k = 10 and k = 50, for the data set LAND-
SAT. For k = 10, we observe a speedup between 1.8 and
2.4 over the second best method, which is the KLT-Domain
Clustering algorithm, between 10 and 13 over the VA+-file
method, and between 19 and 23 over the standard VA-file
algorithm. For k = 50, the speedups raise to between 2.5
and 3.5 over the KLT-Domain Clustering, between 11 and
14 over the VA+-file, and between 21 and 25 over the VA-
file methods. The reason for the better performance for a
higher value of k is that the effect of the ties mentioned
in the previous section alleviate as k increases. These per-
formance values are obtained when we use in our experi-
ments the same sample (training) query set extracted from
the query history as our actual query set. In Figure 11,
we demonstrate the effects of using a different (test) query
set extracted from the same distribution. As seen from the
figure, the resultant performance deterioration is virtually
negligible, and the speedups mentioned above prevail. Pass-
ing this test indicates that we overcome the phenomenon
known in the clustering literature as overtraining. Over-
training refers to the case where the design method adapts
itself to the training set in an excessive manner to the ex-
tent that the performance significantly degrades when the
system is tested on real data independent of the training
sample.

In the experiments with the LANDSAT data set, we set
the number of files to M = 32, and during the data par-
titioning, we take into subset Si all the points within L =
250 neighborhood of each sample query point falling into
Voronoi cell Vi. The sample query set is of size 10,000 and
is extracted randomly from the data set. After the data par-
titioning process, the total number of elements of all the sub-
sets is around 400,000. However, since only the compressed



D=1.05 D=1.10
0

100

200

300

400

500

600
N

um
be

r 
of

 P
ag

es
 A

cc
es

se
d

Data Set = LANDSAT, k = 10

V
A

−
F

ile

V
A

+
−

F
ile

K
LT

−
D

om
ai

n 
C

lu
st

er
in

g

V
Q

−
In

de
x

V
A

−
F

ile

V
A

+
−

F
ile

K
LT

−
D

om
ai

n 
C

lu
st

er
in

g

V
Q

−
In

de
x

D=1.05 D=1.10
0

100

200

300

400

500

600

N
um

be
r 

of
 P

ag
es

 A
cc

es
se

d

Data Set = LANDSAT, k = 50

V
A

−
F

ile

V
A

+
−

F
ile

K
LT

−
D

om
ai

n 
C

lu
st

er
in

g

V
Q

−
In

de
x

V
A

−
F

ile

V
A

+
−

F
ile

K
LT

−
D

om
ai

n 
C

lu
st

er
in

g

V
Q

−
In

de
x

Figure 10: Performance comparison for the LANDSAT data set at k=10 and k=50.

D=1.05 D=1.10
0

10

20

30

40

50

60

70

N
um

be
r 

of
 P

ag
es

 A
cc

es
se

d

Data Set = LANDSAT, k = 10

K
LT

−
D

om
ai

n 
C

lu
st

er
in

g

V
Q

−
In

de
x

w
ith

 tr
ai

ni
ng

 q
ue

rie
s

V
Q

−
In

de
x

w
ith

 te
st

 q
ue

rie
s

K
LT

−
D

om
ai

n 
C

lu
st

er
in

g

V
Q

−
In

de
x

w
ith

 tr
ai

ni
ng

 q
ue

rie
s

V
Q

−
In

de
x

w
ith

 te
st

 q
ue

rie
s

D=1.05 D=1.10
0

10

20

30

40

50

60

70

80

N
um

be
r 

of
 P

ag
es

 A
cc

es
se

d

Data Set = LANDSAT, k = 50

K
LT

−
D

om
ai

n 
C

lu
st

er
in

g

V
Q

−
In

de
x

w
ith

 tr
ai

ni
ng

 q
ue

rie
s

V
Q

−
In

de
x

w
ith

 te
st

 q
ue

rie
s

K
LT

−
D

om
ai

n 
C

lu
st

er
in

g

V
Q

−
In

de
x

w
ith

 tr
ai

ni
ng

 q
ue

rie
s

V
Q

−
In

de
x

w
ith

 te
st

 q
ue

rie
s

Figure 11: The effects of testing the algorithm outside the query training set.

values are written to disk, the actual disk storage becomes
about 5 times smaller than the uncompressed original data-
base size. The memory requirement for the codebooks is
about 5% of the database size, i.e., the total number of 60-
dimensional entries in the look-up tables is around 5,000.
If the memory specifications are so severe that even this
percentage of the database size is not tolerated, then each
look-up table can be also stored in the corresponding file.
Hence, upon deciding which file to extract, the system can
first retrieve the codebooks, and then the compressed fea-
ture vectors. The overhead of such a scenario is only about
6 pages on the average.

In Figure 12, we display the corresponding performance
comparison results for the data set HISTOGRAM, at k = 10
and k = 20. For k = 10, we observe a speedup of 3.2 to
3.65 over the KLT-Domain Clustering, 10 over the VA+-
file, and 26 to 30 over the VA-file methods. For k = 20,
the speedups raise to between 3.75 and 4.5 over the KLT-
Domain Clustering, 11 over the VA+-file, and between 28
and 36 over the VA-file methods. For this experiment we

set M = 8, and L = 100. The sample query set is of size
1,000 and is again extracted from the data set itself. After
the data partitioning, the total number of elements in all the
subsets rise to about 19,000. The actual disk storage after
the compression is, however, less than 6% of the original
database size. For codebook storage, a memory of 5% of
the database size is needed.

7. CONCLUSION AND DISCUSSION
We introduced VQ-index, a novel approach for indexing

and efficient approximate nearest neighbor searching based
on optimal compression of the feature space. An efficient ap-
proximate k-NN searching algorithm must reduce not only
the number of vectors retrieved from disk, but also the in-
formation retrieved about each vector. The novelty of algo-
rithm is in how both tasks are achieved.

In order to achieve a good retrieved set reduction, we use
a training set of query samples extracted from the query his-
tory. In the absence of any query history, one way is to use
the data distribution itself. We cluster the sample query set



D=1.05 D=1.10
0

100

200

300

400

500

600
N

um
be

r 
of

 P
ag

es
 A

cc
es

se
d

Data Set = HISTOGRAM, k = 10

V
A

−
F

ile

V
A

+
−

F
ile

K
LT

−
D

om
ai

n 
C

lu
st

er
in

g

V
Q

−
In

de
x

V
A

−
F

ile

V
A

+
−

F
ile

K
LT

−
D

om
ai

n 
C

lu
st

er
in

g

V
Q

−
In

de
x

D=1.05 D=1.10
0

100

200

300

400

500

600

N
um

be
r 

of
 P

ag
es

 A
cc

es
se

d

Data Set = HISTOGRAM, k = 20

V
A

−
F

ile

V
A

+
−

F
ile

K
LT

−
D

om
ai

n 
C

lu
st

er
in

g

V
Q

−
In

de
x

V
A

−
F

ile

V
A

+
−

F
ile

K
LT

−
D

om
ai

n 
C

lu
st

er
in

g

V
Q

−
In

de
x

Figure 12: Performance comparison for the HISTOGRAM data set for k=10 and k=20.

using the K-means algorithm, and split the data into subsets
using a simple rule based on a statistical observation; if an
actual query falls into a fixed Voronoi cell, then its nearest
neighbors in the data set are most probably also among a
larger set of nearest neighbors of sample queries in the same
Voronoi cell. Of course, this observation relies on a fine sta-
tistical sampling of the query distribution. Otherwise, the
resultant data partitioning may be “overtrained” to the sam-
ple query set, and the approximate nearest neighbor search-
ing performance may degrade. A common validation in the
clustering literature is to evaluate the performance of the
algorithm using a test set extracted from the same distribu-
tion as the training set. The proposed algorithm passed this
test.

For the purpose of reducing the retrieved information, we
utilized the most efficient compression scheme, namely vec-
tor quantization. Previously considered compression meth-
ods [45, 18] adopt scalar quantization, which is potentially a
very suboptimal special case of VQ. The suboptimality fol-
lows from the fact that the correlation between components
is ignored. Existing dimensionality reduction techniques can
also be considered as special cases of scalar quantization
(suppressed components are quantized to 0 bits, and the
remaining degenerate components are quantized to 32 bits
since they are represented as floating point numbers.) For
each subset of data, we designed separate vector quantizers
tailored to the distribution of the vectors in the subset. The
compressed representation of each subset is then stored in
the disk as separate files. Hence, the proposed algorithm
achieves major reduction in disk I/Os, as in order to an-
swer a query with acceptable accuracy, only quantization
indices for the corresponding subset of feature vectors are
retrieved, followed by calculation of approximate distances
based on their reconstruction.

Since the look-up tables for reconstructed vector genera-
tion reside in the memory, we use structurally constrained
VQ techniques, namely, multi-stage VQ and split-VQ, to re-
duce the required memory. The multi-stage VQ technique
inherently enables successive refinement of the answer set
accuracy as additional disk I/Os are made. It hence offers
the flexibility to trade time for better quality. This is a
very desirable feature, since users may differ in their time
constraints.

Our experiments demonstrate significant speedups over
other approximate nearest neighbor searching techniques,

when the accuracy of the approximation is fixed at accept-
able levels.

8. REFERENCES
[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient

similarity search in sequence databases. In 4th Int.
Conference on Foundations of Data Organization and
Algorithms, pages 69–84, 1993.

[2] S. Arya and D. M. Mount. Approximate range searching. In
11th Annual Symposium on Computational Geometry,
pages 172–181, June 1995.

[3] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu. An optimal algorithm for approximate nearest
neighbor searching. In 5th Ann. ACM-SIAM Symposium
on Discrete Algorithms, pages 573–582, 1994.

[4] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The
R* tree: An efficient and robust access method for points
and rectangles. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 322–331, May 23-25 1990.

[5] R. Bellman. Adaptive Control Processes: A Guided Tour.
Princeton University Press, 1961.

[6] S. Berchtold, C. Bohm, H. Jagadish, H. Kriegel, and
J. Sander. Independent quantization: An index compression
technique for high-dimensional data spaces. In Proc. 16th
Int. Conf. on Data Engineering, San Diego, CA, 2000.

[7] S. Berchtold, C. Bohm, D. Keim, and H. Kriegel. A cost
model for nearest neighbor search in high-dimensional data
space. In Proc. ACM Symp. on Principles of Database
Systems, pages 78–86, Tuscon, Arizona, June 1997.

[8] S. Berchtold, C. Bohm, and H.-P. Kriegel. The
Pyramid-Technique: Towards breaking the curse of
dimensionality. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 142–153, Seattle, Washington,
USA, June 1998.

[9] S. Berchtold, D. Keim, and H. Kriegel. The X-tree: An
index structure for high-dimensional data. In Proceedings of
the Int. Conf. on Very Large Data Bases, pages 28–39,
Bombay, India, 1996.

[10] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is “nearest neighbor” meaningful. In Int. Conf. on
Database Theory, pages 217–225, Jerusalem, Israel,
January 1999.

[11] K. R. Castleman. Digital Image Processing. Prentice-Hall,
Inc., 1996.

[12] K. Chakrabarti and S. Mehrotra. The hybrid tree: An
index structure for high dimensional feature spaces. In



Proc. Int. Conf. Data Engineering, pages 440–447, Sydney,
Australia, 1999.

[13] X. Cheng, R. Dolin, M. Neary, S. Prabhakar, K. Ravikanth,
D. Wu, D. Agrawal, A. El Abbadi, M. Freeston, A. Singh,
T. Smith, and J. Su. Scalable access within the context of
digital libraries. In IEEE Proceedings of the International
Conference on Advances in Digital Libraries, ADL, pages
70–81, Washington, D.C., 1997.

[14] P. Ciaccia and M. Patella. PAC nearest neighbor queries:
Approximate and controlled search in high-dimensional and
metric spaces. In Proc. Int. Conf. Data Engineering, pages
244–255, San Diego, California, March 2000.

[15] R. O. Duda and P. E. Hart. Pattern Classification and
Scene Analysis. Wiley, New York, 1973.

[16] O. Egecioglu and H. Ferhatosmanoglu. Dynamic
dimensionality reduction and similarity distance
computation by inner product approximations. In
Proceedings of the 9th ACM Int. Conf. on Information and
Knowledge Management, pages 219–226, McLean, Virginia,
November 2000.

[17] C. Faloutsos, R. Barber, M. Flickner, J. Hafner,
W. Niblack, D. Petkovic, and W. Equitz. Efficient and
effective querying by image content. Journal of Intelligent
Information Systems, 3:231–262, 1994.

[18] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El
Abbadi. Vector approximation based indexing for
non-uniform high dimensional data sets. In Proceedings of
the 9th ACM Int. Conf. on Information and Knowledge
Management, pages 202–209, McLean, Virginia, November
2000.

[19] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El
Abbadi. Approximate nearest neighbor searching in
multimedia databases. In To appear in Proc of 17th IEEE
Int. Conf. on Data Engineering (ICDE), Heidelberg,
Germany, April 2001.

[20] A. Gersho and R. M. Gray. Vector Quantization and Signal
Compression. Kluwer Academic Publishers, Boston, MA,
1992.

[21] E. Giladi, M. Walker, J. Wang, and W. Volkmuth. SST: An
algorithm for searching sequence databases in time
proportional to the logarithm of the database size. In
RECOMB, Japan, 2000.

[22] A. Gionis, P. Indyk, and R. Motwani. Similarity searching
in high dimensions via hashing. In Proceedings of the Int.
Conf. on Very Large Data Bases, pages 518–529,
Edinburgh, Scotland, UK, September 1999.

[23] K. Goh and E. Chang. Indexing multimedia data in
high-dimensional and weighted feature spaces. In The 6th
Visual Database Conference, Australia, May 2002.

[24] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 47–57, 1984.

[25] G. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM Transactions on Database Systems,
24(2):265–318, 1999.

[26] G. R. Hjaltason and H. Samet. Ranking in spatial
databases. In Proc. of 4th Int. Symp. on Large Spatial
Databases, pages 83–95, Portland,ME, 1995.

[27] D. Hull. Improving text retrieval for the routing problem
using latent semantic indexing. In Proc. of the 17th
ACM-SIGIR Conference, pages 282–291, 1994.

[28] N. S. Jayant and P. Noll. Digital Coding of Waveforms.
Prentice-Hall, Inc., 1984.

[29] T. Kailath. Modern Signal Processing. Springer Verlag,
1985.

[30] K. V. R. Kanth, D. Agrawal, and A. Singh. Dimensionality
reduction for similarity searching in dynamic databases. In
Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 166–176, Seattle, Washington, June 1998.

[31] F. Korn and S. Muthukrishnan. Influence sets based on
reverse nearest neighbor queries. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, Dallas, USA, May
2000.

[32] C. Li, E. Chang, H. Garcia-Molina, and G. Wiederhold.
Clustering for approximate similarity search in
high-dimensional spaces. IEEE Transactions on Knowledge
and Data Engineering, 14(4):792–808, July–August 2002.

[33] K. Lin, H. V. Jagadish, and C. Faloutsos. The TV-tree: An
index structure for high-dimensional data. VLDB Journal,
3:517–542, 1995.

[34] D. B. Lomet and B. Salzberg. The hb-tree: A
multi-attribute indexing method with good guaranteed
performance. ACM Transactions on Database Systems,
15(4):625–658, December 1990.

[35] B. S. Manjunath. Airphoto dataset.
http://vivaldi.ece.ucsb.edu/Manjunath/research.htm, May
2000.

[36] B. S. Manjunath and W. Y. Ma. Texture features for
browsing and retrieval of image data. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
18(8):837–42, August 1996.

[37] W. Niblack, R. Barber, W. Equitz, M. Flickner,
E. Glasman, D. Petkovic, and P. Yanker. The QBIC
project: Querying images by content using color, texture
and shape. In Proc. of the SPIE Conf. 1908 on Storage
and Retrieval for Image and Video Databases, volume
1908, pages 173–187, February 1993.

[38] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal
Processing. Prentice-Hall, Inc., 1989.

[39] J. T. Robinson. The kdb-tree: A search structure for large
multi-dimensional dynamic indexes. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 10–18,
1981.

[40] N. Roussopoulos, S. Kelly, and F. Vincent. Nearest
neighbor queries. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 71–79, San Jose, California,
May 1995.

[41] T. Seidl and Kriegel H.-P. Efficient user-adaptable
similarity search in large multimedia databases. In
Proceedings of the Int. Conf. on Very Large Data Bases,
pages 506–515, Athens, Greece, 1997.

[42] T. Seidl and H.P. Kriegel. Optimal multi-step k-nearest
neighbor search. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, Chicago, Illinois, U.S.A., June 1998.
ACM.

[43] V.S. Subrahmanian. Principles of Multimedia Database
Systems. Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1999.

[44] E. Tuncel and K. Rose. Towards optimal clustering for
approximate similarity searching. In Proceedings of IEEE
International Conference on Multimedia and Expo,
Lausanne, Swizterland, August 2002.

[45] R. Weber and K. Bohm. Trading quality for time with
nearest-neighbor search. In Proc. Int. Conf. on
Extending Database Technology, pages 21–35, Konstanz,
Germany, March 2000.

[46] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In Proceedings of the
Int. Conf. on Very Large Data Bases, pages 194–205, New
York City, New York, August 1998.

[47] D. White and R. Jain. Similarity indexing with the SS-tree.
In Proc. Int. Conf. Data Engineering, pages 516–523, 1996.

[48] D. Wu, D. Agrawal, A. El Abbadi, and T. R. Smith.
Efficient retrieval for browsing large image databases. In
Proc. Conf. on Information and Knowledge Management,
pages 11–18, November 1996.

[49] P. Zezula, P. Savino, G. Amato, and F. Rabitti.
Approximate similarity retrieval with M-trees. The VLDB
Journal, 4:275–293, 1998.


