
The VLDB Journal (2015) 24:51–65
DOI 10.1007/s00778-014-0363-0

REGULAR PAPER

Scaling forecasting algorithms using clustered modeling

İzzeddin Gür · Mehmet Güvercin ·
Hakan Ferhatosmanoglu

Received: 11 July 2013 / Revised: 5 June 2014 / Accepted: 7 June 2014 / Published online: 5 July 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Research on forecasting has traditionally focused
on building more accurate statistical models for a given time
series. The models are mostly applied to limited data due to
efficiency and scalability problems. However, many enter-
prise applications require scalable forecasting on large num-
ber of data series. For example, telecommunication compa-
nies need to forecast each of their customers’ traffic load to
understand their usage behavior and to tailor targeted cam-
paigns. Forecasting models are typically applied on aggre-
gate data to estimate the total traffic volume for revenue
estimation and resource planning. However, they cannot be
easily applied to each user individually as building accu-
rate models for large number of users would be time con-
suming. The problem is exacerbated when the forecasting
process is continuous and the models need to be updated
periodically. This paper addresses the problem of building
and updating forecasting models continuously for multiple
data series. We propose dynamic clustered modeling for fore-
casting by utilizing representative models as an analogy to
cluster centers. We apply the models to each individual series
through iterative nonlinear optimization. We develop two
approaches: The Integrated Clustered Modeling integrates
clustering and modeling simultaneously, and the Sequential
Clustered Modeling applies them sequentially. Our findings
indicate that modeling an individual’s behavior using its seg-
ment can be more scalable and accurate than the individual

İ. Gür ·M. Güvercin · H. Ferhatosmanoglu (B)
Department of Computer Engineering,
Bilkent University, Ankara, Turkey
e-mail: hakan@cs.bilkent.edu.tr

İ. Gür
e-mail: izzeddin.gur@bilkent.edu.tr

M. Güvercin
e-mail: mehmet.guvercin@bilkent.edu.tr

model itself. The grouped models avoid overfits and cap-
ture common motifs even on noisy data. Experimental results
from a telco CRM application show the method is efficient
and scalable, and also more accurate than having separate
individual models.

Keywords Scalable forecasting · Time series models ·
Dynamic maintenance · Clustered modeling · Streaming
data · Performance · Accuracy

1 Introduction

Statistical forecasting is an essential tool for enterprise plan-
ning and budgeting. The companies often make forecasts on
an attribute of interest, such as the total revenue or network
traffic by modeling an aggregate time series. Such a collec-
tive analysis provides insights on common patterns but not on
understanding the customers and their needs. Customer rela-
tionship (or experience) management applications require a
customer centric view and need scalable models on multiple
evolving data series. In terms of accuracy, a separate model
for each individual series could be expected to perform well,
as each model can be tailored for the corresponding data.
However, this approach is not scalable since common fore-
casting models, such as Seasonal Auto Regressive Integrated
Moving Average (SARIMA) [24], take nontrivial time even
for a single time series. New methods are needed to scale
the forecasting models to multiple and possibly correlated
data series. The models should be updated in periods with
the newly coming data. The process of fitting an incremental
model for the updated data needs also be scalable.

We present the problem through a telco Business Intel-
ligence (BI) application. Predicting the future network traf-
fic load, such as 3G connections or call volumes, is valu-

123

52 İ. Gür et al.

able for resource planning and revenue estimation for telco
companies. Fortunately, the forecasts are typically performed
using well-formed statistical models such as Holtz Winter
[23], exponential smoothing [23,24], and SARIMA [4,7,23].
The models are applied to an aggregate time series of the
total traffic on the company network. While aggregating the
data makes the analysis more feasible, an effective CRM
(Customer Relationship Management) approach would be to
understand each customer’s usage individually. For example,
if the companies can model and forecast a customer’s traffic,
they can design personalized campaigns to improve both the
customer’s experience and the company revenue.

Given the complexity of most statistical forecasting mod-
els, modeling and maintaining each time series individually
would not be scalable for large CRM applications. Also,
while the aggregate data may provide clear trends, each indi-
vidual series includes noise and local outliers that reduce the
accuracy of the models. We revisit the statistical forecast-
ing in the context of dynamic large-scale analytics. The ideal
method would be accurate in forecasting, capturing corre-
lations for a large number of time series, efficient in build-
ing models, easy to update, and scalable in accuracy and
speed.

Our approach scales the forecasting algorithms through a
continuous Clustered Modeling (CM), i.e., forming groups
of data based on their model similarities. We build common
forecasting model parameters on the cluster centers and apply
the representative model to each series separately. A com-
mon model for a cluster eliminates the need for building a
model for every individual. Applying the model parameters
to each individual is significantly cheaper than building the
model, yet it still keeps the individual focus, and results in
accurate fits as shown in the experimental results. Follow-
ing this intuition, we develop two specific algorithms: The
Integrated Clustered Modeling (ICM) integrates clustering
and modeling simultaneously, and the Sequential Clustered
Modeling (SCM) applies clustering and modeling sequen-
tially. We focus on the SARIMA family of models, which per-
forms comparable to more complex methods such as neural
networks in forecasting the network traffic [16,25]. The pro-
posed method is independent of the underlying linear or non-
linear modeling approach.

The ICM method builds SARIMA-based clusters on mul-
tiple series and updates them through iterative nonlinear opti-
mization. For a single time series, the best model is obtained
by minimizing the Akaike Information Criterion (AIC) over
the parameters. For multiple series, one can obtain the mod-
els by minimizing the AIC of each series hence the total AIC.
Identically, for co-evolving data series, we minimize the total
AIC in groups instead of individually. We seek through the
space of SARIMA models to group correlated series into their
segments according to their evolution pattern and find the
ones minimizing the total AIC starting with initial SARIMA

models. As we search to minimize the AIC, we also adjust
the clusters to decrease the AIC further.

The SCM method applies clustering and modeling in a
two-phase manner. We cluster the time series data using a
choice of representation and build a model for each cluster
representative. Forecasts are performed by applying the cor-
responding representative model to each time series in that
cluster, individually. As data evolve, updates are applied only
on the parameters of the representative models. We focus on
Linear Prediction Cepstrum (LPC) coefficients as our exper-
imental evaluations show that it has high forecast accuracies
compared with several other representations.

The grouped models avoid overfits and capture common
motifs even on bursty data with local outliers. We use one
model for all time series in the cluster; however, the produced
forecast for each time series is tailored for itself. Our results
suggest that it may be possible to achieve the two seemingly
contradictory goals: more accurate and more efficient fore-
casts compared to modeling each time series individually.

We discuss the related work in Sect. 2 and present the
background in Sect. 3. In Sect. 4, we explain the proposed
methodology including the specific approaches following the
two methods. We present the experimental study and results
in Sect. 5. Finally, we conclude in Sect. 6.

2 Related work

In this section, we give a brief survey on time series clustering
methods and forecasting methods in the literature.

Time series clustering Time series clustering methods can
be broadly categorized into three groups in terms of represen-
tations they use: raw data, features extracted from time series,
and models on time series [26]. Li and Prakash propose a
clustering method to identify the category of the motion from
given motion sequences [17]. They note that feature-based
clustering does not give appealing results for motion category
identification since these methods fail to capture temporal
dynamics and time shifts. Their method has interpretable fea-
tures that eliminates time shifts and identifies joint dynamics
across the sequences.

Corduas and Piccola [8] use AR as a dissimilarity mea-
sure for time series classification and clustering. They define
AR distance from ARIMA processes and derive an asymp-
totic distribution of the squared AR distance to compute time
series dissimilarity. Their results suggest that AR is well
defined for seasonal and non-seasonal, long and short, sta-
tionary, and non-stationary time series.

In the management science community, Kumar and
Patel [15] use clustering for predictive analytics in retail mer-
chandizing. The method finds the number of clusters using
the trade-off between decreased variance and increased bias.
To calculate the similarity of time series, they use the next

123

Scaling forecasting algorithms 53

period forecasts and the variance instead of using histori-
cal data. Alonso et al. [3] propose a clustering approach that
considers evolving time series. For dissimilarity calculations,
they use the full forecast densities instead of point forecasts
and the squared Euclidean distance between full forecast den-
sities. Authors also derive an approximation for the L2 dis-
tance between the forecast densities.

Rodrigues proposes Online Divisive-Agglomerative Clus-
tering (ODAC) for the time series clustering problem [22].
Clusters are on the leaves of a binary tree and updated incre-
mentally. Each leaf can be split or aggregated after testing
the confidence level, which is given by the Hoeffding bound.
The computation of the dissimilarity matrix of variables in
a leaf is necessary only if the confidence level of that leaf
exceeds the Hoeffding bound. In this incremental hierarchi-
cal clustering, time and space requirements depend on the
number of variables but they are constant with respect to the
number of examples.

An application-oriented approach for the data stream clus-
tering problem is presented in [2]. The stream clustering
is divided into two sub-processes. In the first sub-process,
which is called the online process, summary statistics of data
streams are stored periodically. In the second one, the offline
process, stored summary statistics are used to explore streams
in different time horizons. Statistical properties of evolving
data streams are captured effectively by means of pyramidal
time window and micro-clustering in the online process.

An anytime iterative incremental clustering version of
partitional clustering algorithms is introduced in [19]. The
authors use Haar Wavelet decomposition of time series in
their clustering algorithm and increase the level of decom-
position. At each iteration, they run k-Means algorithm on
the increased level representation of Haar Wavelet decompo-
sition and use final centers as the initial clusters for the next
iteration.

Kalpakis et al. [9] study clustering of time series mod-
eled with ARIMA models. They use LPC coefficients as the
features of time series and show that fewer number of LPC
coefficients are needed to discriminate time series when com-
pared to the traditional distance measures. They do not focus
on forecasting accuracies as they work on the goodness by
silhouette coefficient and sum-of-squares error. In SCM, we
utilize ways to use LPC coefficients in the context of CM for
forecasting. Our approach uses SARIMA models to obtain
LPC coefficients and does not need to extract AR coefficients
manually.

Time series forecasting. Time series forecasting methods
are generally built on historical data and a modeling schema.
Li et al. [18] capture the essential characteristics of the col-
lection of time series using Linear Dynamical System (LDS)
and then extract features called fingerprints. The proposed
method gives interpretable features that can be used to fore-
cast motion capture, sensor, and network router traffic data.

Hong et al. [12] study tracking volume of terms from text
corpora of conference and computational linguistics papers.
They incorporate the volumes of terms into the temporal
dynamics of topics using state-space models by a supervised
learning system. Their system is capable of forecasting the
future volume of textual terms.

A Delay Coordinate Embedding based approach is pro-
posed in [6]. The authors use an automated nonlinear fore-
casting for periodic and chaotic time series generated by a
common physical system over separate periods of time. They
use intrinsic dimensionality of time series using fractals to
estimate the lag length. The data are divided into training and
holdout sets to find k in k-nearest neighbor estimation. Using
the k-nearest neighbors, they interpolate the data using an
SVD-based interpolation and achieve superior performance
over prior approaches including auto-regression.

Recently Matsubara et al. [21] introduce TriMine to find
three-way patterns in complex time-stamped events and can
be used to forecast future events in a web text corpora. They
use the concept of M-th order tensor with topic modeling
to associate each actor-object with extracted hidden topics.
The approach uses different levels of granularity to catch
long-term and short-term fluctuations. Forecasting the next
volume of clicks of a user on a certain URL is achieved using
topic modeling and multi-level representation of data.

Xiong et al. [27] propose a mixture of ARMA models for
clustering stationary time series, mimicing the EM algorithm
for Gaussian mixtures. They focus on clustering rather than
forecasting and use manually extracted orders for models.
Using only likelihoods to obtain models may introduce an
overfit where an information criterion is more appropriate.
The improved EM algorithm models iteratively from scratch
to find the number of clusters. We use a linear modeling
approach relative to the optimal number of clusters which
scales to large data sets.

Most of the current approaches have mainly focused on
building more accurate forecasting with no particular con-
sideration on collective and continuous models. We aim a
methodology to scale the forecasting algorithms through
a clustered modeling approach that exploits correlation
between data series and that is optimized for forecasting.
The solution is general and can be used to further improve
both linear and nonlinear IM approaches, such as the recent
ones proposed by databases and data mining community
[12,18,21].

3 Background

In this section, we provide a technical background including
the definitions used throughout this paper. A data series or
time series x is defined as an ordered list of real numbers
indexed by positive integers. More formally a time series x
is a vector in n dimension

123

54 İ. Gür et al.

x = (x1, x2, . . . , xn) (1)

where xi ∈ Ra , and n is called the length of the time series
x . If a > 1 then it is called a multivariate time series, in the
other case it is called a univariate time series. In our context,
we use multiple univariate time series, and the words “time
series” and “univariate time series” are used interchange-
ably. We note that a time series does not necessarily have
a constant length. It may be dynamic thus left-bounded and
right-unbounded, or static, and bounded on both intervals.

The definition of a time series using an n-dimensional
vector is the simplest form of its representation. There are
different representations that are more eligible for different
problems. We may categorize these representations as; the
transformation based models: PCA [14], SVD [10], the spec-
tral domain models: DFT [10], DWT [7], the time domain
models: ARMA [4,24], ARIMA [4,24], SARIMA [4,24],
GARCH [4], and the state-space models: ARMAX [4,24].
The use of these models may vary from problem to prob-
lem, but we focus on the multiplicative Seasonal Autoregres-
sive Moving Average (SARIMA) family of models which
includes SARMA, ARIMA, ARMA, SMA, SAR, AR, MA,
and more generally SARIMA which we explain in detail next.

SARIMA is a widely used time domain model that has
desirable theoretical and asymptotic behaviors. SARIMA
family of models exploits the fact that the value of a time
point in a time series can be represented by the linear com-
bination of its past time points and the linear combination
of a white noise with indexes shifted through time. The lin-
ear combinations of the past time points and white noise are
formed by both periodic and non-periodic components. Fol-
lowing the notation in [24], we give the definitions of the
operators and obtain a more compact formula for SARIMA.

Definition 1 (Operators) The operators

φ(B) = 1− φ1 B − · · · − φp B p (2)

θ(B) = 1+ θ1 B + · · · + θq Bq (3)

ΦP (B
s) = 1−Φ1 Bs − · · · −ΦP B Ps (4)

and

ΘQ(B
s) = 1+Θ1 Bs + · · · +ΘQ B Qs (5)

are the autoregressive operator, moving average operator,
seasonal autoregressive operator, and seasonal moving aver-
age operator, respectively, with s being seasonal period where
Bu xt = xt−u .

A time series can be classified as being stationary, thus
having a time independent mean value and/or variance, or
non-stationary, thus having a time dependent mean value and
variance.

Definition 2 (Stationarity of a Time Series) A time series
xt is called stationary if the mean value and autocovariance

function of xt , don’t depend on time, and autocovariance
function depends only on time difference,

cov(xu, xt) = γ (u, t) = γ (|(u − t)|) (6)

In case of the non-stationary time series, further processing
is required to remove non-stationarity to make the time series
suitable for SARMA. If the variance of the time series varies
with time, then a power transformation like Box–Cox family
of transformations may be used,

yt =
{
(xαt − 1)/α

logxt

}
(7)

where α is called the power of the transformation. In the
other case where a time series is not stationary because of
its mean value, differencing may be used to remove the non-
stationarity

yt = ∇d xt = (1− B)d xt (8)

where d is called the order of differencing.
SARIMA family of models without the integrated part

deals with stationary time series and called SARMA. Now
we turn our attention to the generic SARMA model using the
operators:

Definition 3 (SARMA) A SARMA model is defined as

ΦP (B
s)φ(B)xt = ΘQ(B

s)θ(B)wt (9)

where xt is stationary, wt ∼ N (0, σw) and called Gaussian
white noise, φ(B), θ(B), ΦP (Bs), and ΘQ(Bs) are autore-
gressive operator, moving average operator and their seasonal
counterparts, respectively.

A SARMA model is denoted by S ARM A(p, q)x(P, Q)s ,
where p, q, P, Q are autoregressive, moving average, sea-
sonal autoregressive, and seasonal moving average orders,
respectively. Building a model on a data refers to choosing
the right number of orders and estimating the model parame-
ters.

Parameter Estimation. There are different ways of esti-
mating the values of model parameters. One can use Max-
imum Likelihood Estimation (MLE), Sum of Squares Esti-
mation (SSE), or Conditional Sum of Squares Estimation
(CSSE). In case of invertible SARMA models, all these
approaches lead to optimal estimators [24].

We start with the definition of the likelihood of a SARIMA
model. As arg maxx f (x) = arg maxx gof (x) if g is a
monotonically increasing function, instead of raw likelihood
of a SARMA model we use its log transform because of its
analytical tractability. To find the optimal parameters, we can
maximize the log-likelihood.

Definition 4 (Log-likelihood) The log-likelihood of a
SARMA(p, q)x(P, Q)s model built on x is defined as

123

Scaling forecasting algorithms 55

	(β; x) = −n

2
ln(2πσ 2

w)−
1

2σ 2
w

n∑
t=1

w2
t (10)

where β is the parameter vector of the model,wt is the white
noise of the underlying SARMA model, σ 2

w is the variance
of the wt .

We can also minimize unconditional or conditional sum
of squares to find the optimal parameter values.

Definition 5 (Unconditional Sum of Squares) The uncondi-
tional sum-of-squares of a S ARM A(p, q)x(P, Q)s model
built on x is defined as

SS(β; x) =
n∑

t=−∞
ŵ2

t (11)

where β is the parameter vector of the model,

ŵt = E(wt |x1, x2, . . . , xn).

If the unconditional sum-of-squares is conditioned on the
initial values of the white noise, then the sum is called the
conditional sum-of-squares.

Definition 6 (Conditional Sum of Squares) The conditional
sum-of-squares of a S ARM A(p, q)x(P, Q)s model built on
x is defined as

C SS(β; x) =
n∑

t=p+1

ŵ2
t (12)

where β is the parameter vector of the model,
ŵt = E(wt |x1, x2, . . . , xn).

Model selection. Although the parameter estimation meth-
ods seem to be enough for modeling, it is known that increas-
ing the number of parameters always gives better models
but introduce overfit. Model selection is a trade-off between
these two contradictory goals. Even though there is no best
way to choose the right statistical model, Akaike Information
Criterion (AIC), AIC Bias Corrected (AICc), and Bayesian
Information Criteron (BIC) are well studied and widely used
ways of choosing a statistical model from a set of candidate
models [24]. Our algorithms are not specific to any model
selection, but we will focus on AIC.

Definition 7 (AIC) The AIC of a S ARM A(p, q)x(P, Q)s
model is defined as

AI C(β; x) = −2	(β; x)+ 2r (13)

or

AI C(β; x) = n(1+ log(2π))+ nlog(C SS(β; x))+ 2r

(14)

where r is the total number of parameters present in the
given SARMA model, 	(β; x) is the log-likelihood of x with
respect to the parameter vector β, and C SS(β; x) is the con-
ditional sum-of-squares of the model on x with parameters
β.

Table 1 Symbols used throughout the paper

Symbol Meaning

X Time series dataset

x = (x1, . . . , xn) Time series

n Size of x

a Dimension, Ra

φ, θ,Φ,Θ Operators

β Parameter vector

Bu Differencing by u in time

s Seasonal period

u, t Time series indices

α Order for Box–Cox transformation

∇d (1− B)d

d Difference order

wt White noise

p, q, P, Q Orders

r Total number of parameters p + q + P + Q

σ 2
w Variance of white noise

	(β; x) Log-likelihood of β on x

AI C(β; x) AIC of x using parameters β

C SS(β; x) CSS of x using parameters β

SS(β; x) SS of x using parameters β

β
opt
x Optimal β for x

Error(τY ; xi , Y) Error of x using τY and Y

Yi Subset of X
τ

opt
Yi

Optimal parameters on Yi ⊂ X
C(Fi , Yi) Model cluster with model Fi , time series Yi

e Current iteration in an algorithm

model(Yi ,M, βi) Algorithm for optimal parameters

N Total number of time series

Ai Aggregate time series for cluster Ci

l,m Cluster indices

ci LPC coefficients

Given a time series x , the best model parameters are found
by

β
opt
x = arg min

β

AI C(β; x) (15)

In Table 1, we present the symbols we used throughout
the paper.

4 Proposed methodology

We now present our method for scaling the forecasting mod-
els on co-evolving time series. The method uses a specific
notion of similarity for clustering in the context of forecast-
ing. We use a bisecting method to find the number of clus-
ters in the data. For each cluster, we devise a representative
model that minimizes the AIC values for each group of time

123

56 İ. Gür et al.

series collectively. As the new data arrives, the representative
models can be reclustered until the AIC does not decrease.
Forecasts are performed by applying the representative mod-
els to each series independently, and parameters are updated
incrementally as data evolve.

Real time series are noisy and react to the events resulting
in local outliers. If the events are a priori known, they can
be modeled easily. For example, during holidays, there are
more personal phone calls, and less calls made by commercial
customers. Events that are ad hoc and lack a certain pattern
introduce noise to an individual model. By identifying groups
of time series with similar models, and fitting a common
model for them, we aim to minimize their AICs by avoiding
the local outliers and overfitting.

Following the above intuition, we first present our ICM in
Sect. 4.1 that simultaneously builds and enhances the mod-
els while clustering. We then present SCM in Sect. 4.2 which
separates the steps of developing representative models and
time series clustering. For each time series, we apply the
representative model by putting the parameter vector of the
model and the time series to the appropriate positions in Eq. 9
and estimating the residuals. Next period forecasts for each
series are derived by applying the corresponding model for
each time series individually. We note that this approach of
applying the model to a data series is negligible in time com-
pared to building the model from scratch.

We analyze the behavior of multiple time series to under-
stand whether minimizing the model errors of multiple time
series individually is the best thing to do. More formally
given N time series X = (x1, x2, . . . , xN), we seek whether
the proposition below is true or not;∑
xi∈Y

Error(τ opt
Y ; xi ,Y) >

∑
xi∈Y

Error(βopt
xi ; xi) (16)

where Error(βopt
xi ; xi) is the forecast error of time series xi

using the optimal model parameters βopt
xi and Error(τ opt

Y ;
xi ,Y) is the forecast error of time series xi using a com-
mon optimal model estimated on a subset Y of X . The left-
hand side of the inequality represents a group of time series
modeled collectively where all the time series x ∈ Y share
the same model parameters τ opt

Y . The right-hand side rep-
resents the errors of individual models. As also evidenced
in our experiments, instead of modeling every time series
individually, modeling them in clusters decreases the total
forecast error in contrast to sum of individual errors. This
also decreases the time required to give each time series a
successful model.

4.1 Integrated clustered modeling

We present a definition of model cluster as a basis of the
clustering for forecasting.

Definition 8 (Model Cluster) A model cluster C(F, Y) is
a set of time series Y , and a common forecasting model F
with parameter vector τ opt

Y where ∀x ∈ Y, AI C(τ opt
Y ; x) is

minimum over all clusters.

Based on this definition, model clustering of a set of
time series X = (x1, x2, . . . , xN) is a partitioning Y =
(Y1,Y2, . . . ,Yl) of these time series and a vector of fore-
casting models F = (F1, F2, . . . , Fl) where the model Fi

is a common model for all the time series in the set Yi . The
common model Fi includes model parameters and the corre-
sponding orders. The variance of the white noise, specific to
each time series, can be estimated by Eq. 9.

Analogous to a cluster center, a forecasting model Fi of a
cluster is the best (closest) in minimizing the AIC. Consid-
ering a single series, we defined the best model as the one
minimizing the corresponding AIC. In multiple series case,
if the models are independent from each other then mini-
mizing the total AIC will be equal to minimizing the AICs
individually which would give us the best model for each
series. Similar to this, our approach is to minimize the total
AIC but using a set of grouped models instead of modeling
these series individually. More formally τ opt

i is the optimal
parameters of the model Fi minimizing total AIC of the time
series in the corresponding cluster, i.e.,

τ
opt
i = arg min

τ

∑
x∈Yi

AI C(τ ; x) (17)

Also note that the optimization we introduced in Eq. 17 is
not specific to SARIMA models.

Assuming that we are given a cluster C(F,Y), we need
to find the optimal parameter vector τ opt of F for each clus-
ter. We first find the orders using a modeling approach on
aggregated time series for each cluster. Given the orders,
minimizing the total AIC with respect to the model parame-
ter vector will be equal to minimizing the negative of the sum
of the log-likelihoods, or the (un)conditional sum-of-squares
in Eq. 17 and eventually the followings:

ψ(Yi) = −
∑
x∈Yi

	(τ
opt
i ; x) (18)

or

ψ(Yi) =
∑
x∈Yi

C SS(τ opt
i ; x) (19)

To minimize the functions in Eqs. (18, 19), we utilize an
iterative nonlinear optimization algorithm. We use quasi-
Newton method (BFGS) [5] as it is parameter free and rel-
atively efficient. BFGS is based on function evaluation and
the gradient of the corresponding function. Because gradient
gives a relatively better direction to search toward, BFGS
converges fast. Also the iterative nature of BFGS makes it
easy to adapt existing models when new time points arrive.
Using the existing models and data series extended with new

123

Scaling forecasting algorithms 57

points, we can update the model for each cluster while pre-
serving the accuracy. Algorithm 1 shows the general outline
of ICM.

Algorithm 1: I ntegrated−Clustered−Modeling(Y ,
k(0), M)

{C (0)
i } ← I ni tiali ze(Y, k(0),M)

{C (1)
i } ← Form − Clusters(Y, {C (0)

i }
k

i=1)
t ← 1
Y(0) ← Y
while new data points arrive do

Y(e) ← Extend Y(e−1) with new data
τ (e) ← update − models(Y(e),M, τ (e−1))

Forecast future data points
e← e + 1

The problems in how to construct and maintain proper
clusters are to (1) find an initial representative model for each
cluster, (2) appropriately assign a time series to one of the
clusters given, (3) enhance representative models for every
cluster, (4) find the optimal number of clusters, (5) update
the representative models as new data arrive, and (6) forecast
the future data points.

4.1.1 Finding initial representatives

We first find the initial clusters and select a model for each
cluster. To search for an initial model of a cluster, we need the
number of parameters and a modeling schema. We first group
time series into k clusters using a clustering scheme (e.g.,
random, PAM, k-Means). We then estimate an aggregate time
series for each cluster, e.g., median and mean time series. For
each cluster, we build an initial model by fitting an optimal
SARIMA model on the aggregate time series minimizing its
AIC. We use these models as a start and further improve
the parameter values for each cluster by minimizing Eq. 17.
Algorithm 2 gives the details of the initial model selection.
The Bisecting approach (Algorithm 4) is used to find the
optimal number of clusters.

Algorithm 2: I ni tiali ze(Y ,k, M, ε)
Group time series into k clusters Ci (Fi , Yi) for i = 1, 2, . . . , k
Estimate aggregates Ai for i = 1, 2, . . . , k
β

opt
i = arg minβ AI C(β; Ai)

τ
opt
i ← model(Y (0)i ,M, βopt

i) for i = 1, 2, . . . , k

{C (0)
i }k

′
i=1 ← Bisecting(Ci (Fi , Yi)

i=k
i=1, ε))

return {C (0)
i }

model(Y (0)i ,M, βopt) estimates the best model parame-
ters minimizing Eq. 17 given a minimization schema M , time

series of the corresponding cluster Y (0)i , and initial models
βopt .

4.1.2 Forming the model clusters

The Initialize algorithm returns the optimal models for each
cluster. However, as the models are updated, some of the time
series may be modeled better by other cluster models than its
current one. We need to assign each time series to the right
cluster and then update the representative models.

Given a set of clusters C1,C2, . . . ,Ck , the best approach
to select the appropriate cluster for a time series xi would be
to assign a time series xi ∈ Yl from Cl to Cm and then update
the model parameters of Cl and Cm after the assignment. The
cluster that leads to the most total AIC reduction is the new
cluster of time series xi . This approach needs to update model
parameters at every consideration of every series. Assigning
a new object to a cluster will change its model but this may
cause an increase in the AIC of some of time series while
reducing the AIC of the others. We need a fast assignment
scheme that also guarantees the decrease in the overall AIC.
For each time series, we search for the cluster having the
minimum AIC value and reassign the time series to the new
cluster found. The only requirement of our assignment is to
estimate the AIC for each cluster. This approach guarantees
a decrease in the total AIC. We formally prove this in the
following theorem.

Theorem 1 Given a minimization algorithm M and two
clusters Cl(Fl ,Yl) and Cm(Fm,Ym) having model parame-
ters βl and βm, respectively, with x ∈ Cl , if

AI C(βl; x) > AI C(βm; x) (20)

assigning x from Cl to Cm always decreases the total AIC.

Proof Let C
′
l and C ′m be two clusters where Y

′
l = Yl\ {x},

Y
′
m = Ym ∪ {x} and β

′
l and β

′
m be the parameter vectors of

clusters, respectively, adjusted by M after the assignment of
x from Cl to Cm . Assigning x from Cl to Cm is the best
approach if∑
y∈Y

′
l

AI C(β
′
l ; y)+

∑
y∈Y ′m

AI C(β
′
m; y)

<
∑
y∈Yl

AI C(β
′
l ; y)+

∑
y∈Ym

AI C(β
′
m; y)

=
∑
y∈Y

′
l

AI C(βl; y)+
∑
y∈Y ′m

AI C(βm; y)

+AI C(βl; x)− AI C(βm; x)
As M will update the model parameter vectors as long as the
total AIC decreases, it will never increase total AIC of C

′
l

and C
′
m after assignment of x from Cl to Cm . Based on the

relations we obtained, if (20) is satisfied then

123

58 İ. Gür et al.

AI C(βl; Xt)− AI C(βm; Xt)

+
∑
y∈Y

′
l

AI C(βl; y)+
∑
y∈Y ′m

AI C(βm; y)

>
∑
y∈Y

′
l

AI C(β
′
l ; y)+

∑
y∈Y ′m

AI C(β
′
m; y)

∑
y∈Yl

AI C(βl; y)+
∑
y∈Ym

AI C(βm; y)

>
∑
y∈Y

′
l

AI C(β
′
l ; y)+

∑
y∈Y ′m

AI C(β
′
m; y)

Thus, if 20 is satisfied, assigning x from Cl to Cm will always
minimize the total AIC.

As we find the best cluster for each time series, the models
of the clusters need to be updated to acquire the minimum
AIC values. So, we update the models for the altered clusters
using Eq. 17. By initializing M with the previous models,
we decrease the convergence time of our algorithm substan-
tially. We continue the “cluster reassignment” and “model
update” steps successively until the overall average AIC can
no further be improved. Forming the model clusters is given
in Algorithm 3.

Algorithm 3: Form − Clusters(Y, {C (0)
i }

k

i=1, ε,M)

�AI C (0) ←∞
e← 0
while �AI C (e) > ε do

li = arg min j AI C(τ (e)j ; xi) for i = 1, 2, . . . , N

Y (e+1)
li

← Y (e+1)
li

∪ xi for i = 1, 2, . . . , N

|τ (e+1)
i | ← update(Y (e+1)

i ,M, τ (e)i) for i = 1, 2, . . . , k

AI C (e+1) ← 1/N
∑k

j=1
∑

x∈Y (e+1)
j

AI C(τ (e+1)
j ; x)

�AI C (e+1) ← (AI C (e) − AI C (e+1))/AI C (e)

e← e + 1

return {C (e−1)
i }ki=1

4.1.3 Finding optimal number of clusters

Finding the right number of clusters is a common problem
in any clustering-based approach. One can repeat the ICM
algorithm with different number of clusters to find a trade-off
between scalability and accuracy. Instead of this, we opt in
to a linear hill-climbing strategy to find the right number of
clusters. Given the initial number of clusters to start with, we
use a bisecting method to split a cluster into two and continue
this process until the splitting does not improve the models.

Let us assume that the initial clusters are set using the Ini-
tialize algorithm. We estimate the average AIC of each of the
clusters to find the cluster model that gives the highest aver-
age AIC for the corresponding time series. We aim to find a

better model for the time series with high AIC value for the
corresponding cluster model. We split the cluster into two
according to the average AIC value of the cluster. We create
a new cluster and put the time series with higher AIC value
than the average AIC into the new cluster. We estimate an
aggregated time series for the new cluster as we did in the ini-
tialization and fit a SARIMA model on this time series as the
cluster representative. Then, we update the model parame-
ters of these two clusters and reassign time series to clusters
having minimum AIC value as in our form-clusters algo-
rithm. We continue to split clusters until the improvement on
the total AIC of the new clusters is within a small bound of
the total AIC of the previous clusters. Algorithm 4 gives the
details of this bisecting strategy.

Algorithm 4: Bisecting(Y ,{C (0)
i }

k

i=1, ε)

�AI C (0) ←∞
e← 0
k′ ← k
while �AI C (e) > ε do

AI C (e)
j ← 1/

∥∥Y j
∥∥ ∑

x∈Y (e)j
AI C(τ (e)j ; x) for j = 1, . . . , k

l ← arg max j AI C (e)
j

Yk′+1 ← {x |x ∈ Y (e)l ∧ AI C(τ (e)l ; x) > AI C (e)
l }

Yk′ ← Y (e)k′ − Yk′+1

|τ (e+1)
j | ← update(Y j ,M, τ (e)j) for j ∈ {k′, k′ + 1}

li = arg min j AI C(τ (e+1)
j ; xi) for i = 1, ..., N

Y (e+1)
li

← Y (e+1)
li

∪ xi for i = 1, ..., N

AI C (e+1) ← 1/N
∑k′

j=1
∑

x∈Y (e+1)
j

AI C(τ (e+1)
j ; x)

�AI C (e+1) ← (AI C (e) − AI C (e+1))/AI C (e)

e← e + 1
k′ ← k′ + 1

return {C (e−1)
i }k

′−1

i=1

Intuitively, we expect the new cluster model τ (e+1)
k′+1 to be a

better fit for its time series Yk′+1 than τ (e)k′ . Furthermore, we
update the previous model as well which will give a better fit
for the remaining time series Yk′ . Thus, the two new models
will give better fits for time series Y (e)l compared to other
clusters. This is why we only update the models of these two
clusters.

4.1.4 Updating model parameters with new data

As new data points Y arrive, we update the models in each
cluster using the
τ
(e)
i = update(Y,M, τ (e−1)) function that uses a mini-

mization algorithm M initialized with τ (e−1), and estimates
next parameters τ (e) minimizing the total AIC of Y . We ini-
tialize the minimization algorithm M with previous para-

123

Scaling forecasting algorithms 59

meters τ (e−1) because this hastens the convergence as the
clusters also stabilize in time.

4.1.5 Forecasting future data points

Let us assume that given a time series x , h-step ahead fore-
casts are achieved by using the function f where x̂t+h =
f (x;β, h) using parameters β. Then our clustered forecasts
are performed by using the desired forecasting function f
with the model parameters of the corresponding cluster. More
formally if the time series x is clustered in C(F, P) with the
corresponding parameter vector τ , then we give the h-step
ahead forecasts of x using the following formula

x̃t+h = f (x; τ, h) (21)

One can also use a single forecast as an estimator of the
cluster. But, this will lack the effect of the individual time
series values. As a result, using a single model on the time
series individually is better than giving a single forecast for
the cluster.

4.2 Sequential clustered modeling

The ICM approach clusters and models time series con-
currently. We now present SCM, where these two steps
are applied sequentially. Although most time series repre-
sentations are not specifically designed for forecasting, we
investigate how to utilize them. Our intuition here is same:
applying a suitable common model is more efficient and can
be more accurate than building separate models. Using a
time series representation, we cluster data and assign the
model built on each cluster center as the corresponding rep-
resentative model. Forecasts for each individual time series
are obtained using the model of the corresponding cluster
representative.

More formally, we initially partition time series into k
clusters Ci (Ai ,Yi), i = 1, . . . , k using a representation and
a distance measure where Ai is the cluster center, and Yi is the
time series in cluster Ci . Next we fit a SARMA model Fi to
each of the cluster centers Ai . We construct our model clus-
ters by transforming previous clusters to Ci (Fi ,Yi) where
Fi gives the SARMA model for Yi by minimizing the corre-
sponding AIC.

While any representation and clustering approach can
be utilized, we adapt LPC coefficients which is commonly
used in speech and image processing [11]. Our experimental
results confirm that LPC perform significantly better than the
traditional representations of PCA, DWT and DFT for our
purposes.

LPC is the cepstral representation of the Linear Predic-
tion Coefficients. It was shown to be effective for model-
based time series clustering in terms of silhouette coefficient
[9]. One can use the invertibility of a SARMA model and

construct LPC coefficients using AR representation of every
SARMA model. Linear Prediction Coefficients are the AR
representation of the time series and can be specified by
all-pole model in frequency domain [20]. Although a time
series can be modeled by an AR model explicitly, an invert-
ible SARIMA model can be converted to an equal infinite
order AR model [24]. Thus, based on our SARMA definition
with the integration, AR representation of the corresponding
SARIMA model can be found by solving

φ
′
(B)=

∞∑
i=0

φ
′
i xt−i =�P (BS)φ(B)(1− B)d

�P(BS)θ(B)
xt=wt (22)

Given an AR representation φ
′
(B), LPC coefficients can be

defined as follows [11]

ci =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−φ′1 if i = 1

−φ′i −
∑i−1

j=1

(
1− j

i

)
φ′j ci− j if 1 < i ≤ p

−∑i−1
j=1

(
1− j

i

)
φ′j ci− j if p < i

(23)

Utilizing LPC for forecasting has several challenges, such
as how to find a model for each LPC cluster and how to
make next period forecasts. We set the cluster centers as the
medians of the LPC coefficients of the respective time series.
As the LPC coefficients are extracted using AR coefficients,
the obvious approach would be to use the cluster center and
obtain a common AR coefficient for that cluster. One can
use this approach to model the clusters and obtain the next
period forecasts. However, we experimentally observe that
this approach has a high MAPE to be used in practice. Instead,
we construct the median time series for each cluster and build
a SARIMA model on it. Another decision is whether to gen-
erate only one next period forecast for all the time series in
a cluster, or use the common model in the cluster for each
time series separately and obtain time series specific fore-
casts. We use the later approach as it involves data itself and
the forecasts use historical data for each time series.

We show various trade-offs and insights in using SCM,
ICM, and IM approaches in the next section. For example,
the execution time of LPC-based SCM is comparable to IM
and is significantly slower than ICM. It requires models of
each time series in advance, which is not that case in ICM.

5 Performance evaluation

We demonstrate the efficiency, accuracy, and scalability of
the proposed approach compared to the individual forecasts.
We used three real data sets and six synthetic data sets in
our experiments. The first real data are a set of telco traffic
time series of 2,497 enterprise customers each with 867 time
points of their usage minutes. The time series shows highly
seasonal behavior and is sensitive to the special events, e.g.,

123

60 İ. Gür et al.

holidays, unexpected events, campaigns. The other real data
sets are publicly available data used in [9]. The first one is
the Population data, which is a set of time series represent-
ing population estimates from 1900–1999 in 20 states of the
USA. The second data set is Personal Income, which is a set
of time series representing the per capita personal income
from 1929–1999 in 25 states of USA. We also generated six
synthetic data sets based on these real data through aggrega-
tions, introducing random local outliers, and enhancing their
sizes following the methodology presented in [9]. Using the
available time series with periodicity 7, we fit SARIMA mod-
els to all of the time series. We uniformly selected AR, SAR,
MA, and SMA coefficients from the intervals [φi−σ, φi+σ],
[Φi−σ,Φi+σ], [θi−σ, θi+σ] and [Θi−σ,Θi+σ], respec-
tively. In our experiments, we used σ = 0.05 for the first real
data and σ = 0.01 for the rest, which preserves the invert-
ibility and causality of the generated SARMA model. We
generated six data sets each having 100,000 time series. The
CM approach intrinsically handles stationary issues by dif-
ferencing and Box–Cox transformations. For modeling, we
utilize the R Project that involves several statistical packages
useful in our analyses [1]. To fit the best model minimizing
18 and 19 of a single time series, we use the R Package [13].

For evaluation, we took the first 839 time points for build-
ing the model and made forecasts for the later 28 points. To
evaluate the dynamic update of ICM, we took the first 832
and dynamically add 7 points to each time series. We provide
accuracy results for weekly (4 weeks) forecasts. We compare
our accuracy results with the individual forecasts using Mean
Absolute Percentage Error (MAPE),

M AP E = 1

h

(
Σh

i=1

∣∣∣∣ xn+i − fi

xn+i

∣∣∣∣
)

(24)

where h is the forecasting period, xn+i is the i th future time
point, and fi is the i th forecast.
In our experiments we address several questions, including:

– How does the accuracy results change compared to the
individual forecasts?

– How does the speed of CM change compared to the speed
of the individual fits?

– How does the accuracy and speed of CM change com-
pared to other clustering algorithms?

– How does the number of clusters affect the speed and
accuracy results?

– How does the accuracy and speed of the dynamic update
change?

– Is the proposed approach scalable?

We give results to answer the questions above, then we
compare ICM to SCM and IM. We finally experiment for the
scalability of the algorithms.

Fig. 1 MAPE results of ICM and IM

Fig. 2 ICM and IM time

5.1 Efficiency and accuracy of initialization

For each of the methods we used in initialization, we ran 10
experiments. We present the average results of these experi-
ments. ICM-8 is the result of ICM with 8 clusters, using ran-
dom initialization and median as the aggregate time series.
The other methods use the presented bisecting method to find
the optimal number of clusters. Considering our first ques-
tion, Fig. 1 shows the average MAPE results over all time
series. We take the average of weekly forecast errors. The
error of ICM is 0.59, and for IM it is 0.93. On average ICM
provides 37 % improvement on weekly MAPE over IM. The
difference between ICM-8 and the other ICM algorithms is
small which shows that the bisecting strategy is effective in
finding the number of clusters.

Figure 2 shows the time requirement of ICM and IM.
While IM takes hours to fit models, ICM is significantly faster
by providing this in minutes. On average, ICM takes around
9 min, while it takes 173 min to model each time series indi-
vidually.

We observe that using a clustering algorithm in initial-
ization (PAM, k-Means) has a significant time overhead for

123

Scaling forecasting algorithms 61

clustering and convergence of ICM. PAM and k-Means both
use Euclidean distance and the outliers are assigned non-
uniformly. The Bisecting algorithm has a small overhead
with random initialization, 3.4 and 2.2 min, respectively. A
random initialization strategy with bisection has a high accu-
racy with a negligible overhead.

To evaluate the effect of randomness in different initial-
ization strategies, we estimate the standard deviation (std) in
MAPE and time. On average, the std in MAPE is 0.077,
0.046, 0.098, and 0.13, for median, mean, PAM, and k-
Means, respectively. The error introduced by randomness
in initialization has a relatively negligible effect in accuracy.
On average, the std in time is 6, 2.4, 14, 11 min, respectively.
While it is small for random initialization, it is relatively
high for PAM and k-Means. Overall, the randomness in ini-
tialization has a small overhead on the ICM algorithm in
practice.

We evaluate the effect of seasonality by using an additive
seasonal decomposition where a time series has 3 compo-
nents, i.e., xt = seasonalt + trendt + randomt . We ran our
ICM model with random initialization and median aggregate
on the trendt time series and add seasonal components to the
resulting forecasts, i.e., x̃t+h = f (x; τ, h) + seasonalt+h .
The average MAPE and std are 0.41 and 0.0016, which shows
that removing seasonality improves the accuracy and robust-
ness of ICM. ICM is more valuable when there are local
outliers in time series. Removing the seasonality helps with
these local events and noise and reduces the MAPE. The
running time of the seasonal decomposition is 5 min for the
first telco traffic data set. The total running time of ICM with
seasonal decomposition is 9.3 min, which is 18.6 times faster
than IM. ICM also converges faster with seasonal decompo-
sition. On average it takes 4.3 min without seasonality while
it takes 8.6 min with seasonality.

We also vary the number of clusters and do not observe
a clear pattern for the relationship between the number of
clusters and MAPE. There is a linear relationship between
the number of clusters and the time that ICM requires.

5.2 Results on time series clustering approaches

We perform experiments for SCM using 5 different repre-
sentations, LPC, DFT, DWT, PCA, and raw data. We use the
resulting clusters and raw time series to forecast the future
points. With median and mean of the time series belonging to
each cluster, we end up having 10 different approaches. We
use the top 10 features extracted using each of the represen-
tations DFT, DWT, PCA, and LPC with PAM clustering for
DWT, PCA, LPC and raw data and k-Means clustering for
DFT with Euclidean distance. Using 10 features was shown
to be generally descriptive enough for these approaches
[9].

Fig. 3 MAPE results of ICM versus SCM

Fig. 4 Comparison of the running time of ICM with SCM

Figure 3 shows the comparison of modeling using repre-
sentations with Euclidean distance. We present the results
using the median as the aggregate representation, but we
observe similar results for the mean as well. While DFT,
DWT, PCA, and raw data do not perform well on accuracy,
LPC-based SCM achieves a MAPE of 0.22. LPC is more
accurate than ICM; however, it requires SARMA models to
be available to construct the cepstral coefficients. Thus, it
is computationally much more expensive than ICM. DFT,
DWT, PCA, and raw data are efficient but not accurate. LPC
is comparable to IM with around 190 min on average. The
execution time of each algorithm is presented in Fig. 4.

These results suggest that LPC is suitable for small scale
as it significantly improves the accuracy. For large-scale data,
ICM is preferable over both IM and LPC, as both have effi-
ciency and scalability problems. As new time points come,
the cepstral coefficients need to be updated as well as the
common models for each cluster. The other representations
are reasonably faster but they lack of the necessary accuracy
to be used in real life applications. Considering both speed
and accuracy, ICM is both fast and accurate and hence more
practical.

123

62 İ. Gür et al.

Fig. 5 MAPE comparison of ICM-u with re-run and IM

Fig. 6 The time of ICM-u algorithm and re-run versus IM

5.3 Dynamic update of model parameters

As our optimization algorithms are iterative in nature, we can
update the models as new time points arrive. We first merge
the existing time series with newly arriving points. Then,
we use the model parameters estimated in the initialization
phase as the initial inputs to the optimization algorithm and
run using the new data. To compare, we re-run our ICM algo-
rithm from scratch and show that Clustered Modeling Update
(ICM-u) takes less time than the re-run, thus transitively it
takes considerably less time than individually fitting data as
new points come. Figure 5 shows the comparison of MAPE
results of ICM-u as new points arrive with re-run of ICM and
IM. ICM-u and re-run are comparable with each other, and
both are more accurate than the IM. ICM-u takes 1.77 min
which is faster than both re-run and IM. The reason is that
clusters stabilize at the end of ICM, and ICM-u converges fast
as we initialize it with the resulting clusters of ICM. This is
summarized in Fig. 6.

To show how the accuracy and speed changes if data size
increases, we choose 500 time series randomly and at each

Fig. 7 Accuracy as the data size increases

Fig. 8 The time of ICM versus IM as the data size increases

iteration we add 500 more distinct time series. Figure 7 shows
that as the size of data increases, the accuracy of the same
subset remains nearly the same. This result shows that as the
data increases, the clusters may change but the accuracy is
preserved. Figure 8 exhibits a linear relationship between the
size of the data and the time it takes. As the data size doubles,
ICM takes approximately double time but with a very small
slope compared to IM.

5.4 Experiments for the larger data set

We first compare ICM-u modeling with ICM and IM. We
then compare the accuracy and running time performance of
ICM and IM as the data size increases on the synthetic data
sets.

Figure 9 illustrates the accuracy comparison of the pro-
posed approach with IM. We vary the data set size from 2,500
to 100,000 and present the average results. ICM and ICM-u
have lower MAPE than IM, and ICM-u competes with ICM.

123

Scaling forecasting algorithms 63

Fig. 9 MAPE results of ICM-u, re-run and IM for large data set

Fig. 10 Time results of ICM-u, re-run, and IM for large data set

This suggests that, instead of building ICM from start, we
can use ICM-u to obtain a similar accuracy.

Figure 10 shows the time that ICM, ICM-u, and IM take.
It takes 43 min and 6.5 h for ICM-u and ICM, respectively,
while it takes 126 h for IM. On average, ICM is 19 times
faster than IM. If we have available clusters, we can further
improve the results using ICM-u which is around 170 times
faster than IM.

5.5 Evaluations for scalability

We run ICM over six synthetic data sets to evaluate the scal-
ability of ICM. Figure 11 shows the time requirements for
ICM and IM over the six data sets. On all data sets, ICM is
more scalable than IM. On average, ICM takes 3.5, 10, 12.5,
7.5, 2.6, and 2.1 h to build models while it takes 126, 146,
163, 153, 13, and 12 h for IM, respectively.

When the data have local outliers, the improvement by
ICM becomes more apparent, as it has an aggregate effect to

remove outliers. If the data does not have any outliers, then
ICM is comparable with IM. The MAPE results of IM in
our synthetic data sets are 0.34, 0.15, 0.13, 0.13, 0.009, and
0.007, respectively. The first data set has a relatively higher
error, and ICM manages to improve the accuracy by 50 %. In
others, the differences in accuracies are within a 1 % margin
showing that if the individual models already have a high
accuracy, ICM cannot improve the models.

6 Conclusions

We addressed the problem of continuous forecasting of mul-
tiple time series for scalable predictive analytics. We pro-
posed two approaches: one with clustering and modeling of
data performed simultaneously (ICM), and another where
data are first clustered then modeled (SCM).

The ICM approach clusters the time series according to
their AIC values. A time series belongs to the cluster which
gives the lowest AIC value estimated using the SARIMA
model of the cluster and the time series itself. We improve the
cluster models using iterative nonlinear optimization algo-
rithms, which enables efficient dynamic model updates as
new time points arrive. ICM is not restricted to the SARIMA
models and can be applied to any modeling with a given
minimization procedure. It is more scalable with compara-
ble accuracies to individual modeling (IM). Each IM with a
SARIMA model takes several seconds to minutes; hence, it
takes significant time to continuously update even a cou-
ple of thousand series. For example, on the usage traffic
data of 2,497 telecommunication customers, IM takes around
173 min on a standard PC. ICM takes around 9 min for the
same data set.

The SCM approach applies clustering and modeling
sequentially. We use the invertibility of a SARMA model and
construct LPC coefficients using AR representation of every
SARMA model. We use the results of k-Means and PAM
clustering structures and corresponding centers and build a
SARMA model for each cluster center. Forecasts for each
individual time series are achieved using the model on the
center of their corresponding cluster. We showed that LPC-
based SCM provides more accurate results than IM with
some overhead.

We compare ICM and SCM to IM and to each other. Exper-
imental results show that ICM is up to 20 times faster and
37 % more accurate than IM, and SCM has 76 % improve-
ment over IM with a speed overhead of 9 % on the real telco
traffic series. The proposed methodology is independent of
the underlying linear or nonlinear modeling approach, and
can benefit from any model selection method.

123

64 İ. Gür et al.

Fig. 11 Time of ICM and IM on large data set

Acknowledgments This work is supported in part by The Scientific
and Technological Research Council of Turkey under Grant EEEAG-
111E217 and The Turkish Academy of Sciences.

References

1. http://www.r-project.org/
2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clus-

tering evolving data streams. In: VLDB Proceedings (2003)

3. Alonso, A., Berrendero, J., Hernandez, A., Justel, A.: Time series
clustering based on forecast densities. Comput. Stat. Data Anal.
51(2), 762–776 (2006)

4. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis:
Forecasting and Control. Prentice Hall, Englewood Cliffs (1994)

5. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algo-
rithm for bound constrained optimization. SIAM J. Sci. Comput.
16(5), 1190–1208 (1995)

6. Chakrabarti, D., Faloutsos, C.: F4: Large-scale automated forecast-
ing using fractals. In: CIKM (2002)

123

http://www.r-project.org/

Scaling forecasting algorithms 65

7. Chan, K.P., Fu, A.W.C.: Efficient time series matching by wavelets.
In: ICDE (1999)

8. Corduas, M., Piccolo, D.: Time series clustering and classification
by the autoregressive metric. Comput. Stat. Data Anal. 52, 1860–
1872 (2008)

9. Dhiral, K.K., Kalpakis, K., Gada, D., Puttagunta, V.: Distance mea-
sures for effective clustering of arima time-series. In: ICDM (2001)

10. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subse-
quence matching in time-series databases. In: SIGMOD (1994)

11. Furui, S.: Digital Speech Processing, Synthesis, and Recognition.
Marcel Dekker, New York (1989)

12. Hong, L., Yin, D., Guo, J., Davison, B.D.: Tracking trends: incor-
porating term volume into temporal topic models. In: KDD (2011)

13. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting:
the forecast package for R. J. Stat. Softw. 27, 1–22 (2008)

14. Korn, F., Jagadish, H.V., Faloutsos, C.: Efficiently supporting ad
hoc queries in large datasets of time sequences. In: SIGMOD (1997)

15. Kumar, M., Patel, N.: Using clustering to improve sales forecasts
in retail merchandising. Ann. Oper. Res. 174, 33–46 (2010)

16. Kevecka, I.: Forecasting traffic loads: neural networks vs. linear
models. Comput. Model. New. Technol. 14, 20–28 (2010)

17. Li, L., Prakash, B.A.: Time series clustering: Complex is simpler!
ICML (2011).

18. Li, L., Prakash, B.A., Faloutsos, C.: Parsimonious linear finger-
printing for time series. In: VLDB Proceedings (2010)

19. Lin, J., Vlachos, M., Keogh, E., Gunopulos, D.: Iterative incremen-
tal clustering of time series. In: EDBT (2004)

20. Makhoul, J.: Linear prediction: a tutorial review. In: Proceedings
of the IEEE (1975)

21. Matsubara, Y., Sakurai, Y., Faloutsos, C., Iwata, T., Yoshikawa, M.:
Fast mining and forecasting of complex time-stamped events. In:
KDD (2012)

22. Rodrigues, P.P., Gama, J., Pedroso, J.P.: Hierarchical clustering of
time-series data streams. In: TKDE (2008)

23. Makridakis, S.G., Wheelwright, S.C., Hyndman, R.J.: Forecasting:
Methods and Applications. Wiley, New York (1998)

24. Shumway, R.H., Stoffer, D.S.: Time series analysis and its appli-
cations: with R examples (Springer Texts in Statistics) (2006)

25. Szmit, M., Szmit, A.: Usage of pseudo-estimator lad and sarima
models for network traffic prediction: case studies. In: Computer
Networks, Communications in Computer and Information Science
(2012)

26. Warren Liao, T.: Clustering of time series data—a survey. Pattern
Recogn. 38(11), 1857–1874 (2005)

27. Xiong Y., Yeung D-Y.: Mixtures of ARMA models for model-
based time series clustering. In: IEEE international conference on
data mining (ICDM)(2002)

123

	Scaling forecasting algorithms using clustered modeling
	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Proposed methodology
	4.1 Integrated clustered modeling
	4.1.1 Finding initial representatives
	4.1.2 Forming the model clusters
	4.1.3 Finding optimal number of clusters
	4.1.4 Updating model parameters with new data
	4.1.5 Forecasting future data points

	4.2 Sequential clustered modeling

	5 Performance evaluation
	5.1 Efficiency and accuracy of initialization
	5.2 Results on time series clustering approaches
	5.3 Dynamic update of model parameters
	5.4 Experiments for the larger data set
	5.5 Evaluations for scalability

	6 Conclusions
	Acknowledgments
	References

