
1

1



2

Online Index Recommendations for
High-Dimensional Databases using Query

Workloads
Michael Gibas, Guadalupe Canahuate, Hakan Ferhatosmanoglu

Abstract— High-dimensional databases pose a challenge with
respect to efficient access. High-dimensional indexes do not
work because of the oft-cited ‘curse of dimensionality’. However,
users are usually interested in querying data over a relatively
small subset of the entire attribute set at a time. A potential
solution is to use lower dimensional indexes that accurately
represent the user access patterns. Query response using physical
database design developed based on a static snapshot of the query
workload may significantly degrade if the query patterns change.
To address these issues, we introduce a parameterizable technique
to recommend indexes based on index types frequently used for
high-dimensional data sets and to dynamically adjust indexes
as the underlying query workload changes. We incorporate a
query pattern change detection mechanism to determine when
the access patterns have changed enough to warrant change in
the physical database design. By adjusting analysis parameters,
we trade off analysis speed against analysis resolution. We
perform experiments with a number of data sets, query sets, and
parameters to show the effect that varying these characteristics
has on analysis results.

Index Terms— index selection, high-dimensional indexing,
query access patterns

I. INTRODUCTION

An increasing number of database applications, such as busi-
ness data warehouses and scientific data repositories, deal with
high dimensional data sets. As the number of dimensions/at-
tributes and overall size of data sets increase, it becomes essential
to efficiently retrieve specific queried data from the database
in order to effectively utilize the database. Indexing support is
needed to effectively prune out significant portions of the data set
that are not relevant for the queries. Multi-dimensional indexing,
dimensionality reduction, and RDBMS index selection tools all
could be applied to the problem. However, for high-dimensional
data sets, each of these potential solutions has inherent problems.

To illustrate these problems, consider a uniformly distributed
data set of 1,000,000 data objects with several hundred attributes.
Range queries are consistently executed over five of the attributes.
The query selectivity over each attribute is 0.1, so the overall
query selectivity is 1/105 (i.e. the answer set contains about 10
results). An ideal solution would allow us to read from disk only
those pages that contain matching answers to the query. We could
build a multi-dimensional index over the data set so that we can
directly answer any query by only using the index. However,
performance of multi-dimensional index structures is subject to
Bellman’s curse of dimensionality [1] and degrades rapidly as
the number of dimensions increases. For the given example,
such an index would perform much worse than sequential scan.

The authors are with The Ohio State University

Another possibility would be to build an index over each single
dimension. The effectiveness of this approach is limited to the
amount of search space that can be pruned by a single dimension
(in the example the search space would only be pruned to 100,000
objects).

For data-partitioning indexes such as the R-tree family of
indexes, data is placed in a partition that contains the data point
and could overlap with other partitions. To answer a query, all
potentially matching search paths must be explored. As the dimen-
sionality of the index increases, the overlaps between partitions
increase and at high enough dimensions the entire data space
needs to be explored. For space-partitioning structures, where
partitions do not overlap and data points are associated with cells
which contain them (e.g. grid files), the problem is the exponential
explosion of the number of cells. A 100 dimensional index with
only a single split per attribute results in 2100 cells. The data to
cell ratio can be small enough that the cells can not be efficiently
searched. This phenomenon is thoroughly described in [2].

Another possible solution would be to use some dimensionality
reduction technique, index the reduced dimension data space,
and transform the query in the same way that the data was
transformed. However, the dimensionality reduction approaches
are mostly based on data statistics, and perform poorly especially
when the data is not highly correlated. They also introduce a
significant overhead in the processing of queries.

Another possible solution is to apply feature selection to keep
the most important attributes of the data according to some criteria
and index the reduced dimensionality space. However, traditional
feature selection techniques are based on selecting attributes that
yield the best classification capabilities. Therefore, they also select
attributes based on data statistics to support classification accuracy
rather than focusing on query performance and workload in a
database domain. As well, the selected features may offer little
or no data pruning capability given query attributes.

Many commercial RDBMS’s have included index recommen-
dation systems to identify indexes that will work well for a
given workload. These tools are optimized for the domains for
which these systems are primarily employed and the indexes that
the systems provide. They are targeted towards lower dimension
transactional databases and do not produce results optimized for
single high-dimensional tables.

Our approach is based on the observation that in many high
dimensional database applications, only a small subset of the
overall data dimensions are popular for a majority of queries
and recurring patterns of dimensions queried occur. For exam-
ple, Large Hadron Collider (LHC) experiments are expected to
generate data with up to 500 attributes at the rate of 20 to 40 per
second [3]. However, the search criterion is expected to consist



3

of 10 to 30 parameters. Another example is High Energy Physics
(HEP) experiments [4] where sub-atomic particles are accelerated
to nearly the speed of light, forcing their collision. Each such
collision generates on the order of 1-10MBs of raw data, which
corresponds to 300TBs of data per year consisting of 100-500
million objects. The queries are predominantly range queries and
involve mostly around 5 dimensions out of a total of 200.

We address the high dimensional database indexing problem
by selecting a set of lower dimensional indexes based on joint
consideration of query patterns and data statistics. This approach
is also analogous to dimensionality reduction or feature selection
with the novelty that the reduction is specifically designed for
reducing query response times, rather than maintaining data
energy as is the case for traditional approaches. Our reduction
considers both data and access patterns, and results in multiple
and potentially overlapping sets of dimensions, rather than a
single set. The new set of low dimensional indexes is designed
to address a large portion of expected queries and allow effective
pruning of the data space to answer those queries.

Query pattern evolution over time presents another challeng-
ing problem. Researchers have proposed workload based index
recommendation techniques. Their long term effectiveness is
dependent on the stability of the query workload. However,
query access patterns may change over time becoming completely
dissimilar from the patterns on which the index set were originally
determined. There are many common reasons why query patterns
change. Pattern change could be the result of periodic time
variation (e.g. different database uses at different times of the
month or day), a change in the focus of user knowledge discovery
(e.g. a researcher discovery spawns new query patterns), a change
in the popularity of a search attribute (e.g. current events cause
an increase in queries for certain search attributes), or simply
random variation of query attributes. When the current query
patterns are substantially different from the query patterns used
to recommend the database indexes, the system performance will
degrade drastically since incoming queries do not benefit from the
existing indexes. To make this approach practical in the presence
of query pattern change, the index set should evolve with the
query patterns. For this reason, we introduce a dynamic mech-
anism to detect when the access patterns have changed enough
that either the introduction of a new index, the replacement of an
existing index, or the construction of an entirely new index set is
beneficial.

Because of the need to proactively monitor query patterns
and query performance quickly, the index selection technique
we have developed uses an abstract representation of the query
workload and the data set that can be adjusted to yield faster
analysis. We generate this abstract representation of the query
workload by mining patterns in the workload. The query workload
representation consists of a set of attribute sets that occur fre-
quently over the entire query set that have non-empty intersections
with the attributes of the query, for each query. To estimate the
query cost, the data set is represented by a multi-dimensional
histogram where each unique value represents an approximation
of data and contains a count of the number of records that match
that approximation. For each possible index for each query, the
estimated cost of using that index for the query is computed.

Initial index selection occurs by traversing the query work-
load representation and determining which frequently occurring
attribute set results in the greatest benefit over the entire query set.

This process is iterated until some indexing constraint is met or
no further improvement is achieved by adding additional indexes.
Analysis speed and granularity is affected by tuning the resolution
of the abstract representations. The number of potential indexes
considered is affected by adjusting data mining support level. The
size of the multi-dimensional histogram affects the accuracy of
the cost estimates associated with using an index for a query.

In order to facilitate online index selection, we propose a
control feedback system with two loops, a fine grain control loop
and a coarse control loop. As new queries arrive, we monitor
the ratio of potential performance to actual performance of the
system in terms of cost and based on the parameters set for the
control feedback loops, we make major or minor changes to the
recommended index set.

The contributions of this paper can be summarized as follows:

1) Introduction of a flexible index selection technique de-
signed for high-dimensional data sets that uses an abstract
representation of the data set and query workload. The
resolution of the abstract representation can be tuned to
achieve either a high ratio of index-covered queries for static
index selection or fast index selection to facilitate online
index selection.

2) Introduction of a technique using control feedback to
monitor when online query access patterns change and to
recommend index set changes for high-dimensional data
sets.

3) Presentation of a novel data quantization technique opti-
mized for query workloads.

4) Experimental analysis showing the effects of varying ab-
stract representation parameters on static and online index
selection performance and showing the effects of varying
control feedback parameters on change detection response.

The rest of the paper is organized as follows. Section II
presents the related work in this area. Section III explains our
proposed index selection and control feedback framework. Section
IV presents the empirical analysis. We conclude in Section V.

II. RELATED WORK

High-dimensional indexing, feature selection, and DBMS index
selection tools are possible alternatives for addressing the problem
of answering queries over a subspace of high-dimensional data
sets. As described below, each of these methods provides less
than ideal solutions for the problem of fast high-dimensional
data access. Our work differs from the related index selection
work in that we provide a index selection framework that can
be tuned for speed or accuracy. Our technique is optimized to
take advantage of multi-dimensional pruning offered by multi-
dimensional index structures. It takes into consideration both data
and query characteristics and can be applied to perform real-time
index recommendations for evolving query patterns.

A. High-Dimensional Indexing

A number of techniques have been introduced to address the
high-dimensional indexing problem, such as the X-tree [5], and
the GC-tree [6]. While these index structures have been shown
to increase the range of effective dimensionality, they still suffer
performance degradation at higher index dimensionality.



4

B. Feature Selection

Feature selection techniques [7], [8], [9] are a subset of di-
mensionality reduction targeted at finding a set of untransformed
attributes that best represent the overall data set. These techniques
are also focused on maximizing data energy or classification
accuracy rather than query response. As a result, selected features
may have no overlap with queried attributes.

C. Index Selection

The index selection problem has been identified as a variation
of the Knapsack Problem and several papers proposed designs for
index recommendations [10], [11], [12], [13], [14], [15] based on
optimization rules. These earlier designs could not take advantage
of modern database systems’ query optimizer. Currently, al-
most every commercial Relational Database Management System
(RDBMS) provides the users with an index recommendation tool
based on a query workload and using the query optimizer to
obtain cost estimates. A query workload is a set of SQL data
manipulation statements. The query workload should be a good
representative of the types of queries an application supports.

Microsoft SQL Server’s AutoAdmin tool [16], [17], [18] se-
lects a set of indexes for use with a specific data set given
a query workload. In the AutoAdmin algorithm, an iterative
process is utilized to find an optimal configuration. First, single
dimension candidate indexes are chosen. Then a candidate index
selection step evaluates the queries in a given query workload
and eliminates from consideration those candidate indexes which
would provide no useful benefit. Remaining candidate indexes are
evaluated in terms of estimated performance improvement and
index cost. The process is iterated for increasingly wider multi-
column indexes until a maximum index width threshold is reached
or an iteration yields no improvement in performance over the last
iteration.

Costs are estimated using the query optimizer which is limited
to considering those physical designs offered by the DBMS.
In the case of SQL Server, single and multi-level B+-trees are
evaluated. These index structures can not achieve the same level
of result pruning that can be offered by an index technique that
indexes multiple dimensions simultaneously (such as R-tree or
grid file). As a result the indexes suggested by the tool often
do not capture the query performance that could be achieved for
multi-dimensional queries.

MAESTRO (METU Automated indEx Selection Tool)[19] was
developed on top of Oracle’s DBMS to assist the database admin-
istrator in designing a complete set of primary and secondary
indexes by considering the index maintenance costs based on
the valid SQL statements and their usage statistics automatically
derived using SQL Trace Facility during a regular database
session. The SQL statements are classified by their execution plan
and their weights are accumulated. The cost function computed
by the query optimizer is used to calculate the benefit of using
the index.

For DB2, IBM has developed the DB2Adviser [20] which
recommends indexes with a method similar to AutoAdmin with
the difference that only one call to the query optimizer is needed
since the enumeration algorithm is inside the optimizer itself.

These commercial index selection tools are coupled to physical
design options provided by their respective query optimizers and
therefore, do not reflect the pruning that could be achieved by
indexing multiple dimensions together.

D. Automatic Index Selection

The idea of having a database that can tune itself by automati-
cally creating new indexes as the queries arrive has been proposed
[21], [22]. In [21] a cost model is used to identify beneficial
indexes and decide when to create or drop an index at runtime.
[22] proposes an agent-based database architecture to deal with
automatic index creation. Microsoft Research has proposed a
physical design alerter [23] to identify when a modification to
the physical design could result in improved performance.

III. APPROACH

A. Problem Statement

In this section we define the problem of index selection for a
multi-dimensional space using a query workload.

A query workload W consists of a set of queries that select
objects within a specified subspace in the data domain. More
formally, we define a workload as follows:

Definition 1: A workload W is a tuple W = (D, DS, Q),
where D is the domain, DS ⊆ D is a finite subset (the data
set), and Q (the query set) is a set of subsets of DS.
In our case, the domain is <d, where d is the dimensionality
of the dataset, the instance DS is a set of n tuples t =

{(a1, a2, ..., ad)|ai ∈ <}, and the query set Q is a set of range
queries.

Finding the answers to a query, when no index is present,
reduces to scanning all the points in the dataset and testing
whether the query conditions are met. In this scenario we can
define the cost of answering the query as the time it takes to scan
the dataset, i.e. the time to retrieve the data pages from disk. The
assumption is that the time spent performing I/O dominates the
time required to perform the simple bound comparisons. In the
case that an index is present, the cost of answering the query can
be lower. The index can identify a smaller set potential matching
objects and only those data pages containing these objects need
to be retrieved from disk. The degree to which an index prunes
the potential answer set for a query determines its effectiveness
for the query.

Our problem can be defined as finding a set of indexes I, given
a multi-dimensional dataset DS, a query workload W , an optional
indexing constraint C, an optional analysis time constraint ta, that
provides the best estimated cost over W . In the context of this
problem an index is considered to be the set of attributes that can
be used to prune subspace simultaneously with respect to each
attribute. Therefore, attribute order has no impact on the amount
of pruning possible.

The overall goal of this work is to develop a flexible index se-
lection framework that can be tuned to achieve effective static and
online index selection for high-dimensional data under different
analysis constraints.

For static index selection, when no constraints are specified,
the goal is to recommend the set of indexes that yields the lowest
estimated cost for every query in a workload for any query that
can benefit from an index. In the case when a constraint is
specified, either as the minimum number of indexes or a time
constraint, we want to recommend a set of indexes within the
constraint, from which the queries can benefit the most. When
there is a time-constraint, we need to automatically adjust the
analysis parameters to increase the speed of analysis.

For online index selection, the goal is to develop a system that
can recommend an evolving set of indexes for incoming queries



5

over time, such that the benefit of index set changes outweighs
the cost of making those changes. Therefore, an online index
selection system that differentiates between low-cost index set
changes and higher cost index set changes and also can make
decisions about index set changes based on different cost-benefit
thresholds is desirable.

B. Approach Overview

In order to measure the benefit of using a potential index over
a set of queries, it is necessary to be able to estimate the cost
of executing the queries, with and without the index. Typically,
a cost model is embedded into the query optimizer to decide on
the query plan, whether the query should be answered using a
sequential scan or using an existing index. Instead of using the
query optimizer to estimate query cost, we conservatively estimate
the number of matches associated with using a given index by
using a multi-dimensional histogram abstract representation of the
dataset. The histogram captures data correlations between only
those attributes that could be represented in a selected index.
The cost associated with an index is calculated based on the
number of estimated matches derived from the histogram and
the dimensionality of the index. Increasing the size of the multi-
dimensional histogram enhances the accuracy of the estimate at
the cost of abstract representation size.

While maintaining the original query information for later use
to determine estimated query cost, we apply one abstraction to
the query workload to convert each query into the set of attributes
referenced in the query. We perform frequent itemset mining over
this abstraction and only consider those sets of attributes that
meet a certain support to be potential indexes. By varying the
support, we affect the speed of index selection and the ratio of
queries that are covered by potential indexes. We further prune
the analysis space using association rule mining by eliminating
those subsets above a certain confidence threshold. Lowering the
confidence threshold improves analysis time by eliminating some
lower dimensional indexes from consideration but can result in
recommending indexes that cover a strict superset of the queried
attributes.

Our technique differs from existing tools in the method we
use to determine the potential set of indexes to evaluate and
in the quantization-based technique we use to estimate query
costs. All of the commercial index wizards work in design time.
The Database Administrator (DBA) has to decide when to run
this wizard and over which workload. The assumption is that
the workload is going to remain static over time and in case
it does change, the DBA would collect the new workload and
run the wizard again. The flexibility afforded by the abstract
representation we use allows it to be used for infrequent, index
selection considering a broader analysis space or frequent, online
index selection.

In the following two subsections we present our proposed
solution for index selection which is used for static index selection
and as a building block for the online index selection.

C. Proposed Solution for Index Selection

The goal of the index selection is to minimize the cost of the
queries in the workload given certain constraints. Given a query
workload, a dataset, the indexing constraints, and several analysis
parameters, our framework produces a set of suggested indexes as

Symbol Description
P Potential Set of Indexes, the set of attribute sets under

consideration as a suggested index
Q Query Set, a representation of the query workload, for

each query. It consists of the attribute sets in P that
intersect with the query attributes, query ranges, and
estimated query costs

H Multi-Dimensional Histogram, used as a workload-
optimized abstract representation of the data set

S Suggested Indexes, the set of attribute sets currently
selected as recommended indexes

i attribute set currently under analysis
support the minimum ratio of occurrence of an attribute in a

query workload to be included in P
confidence the maximum ratio of occurrence of an attribute subset

to the occurrence of a set before the subset is pruned
from P

histogram size the number of bits used to represent a quantized data
object

TABLE I
INDEX SELECTION NOTATION LIST

an output. Figure 1 shows a flow diagram of the index selection
framework. Table I provides a list of the notations used in the
descriptions.

We identify three major components in the index selection
framework: the initialization of the abstract representations, the
query cost computation, and the index selection loop. In the
following subsections we describe these components and the
dataflow between them.

1) Initialize Abstract Representations: The initialization step
uses a query workload and the dataset to produce a set of Potential
Indexes P , a Query Set Q, and a Multi-dimensional Histogram H ,
according to the support, confidence, and histogram size specified
by the user. The description of the outputs and how they are
generated is given below.
• Potential Index Set P

The potential index set P is a collection of attribute sets that
could be beneficial as an index for the queries in the input query
workload. This set is computed using traditional data mining
techniques. Considering the attributes involved in each query from
the input query workload to be a single transaction, P consists of
the sets of attributes that occur together in a query at a ratio greater
than the input support. Formally, support of a set of attributes A
is defined as:

SA =

n∑
i=1

{
1 if A ⊆ Qi

0 otherwise

n

where Qi is the set of attributes in the ith query and n is the
number of queries.

For instance, if the input support is 10%, and attributes 1 and
2 are queried together in greater than 10 percent of the queries,
then a representation of the set of attributes {1,2} will be included
as a potential index. Note that because a subset of an attribute
set that meets the support requirement will also necessarily meet
the support, all subsets of attribute sets meeting the support will
also be included as a potential index (in the example above both
the sets {1} and {2} will be included). As the input support
is decreased, the number of potential indexes increases. Note
that our particular system is built independently from a query
optimizer, but the sets of attributes appearing in the predicates



6

Fig. 1. Index Selection Flowchart

from a query optimizer log could just as easily be substituted for
the query workload in this step.

If a set occurs nearly as often as one of its subsets, an index
built over the subset will likely not provide much benefit over
the query workload if an index is built over the attributes in the
set. Such an index will only be more effective in pruning data
space for those queries that involve only the subset’s attributes.
In order to enhance analysis speed with limited effect on accuracy,
the input confidence is used to prune analysis space. Confidence
is the ratio of a set’s occurrence to the occurrence of a subset.

While data mining the frequent attribute sets in the query
workload in determining P , we also maintain the association
rules for disjoint subsets and compute the confidence of these
association rules. The confidence of an association rule is defined
as the ratio that the antecedent (Left Hand Side of the rule) and
consequent (Right Hand Side of the rule) appear together in a
query given that the antecedent appears in the query. Formally,
confidence of an association rule {set of attributes A}→{set of
attributes B}, where A and B are disjoint, is defined as:

CA→B =

n∑
i=1

{
1 if (A ∪B) ⊆ Qi

0 otherwise
n∑

i=1

{
1 if A ⊆ Qi

0 otherwise

where Qi is the set of attributes in the ith query and n is the
number of queries.

In our example, if every time attribute 1 appears, attribute 2
also appears then the confidence of {1}→{2} = 1.0. If attribute
2 appears without attribute 1 as many times as it appears with
attribute 1, then the confidence {2}→{1} = 0.5. If we have set
the confidence input to 0.6, then we will prune the attribute set
{1} from P , but we will keep attribute set {2}.

We can also set the confidence level based on attribute set
cardinality. Since the cost of including extra attributes that are not
useful for pruning increases with increased indexed dimension-
ality, we want to be more conservative with respect to pruning
attribute subsets. The confidence could take on a value that is
dependent on set cardinality.

While the apriori algorithm was appropriate for the relatively
low attribute query sets in our domain, a more efficient algorithm
such as the FP-Tree [24] could be applied if the attribute sets
associated with queries are too large for the apriori technique
to be efficient. While it is desirable to avoid examining a high-
dimensional index set as a potential index, another possible
solution in the case where a large number of attributes are frequent
together would be to partition a large closed frequent itemset
into disjoint subsets for further examination. Techniques such as

CLOSET [25] could be used to arrive at the initial closed frequent
itemsets.
• Query Set Q
The query set Q is the abstract representation of the query

workload. It is initialized by associating the potential indexes that
could be beneficial for each query with that query. These are the
indexes in the potential index set P that share at least one common
attribute with the query. At the end of this step, each query has
an identified set of possible indexes for that query.
• Multi-Dimensional Histogram H
An abstract representation of the data set is created in order

to estimate the query cost associated with using each query’s
possible indexes to answer that query. This representation is in
the form of a multi-dimensional histogram H . A single bucket
represents a unique bit representation across all the attributes
represented in the histogram. The input histogram size dictates
the number of bits used to represent each unique bucket in the
histogram. These bits are designated to represent only the single
attributes that met the input support in the input query workload.
If a single attribute does not meet the support, then it can not
be part of an attribute set appearing in P . There is no reason
to sacrifice data representation resolution for attributes that will
not be evaluated. The number of bits that each of the represented
attributes gets is proportional to the log of that attribute’s support.
This gives more resolution to those attributes that occur more
frequently in the query workload.

Data for an attribute that has been assigned b bits is divided
into 2b buckets. In order to handle data sets with uneven data dis-
tribution, we define the ranges of each bucket so that each bucket
contains roughly the same number of points. The histogram is
built by converting each record in the data set to its representation
in bucket numbers. As we process data rows, we only aggregate
the count of rows with each unique bucket representation because
we are just interested in estimating query cost. Note that the multi-
dimensional histogram is based on a scalar quantizer designed on
data and access patterns, as opposed to just data in the traditional
case. A higher accuracy in representation is achieved by using
more bits to quantize the attributes that are more frequently
queried.

For illustration, Table II shows a simple multi-dimensional
histogram example. This histogram covers 3 attributes and uses 1
bit to quantize attributes 2 and 3, and 2 bits to quantize attribute
1, assuming it is queried more frequently than the other attributes.
In this example, for attributes 2 and 3 values from 1-5 quantize
to 0, and values from 6-10 quantize to 1. For attribute 1, values 1
and 2 quantize to 00, 3 and 4 quantize to 01, 5-7 quantize to 10,
and 8 and 9 quantize to 11. The .’s in the ’value’ column denote
attribute boundaries (i.e. attribute 1 has 2 bits assigned to it).



7

Note that we do not maintain any entries in the histogram
for bit representations that have no occurrences. So we can not
have more histogram entries than records and will not suffer
from exponentially increasing the number of potential multi-
dimensional histogram buckets for high-dimensional histograms.

Sample Dataset Histogram
A1 A2 A3 Encoding Value Count
2 5 5 0000 00.0.0 2
4 8 3 0110 00.0.1 1
1 4 3 0000 01.0.0 1
6 7 1 1010 01.1.0 1
3 2 2 0100 01.1.1 1
2 2 6 0001 10.1.0 2
5 6 5 1010 11.0.0 1
8 1 4 1100 11.0.1 1
3 8 7 0111
9 3 8 1101

TABLE II
HISTOGRAM EXAMPLE

2) Query Cost Calculation: Once generated, the abstract repre-
sentations of the query set Q and the multi-dimensional histogram
H are used to estimate the cost of answering each query using
all possible indexes for the query. For a given query-index pair,
we aggregate the number of matches we find in the multi-
dimensional histogram looking only at the attributes in the query
that also occur in the index (bits associated with other attributes
are considered to be don’t cares in the query matching logic).
To estimate the query cost, we then apply a cost function based
on the number of matches we obtain using the index and the
dimensionality of the index. At the end of this step, our abstract
query set representation has estimated costs for each index that
could improve the query cost. For each query in the query
set representation, we also keep a current cost field, which we
initialize to the cost of performing the query using sequential
scan. At this point, we also initialize an empty set of suggested
indexes S.

• Cost Function

A cost function is used to estimate the cost associated with
using a certain index for a query. The cost function can be varied
to accurately reflect a cost model for the database system. For
example, one could apply a cost function that amortized the cost
of loading an index over a certain number of queries or use a
function tailored to the type of index that is used. Many cost
functions have been proposed over the years. For an R-Tree,
which is the index type used for this work, the expected number
of data page accesses is estimated in [26] by:

Ann,mm,FBF =

(
d

√
1

Ceff
+ 1

)d

where d is the dimensionality of the dataset and Ceff is the
number of data objects per disk page. However, this formula
assumes the number of points N approaches to infinity and does
not consider the effects of high dimensionality or correlations.

A more recently proposed cost model is given in [27] where
the expected number of pages accesses is determined as:

Ar,em,ui(r) =

(
2r · d

√
N

Ceff
+ 1− 1

Ceff

)d

where r is the radius of the range query, d is the dataset
dimensionality, N is the number of data objects, and Ceff is
the capacity of a data page.

While these published cost estimates can be effective to esti-
mate the number of page accesses associated with using a multi-
dimensional index structure under certain conditions, they have
certain characteristics that make them less than ideal for the given
situation. Each of the cost estimate formulas require a range
radius. Therefore the formulas break down when assessing the
cost of a query that is an exact match query in one or more of
the query dimensions. These cost estimates also assume that data
distribution is independent between attributes, and that the data
is uniformly distributed throughout the data space.

In order to overcome these limitations, we apply a cost estimate
that is based on the actual matches that occur over the multi-
dimension histogram over the attributes that form a potential
index. The cost model for R-trees we use in this work is given
by

(d(d/2) ∗m)

where d is the dimensionality of the index and m is the number
of matches returned for query matching attributes in the multi-
dimensional histogram. Using actual matches eliminates the need
for a range radius. It also ties the cost estimate to the actual data
characteristics (i.e. incorporates both data correlation between
attributes and data distribution, while the published models will
produce results that are dependent only on the range radius for a
given index structure). The cost estimate provided is conservative
in that it will provide a result that is at least as great as the actual
number of matches in the database.

By evaluating the number of matches over the set of attributes
that match the query, the multi-dimensional subspace pruning
that can be achieved using different index possibilities is taken
into account. There is additional cost associated with higher
dimensionality indexes due to the greater number of overlaps of
the hyperspaces within the index structure, and additional cost of
traversing the higher dimension structure. A penalty is imposed on
a potential index by the dimensionality term. Given equal ability
to prune the space, a lower dimensional index will translate into
a lower cost.

The cost function could be more complicated in order to more
accurately model query costs. It could model query cost with
greater accuracy, for example by crediting complete attribute
coverage for coverage queries. It could also reflect the appropriate
index structures used in the database system, such as B+-trees.
We used this particular cost model because the index type was
appropriate for our data and query sets, and we assumed that we
would retrieve data from disk for all query matches.

3) Index Selection Loop: After initializing the index selection
data structures and updating estimated query costs for each
potentially useful index for a query, we use a greedy algorithm
that takes into account the indexes already selected to iteratively
select indexes that would be appropriate for the given query
workload and data set. For each index in the potential index set
P , we traverse the queries in query set Q that could be improved
by that index and accumulate the improvement associated with
using that index for that query. The improvement for a given
query-index pair is the difference between the cost for using the
index and the query’s current cost. If the index does not provide
any positive benefit for the query, no improvement is accumulated.
The potential index i that yields the highest improvement over the



8

query set Q is considered to be the best index. Index i is removed
from potential index set P and is added to suggested index set
S. For the queries that benefit from i, the current query cost is
replaced by the improved cost.

After each i is selected, a check is made to determine if the in-
dex selection loop should continue. The input indexing constraints
provides one of the loop stop criteria. The indexing constraint
could be any constraint such as the number of indexes, total index
size, or total number of dimensions indexed. If no potential index
yields further improvement, or the indexing constraints have been
met, then the loop exits. The set of suggested indexes S contains
the results of the index selection algorithm.

At the end of a loop iteration, when possible, we prune the
complexity of the abstract representations in order to make the
analysis more efficient. This includes actions such as eliminating
potential indexes that do not provide better cost estimates than
the current cost for any query and pruning from consideration
those queries whose best index is already a member of the set of
suggested indexes. The overall speed of this algorithm is coupled
with the number of potential indexes analyzed, so the analysis
time can be reduced by increasing the support or decreasing the
confidence.

Different strategies can be used in selecting a best index. The
strategy provided assumes a indexing constraint based on the
number of indexes and therefore uses the total benefit derived
from the index as the measure of index ‘goodness’. If the indexing
constraint is based on total index size, then benefit per index
size unit may be a more appropriate measure. However, this may
result in recommending a lower-dimensioned index and later in
the algorithm a higher-dimensioned index that always performs
better. The recommendation set can be pruned in order to avoid
recommending an index that is non-useful in the context of the
complete solution.

D. Proposed Solution for Online Index Selection

The online index selection is motivated by the fact that query
patterns can change over time. By monitoring the query workload
and detecting when there is a change on the query pattern that
generated the existing set of indexes, we are able to maintain good
performance as query patterns evolve. In our approach, we use
control feedback to monitor the performance of the current set
of indexes for incoming queries and determine when adjustments
should be made to the index set. In a typical control feedback
system, the output of a system is monitored and based on some
function involving the input and output, the input to the system
is readjusted through a control feedback loop. Our situation is
analogous but more complex than the typical electrical circuit
control feedback system in several ways:

1) Our system input is a set of indexes and a set of incoming
queries rather than a simple input, such as an electrical
signal.

2) The system output must be some parameter that we can
measure and use to make decisions about changing the
input. Query performance is the obvious parameter to
monitor. However, because lower query performance could
be related to other aspects rather than the index set, our
decision making control function must necessarily be more
complex than a basic control system.

3) We do not have a predictable function to relate system input
and output because of the non-determinism associated with

Fig. 2. Dynamic Index Analysis Framework

Symbol Description
I Current set of attribute sets used as indexes
Inew Hypothetical set of attribute sets used as indexes
w window size
W abstract representation of the last w queries
q the current query under analysis
P Current Potential Indexes, the set of attribute sets in consider-

ation to be indexes before q arrives
Pnew New Potential Indexes, the set of attribute sets in consideration

to be indexes after q arrives
iq the attribute set estimated to be the best index for query q

TABLE III
NOTATION LIST FOR ONLINE INDEX SELECTION

new incoming queries. For example, we may have a set
of attributes that appears in queries frequently enough that
our system indicates that it is beneficial to create an index
over those attributes, but there is no guarantee that those
attributes will ever be queried again.

Control feedback systems can fail to be effective with respect
to response time. The control system can be too slow to respond
to changes, or it can respond too quickly. If the system is too slow,
then it fails to cause the output to change based on input changes
in a timely manner. If it responds too quickly, then the output
overshoots the target and oscillates around the desired output
before reaching it. Both situations are undesirable and should be
designed out of the system.

Figure 2 represents our implementation of dynamic index
selection. Our system input is a set of indexes and a set of
incoming queries. Our system simulates and estimates costs for
the execution of incoming queries. System output is the ratio
of potential system performance to actual system performance in
terms of database page accesses to answer the most recent queries.
We implement two control feedback loops. One is for fine grain
control and is used to recommend minor, inexpensive changes to
the index set. The other loop is for coarse control and is used
to avoid very poor system performance by recommending major
index set changes. Each control feedback loop has decision logic
associated with it.

1) System Input: The system input is made up of new incoming
queries and the current set of indexes I, which is initialized to
be the suggested indexes S from the output of the initial index
selection algorithm. For clarity, a notation list for the online index
selection is included as Table III.

2) System: The system simulates query execution over a
number of incoming queries. The abstract representation of the
last w queries stored as W , where w is an adjustable window



9

size parameter. W is used to estimate performance of a hypo-
thetical set of indexes Inew against the current index set I. This
representation is similar to the one kept for query set Q in the
static index selection. In this case, when a new query q arrives,
we determine which of the current indexes in I most efficiently
answers this query and replace the oldest query in W with the
abstract representation of q. We also incrementally compute the
attribute sets that meet the input support and confidence over the
last w queries. This information is used in the control feedback
loop decision logic. The system also keeps track of the current
potential indexes P , and the current multi-dimensional histogram
H .

3) System Output: In order to monitor the performance of the
system, we compare the query performance using the current set
of indexes I to the performance using a hypothetical set of indexes
Inew. The query performance using I is the summation of the
costs of queries using the best index from I for the given query.
Consider the possible new indexes Pnew to be the set of attribute
sets that currently meet the input support and confidence over
the last w queries. The hypothetical cost is calculated differently
based on the comparison of P and Pnew, and the identified best
index iq from P or Pnew for the new incoming query:

1) P = Pnew and i is in I. In this case we bypass the
control loops since we could do no better for the system
by changing possible indexes.

2) P = Pnew and i is not in I. We recompute a new set
of suggested indexes Inew over the last w queries. The
hypothetical cost is the cost over the last w queries using
Inew.

3) P 6= Pnew and i is in I. In this case we bypass the
control loops since we could do no better for the system
by changing possible indexes.

4) P 6= Pnew and i is not in I. We traverse the last w queries
and determine those queries that could benefit from using
a new index from Pnew. We compute the hypothetical cost
of these queries to be the real number of matches from the
database. Hypothetical cost for other queries is the same as
the real cost.

The ratio of the hypothetical cost, which indicates potential
performance, to the actual performance is used in the control
loop decision logic.

4) Fine Grain Control Loop: The fine grain control loop is
used to recommend low cost, minor changes to index set. This
loop is entered in case 2 as described above when the ratio of
hypothetical performance to actual performance is below some
input minor change threshold. Then the indexes are changed to
Inew, and appropriate changes are made to update the system data
structures. Increasing the input minor change threshold causes the
frequency of minor changes to also increase.

5) Coarse Control Loop: The coarse control loop is used
to recommend more costly, but changes with greater impact
on future performance to the index set. This loop is entered
in case 4 as described above when the ratio of hypothetical
performance to actual performance is below some input major
change threshold. Then the static index selection is performed
over the last w queries, abstract representations are recomputed,
and a new set of suggested indexes Inew is generated. Appropriate
changes are made to update the system data structures to the new
situation. Increasing the input major change threshold increases
the frequency of major changes.

E. System Enhancements
In the following subsections, we present two system enhance-

ments that provide further robustness and scalability to the
framework.

1) Self Stabilization: Control feedback systems can be either
too slow or too responsive in reacting to input changes. In
our application, a system that is slow to respond results in
recommending useful indexes long after they first could have a
positive effect. It could also fail to recommend potentially useful
indexes if thresholds are set so that the system is insensitive to
change. A system that is too responsive can result in system
instability, where the system continuously adds and drops indexes.

The system performance and rate of index change can be
monitored and used in order to tune the control feedback system
itself. If the actual number of query results is much lower than the
estimated cost using the recommended index set over a window
of queries, this indicates a non-responsive system. When this
condition is detected, the system can be made more responsive
by cutting the window size. This increases the probability that
Pnew will be different from P , and we can reperform to analysis
applying a reduced support. This gives us a more complete P

with respect to answering a greater portion of queries.
If the frequency of index change is too high with little or no

improvement in query performance, an oversensitive system or
unstable query pattern is indicated. We can reduce the sensitivity
by increasing the window size or increasing the support level
during recomputation of new recommended indexes.

2) Partitioning the Algorithm: The system can also be applied
to environments where the database is partitioned horizontally
or vertically at different locations. A solution at one extreme
is to maintain a centralized index recommendation system. This
would maintain the abstract representation and collect global
query patterns over the entire system. Recommended indexes
would be determined based on global trends. This approach would
allow for the creation of indexes that maximize pruning over the
global set of dimensions. However, it would not optimize query
performance at the site level. A single set of indexes would be
recommended for the entire system.

At the other extreme would be to perform the index recommen-
dation at each site. In this case, a different abstract representation
would be built based on the data at each specific site given
requests to the data at that site. Indexes would be recommended
based on the query traffic to the data at that site. This allows tight
control of the indexes to reflect the data at each site. However,
index-based pruning based on attributes and data at multiple
locations would not be possible. This approach also requires
traffic to each site that contains potentially matching data.

A hybrid approach can provide the benefits of index rec-
ommendation based on global data and query patterns while
optimizing the index set at different requesting locations. A global
set of indexes can be centrally recommended based on a global
abstract representation of the data set with low support thresholds
(the centralized location will store a larger set of globally good
indexes). The query patterns emanating from each site can be
mined in order to find which of those global indexes would be
appropriate to maintain at the local site, eliminating some traffic.

IV. EMPIRICAL ANALYSIS

A. Experimental Setup

Data Sets



10

Several data sets were used during the performance of ex-
periments. The variation in data sets is intended to show the
applicability of our algorithm to a wide range of data sets and to
measure the effect that data correlation has on results. Data sets
used include:

• random - a set of 100,000 records consisting of 100 dimen-
sions of uniformly distributed integers between 0 and 999.
The data is not correlated.

• stocks - a set of 6500 records consisting of 360 dimensions of
daily stock market prices. This data is extremely correlated.

• mlb - a set of 33619 records of major league pitching
statistics from between the years of 1900 and 2004 consisting
of 29 dimensions of data. Some dimensions are correlated
with each other, while others are not at all correlated.

Analysis Parameters

The effect of varying several analysis input parameters in-
cluding support, multi-dimensional histogram size, and online
indexing control feedback decision thresholds was analyzed.
Unless otherwise specified, the confidence parameter for the
experiments is 1.0.

Query Workloads

It is desirable to explore the general behavior of database in-
teractions without inadvertently capturing the coupling associated
with using a specific query history on the same database. There-
fore, query workload files were generated by merging synthetic
query histories and query histories from real-world applications
with different data sets. Histories and data were merged by taking
a random record from a data set and the numerical identifier of
the attributes involved in the synthetic or historical query in order
to generate a point query. So, if a historical query involved the 3rd
and 5th attribute, and the nth record was randomly selected from
the data set, a SELECT type query is generated from the data set
where the 3rd attribute is equal to the value of the 3rd attribute
of the nth record and the 5th attribute is equal to the value of
5th attribute of the nth record. This gives a query workload
that reflects the attribute correlations within queries, and has a
variable query selectivity. Unless otherwise stated each query in
experiments is a point query with respect to the attributes covered
by the query. Attributes that are not covered by the query can be
any value and still match the query.

These query histories form the basis for generating the query
workloads used in our experiments:

1) synthetic - 500 randomly generated queries. The distribution
of the queries over the first 200 queries is 20% involve
attributes {1,2,3,4} together, 20% {5,6,7}, 20%, {8,9}, and
the remaining queries involve between 1 and 5 attributes
that could be any attribute. Over the last 300 queries, the
distribution shifts to 20% covering attributes {11,12,13,14},
20% {15,16,17}, 20% {18,19}, and the remaining 40% are
between 1 to 5 attributes that could be any attribute.

2) clinical - 659 queries executed from a clinical application.
The query distribution file has 64 distinct attributes.

3) hr - 35,860 queries executed from a human resources
application. The query distribution file has 54 attributes.
Due to the size of this query set, some initial portion of the
queries are used for some experiments.

B. Experimental Results

1) Index Selection with Relaxed Constraints: Figure 3 shows
how accurately the proposed static index selection technique can
perform with relaxed analysis constraints. For this scenario, a
low support value, 0.01, is used. There are no constraints placed
on the number of selected indexes and 256 bits are used for the
multi-dimension histogram. Figure 3 shows the cost of performing
a sequential scan over 100 queries using the indicated data
sets, the estimated cost of using recommended indexes, and the
true number of answers for the set of queries. For comparative
purposes, costs for indexes proposed by AutoAdmin and a naive
algorithm are also provided. The naive algorithm uses indexes for
the first n most frequent itemsets in the query patterns, where n is
the number of indexes suggested by the proposed algorithm. Note
that the cost for sequential scan is discounted to account for the
fact that sequential access is significantly cheaper than random
access. A factor of 10 is applied as the ratio of random access
cost to sequential access cost. While the actual ratio of a given
environment is variable, regardless of any reasonable factor used,
the graph will show the cost of using our indexes much closer
to the ideal number of page accesses than the cost of sequential
scan.

Table IV compares the proposed index selection algorithm
with relaxed constraints against SQL Server’s index selection
tool, AutoAdmin [16], using the data sets and query workloads
indicated.

Data Set/ Analysis % Queries Number of
Workload Tool Time(s) Improved Indexes
stock/ AutoAdmin 450 100 23
clinical Proposed 110 100 18
stock/ AutoAdmin 338 100 20
hr Proposed 160 100 16
mlb/ AutoAdmin 15 0 0
clinical Proposed 522 87 16

TABLE IV
COMPARISON OF PROPOSED INDEX SELECTION ALGORITHM WITH

AUTOADMIN IN TERMS OF ANALYSIS TIME AND % QUERIES IMPROVED

For the stock dataset using both the clinical and hr workloads,
both algorithms suggest indexes which will improve all of the
queries. Since the selectivity of these queries is low (the queries
return a low number of matches using any index that contains a
queried attribute), the amount of the query improvement will be
very similar using either recommended index set. The proposed
algorithm executes in less time and generates indexes which
are more representative of the query patterns in the workload
and allow for greater subspace pruning. For example, the most
common query in the clinical workload is to query over both
attributes 11 and 44 together. SQL Server’s index recommenda-
tions are all single-dimension indexes for all attributes that appear
in the workload. However, our first index recommendation is a
2-dimension index built over attributes 11 and 44.

For the mlb dataset, SQL Server quickly recommended no
indexes. Our index selection takes longer in this instance, but finds
indexes that improve 87 % of the queries. These are all the queries
that have selectivities low enough that an index can be beneficial.
It should be noted that the indexes selected by AutoAdmin are
appropriate based on the cost models for the underlying index
structure used in SQL Server. Since the underlying index type for
SQL Server is B+-trees, which do not index multiple dimensions



11

Fig. 3. Costs in Data Object Accesses for Ideal, Sequential Scan, AutoAdmin, Naive, and the Proposed Index Selection Technique using Relaxed Constraints

Support Query/Index Pairs Total Improvement
Confidence 100 50 0 100 50 0

2 229 229 90 57710 57710 57603
4 198 198 85 55018 55018 55001
6 185 185 73 46924 46924 46907
8 178 178 66 42533 42533 42516

10 170 170 58 37527 37527 37510

TABLE V
COMPARISON OF ANALYSIS COMPLEXITY AND QUERY PERFORMANCE AS

support AND confidence VARY, STOCK DATASET, CLINICAL WORKLOAD

concurrently, the single dimension indexes that are recommended
are the least costly possible indexes to use for the query set. For
this particular experiment, a single dimensional index is not able
to prune the subspace enough to make the application of that
index worthwhile compared to sequential scan.

2) Effect of Support and Confidence: Table V presents results
on analysis complexity and expected query improvement as
support and confidence are varied. The results are shown for
the stock data set over the clinical query workload. Results show
the total number of query-index pairs analyzed over the query set
in the index selection loop and the total estimated improvement
in query performance in terms of data objects accessed over the
query set as the index selection parameters vary. As confidence

decreases, we maintain fewer potential indexes in P and need
to analyze fewer attribute sets per index. This decreases analysis
time but shows very little effect on overall performance.

Using a confidence level of 0% is equivalent to using the
maximal itemsets of attributes that meet support criteria as
recommended indexes. For this example, the strategy yields nearly
identical estimated cost although only 34-44% of the query/index
pairs need to be evaluated.

3) Baseline Online Indexing Results: A number of experiments
were performed to demonstrate the effectiveness and character-
istics of the adaptive system. In each of the experiments that
show the performance of the adaptive system over a sequence
of queries, an initial set of indexes is recommended based on
the first 100 queries given the stated analysis parameters. New
queries are evaluated, and depending on the parameters of the
adaptive system, changes are made to index set. These index set
changes are considered to take place before the next query. The
estimated cost of the last 100 queries given the indexes available
at the time of the query are accumulated and presented. This
demonstrates the evolving suitability of the current index set to

Fig. 4. Baseline Comparative Cost of Adaptive versus Static Indexing,
random Dataset, synthetic Query Workload

incoming queries.
Figures 4 through 6 show a baseline comparison between

using the query pattern change detection and modifying the
indexes and making no change to the initial index set. A number
of data set and query history combinations are examined. The
baseline parameters used are 5% support, 128 bits for each multi-
dimension histogram entry, a window size of 100, an indexing
constraint of 10 indexes, a major change threshold of 0.9 and a
minor change threshold of 0.95.

Figure 4 shows the comparison for the random data set us-
ing the synthetic query workload. At query 200, this workload
drastically changes, and this is evident in the query cost for the
static system. The performance gets much worse and does not get
better for the static system. For the online system, the performance
degrades a little when the query patterns are changing and then
improve again once the indexes have changed to match the new
query patterns.

The synthetic query workload was generated specifically to
show the effect of a changing query pattern. Figure 5 shows a
comparison of performance for the random data set using the
clinical query workload. This real query workload also changes
substantially before reverting back to query patterns similar to
those on which the static index selection was performed. Per-
formance for the static system degrades substantially when the
patterns change until the point that they change back. The adaptive



12

Fig. 5. Baseline Comparative Cost of Adaptive versus Static Indexing,
random Dataset, clinical Query Workload

Fig. 6. Baseline Comparative Cost of Adaptive versus Static Indexing, stock
Dataset, hr Query Workload

system is better able to absorb the change.
Figure 6 shows the comparison for the stock data set using the

first 2000 queries of the hr query workload. The adaptive system
shows consistently lower cost than the static system and in places
significantly lower cost for this real query workload.

The effect of range queries was also explored. The random
data set was examined using the synthetic workload using ranges
instead of points. As the ranges for a given attribute increased
from a point value to 30% selectivity, the cost saved for top 3
proposed indexes (which were the index sets [1,2,3,4], [5,6,7], and
[8,9] for all ranges), the overall cost saved decreased. This is due
to the increase in the size of the answer set. When the range for
each attribute reached 30%, no index was recommended because
the result set became large enough that sequential scan was a
more effective solution.

4) Online Index Selection versus Parametric Changes: Chang-
ing online index selection parameters changes the adaptive index
selection in the following ways:

Support - decreasing the support level has the effect of
increasing the potential number of times the index set will be
recalculated. It also makes the recalculation of the recommended
indexes themselves more costly and less appropriate for an online

Fig. 7. Comparative Cost of Online Indexing as Support Changes, random
Dataset, synthetic Query Workload

Fig. 8. Comparative Cost of Online Indexing as Support Changes, stock
Dataset, hr Query Workload

setting. Figure 7 shows the effect of changing support on the
online indexing results for the random data set and synthetic
query workload, while Figure 8 shows the effect on the stock
data set using the first 600 queries of hr query workload. These
graphs were generated using the baseline parameters and varying
support levels. As expected, lower support levels translate to lower
initial costs because more of the initial query set are covered by
some beneficial index. For the synthetic query workload, when the
patterns changed, but do not change again (e.g. queries 100-200
in Figure 7), lower support levels translated to better performance.
However, for the hr query workload, the 10% support threshold
yields better performance than the 6% and 8% thresholds for some
query windows. The frequent itemsets change more frequently for
lower support levels, and these changes dictate when decisions
occur. These runs made decisions at points that turned out to
be poor decisions, such as eliminating an index that ended
up being valuable. Little improvement in cost performance is
achieved between 4% support and 2% support. Over-sensitive
control feedback can degrade actual performance, independent
of the extra overhead that oversensitive control causes.

Online Indexing Control Feedback Decision

Thresholds - increasing the thresholds decreases the response



13

Fig. 9. Comparative Cost of Online Indexing as Major Change Threshold
Changes, random Dataset, synthetic Query Workload

Fig. 10. Comparative Cost of Online Indexing as Major Change Threshold
Changes, stock Dataset, hr Query Workload

time of affecting change when query pattern change does occur.
It also has the effect of increasing the number of times the costly
reanalysis occurs. In a real system, one would need to balance
the cost of continued poor performance against the cost of
making an index set change. Figure 9 shows the effect of varying
the major change threshold in the coarse control loop for the
random data set and synthetic query workload. Figure 10 shows
the effect of changing the major change threshold for the stock
data set and hr query workload. These graphs were generated
using the baseline parameters (except that the random graph uses
a support of 10%), and only varying the major change threshold
in the coarse control loop. The major change threshold is varied
between 0 and 1. Here, a value of 0 translates to never making
a change, and a value of 1 means making a change whenever
improvement is possible. The graphs show no real benefit once
the major change threshold increases (and therefore frequency
of major changes) beyond 0.6. Figure 9 shows that a value of 1
or 0.9 are best in terms of response time when a change occurs,
but a value of 0.3 shows the best performance once the query
patterns have stabilized. This indicates that this value should be
carefully tuned based on the expected frequency of query pattern
changes.

Fig. 11. Comparative Cost of Online Indexing as Multi-Dimensional
Histogram Size Changes, random Dataset, synthetic Query Workload

Multi− dimensional Histogram Size - increasing the
number of bits used to represent a bucket in the multi-dimensional
histogram improves analysis accuracy at the cost of histogram
generation time and space. Experiments demonstrated that if
the representation quality of the histogram was sufficient, very
little benefit was achieved through greater resolution. Figure 11
shows an example of the effect of varying the multi-dimensional
histogram size. Using a 32 bit size for each unique histogram
bucket yields higher costs than by using greater histogram res-
olution. One reason for this is that artificially higher costs are
calculated because of the lower histogram resolution. As well,
some beneficial index changes are not recommended because of
these overly conservative cost estimates.

V. CONCLUSIONS

A flexible technique for index selection is introduced that can
be tuned to achieve different levels of constraints and analysis
complexity. A low constraint, more complex analysis can lead
to more accurate index selection over stable query patterns. A
more constrained, less complex analysis is more appropriate to
adapt index selection to account for evolving query patterns. The
technique uses a generated multi-dimension histogram to estimate
cost, and as a result is not coupled to the idiosyncrasies of a query
optimizer, which may not be able to take advantage of knowledge
about correlations between attributes. Indexes are recommended
in order to take advantage of multi-dimensional subspace pruning
when it is beneficial to do so.

These experiments have shown great opportunity for improved
performance using adaptive indexing over real query patterns. A
control feedback technique is introduced for measuring perfor-
mance and indicating when the database system could benefit
from an index change. By changing the threshold parameters
in the control feedback loop, the system can be tuned to favor
analysis time or pattern change recognition. The foundation
provided here will be used to explore this tradeoff and to develop
an improved utility for real-world applications. The proposed
technique affords the opportunity to adjust indexes to new query
patterns. A limitation of the proposed approach is that if index
set changes are not responsive enough to query pattern changes
then the control feedback may not affect positive system changes.
However, this can be addressed by adjusting control sensitivity or



14

by changing control sensitivity over time as more knowledge is
gathered about the query patterns.

From initial experimental results, it seems that the best appli-
cation for this approach is to apply the more time consuming
no-constraint analysis in order to determine an initial index set
and then apply a lightweight and low control sensitivity analysis
for the online query pattern change detection in order to avoid or
make the user aware of situations where the index set is not at
all effective for the new incoming queries.

In this paper, the frequency of index set change has been
affected through the use of the online indexing control feed-
back thresholds. Alternatively, the frequency of performance
monitoring could be adjusted to achieve similar results and to
appropriately tune the sensitivity of the system. This monitoring
frequency could be in terms of either a number of incoming
queries or elapsed time.

The proposed online change detection system utilized two con-
trol feedback loops in order to differentiate between inexpensive
and more time consuming system changes. In practice, the fine
grain control threshold was not triggered unless we contrived a
situation such that it would be triggered. The kinds of low cost
changes that this threshold would trigger are not the kinds of
changes that make enough impact to be that much better than the
existing index set. This would change if the indexing constraints
were very low, and one potential index is now more valuable than
a suggested index.

Index creation is quite time-consuming. It is not feasible to
perform real-time analysis of incoming queries and generate new
indexes when the patterns change. Potential indexes could be
generated prior to receiving new queries, and when indicated
by online analysis, moved to active status. This could mean
moving an index from local storage to main memory, or from
remote storage to local storage depending on the size of the
index. Additionally, the analysis could prompt a server to create a
potential index as the analysis becomes aware that such an index
is useful, and once it is created, it could be called on by the local
machine.

ACKNOWLEDGMENT

We would like to thank the anonymous TKDE reviewers for
their many insightful and helpful comments. This research is
partially supported by US National Science Foundation grants
III-054713, CNS-0403342, and OCI-0619041.

REFERENCES

[1] R. Bellman, Adaptive Control Processes: A Guided Tour. Princeton
University Press, 1961.

[2] R. Weber, H.-J. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces,” in Proceedings of the 24th International Conference on Very
Large Databases, 1998, pp. 194–205.

[3] S. Ponce, P. M. Vila, and R. Hersch, “Indexing and selection of data
items in huge data sets by constructing and accessing tag collections,”
in Proceedings of the 19th IEEE Symposium on Mass Storage Systems
and Tenth Goddard Conf. on Mass Storage Systems and Technologies,
2002.

[4] A. Shoshani, L. Bernardo, H. Nordberg, D. Rotem, and A. Sim,
“Multi-dimensional indexing and query coordination for tertiary storage
management,” in Proceedings of the 11th International Conference on
Scientific and Statistical Data(SSDBM), 1999.

[5] S. Berchtold, D. Keim, and H. Kriegel, “The x-tree: An index structure
for high-dimensional data,” in Proceedings of the International Confer-
ence on Very Large Data Bases, 1996, pp. 28–39.

[6] C.-W. C. Guang-Ho Cha, “The gc-tree: a high-dimensional index struc-
ture for similarity search in image databases,” IEEE Transactions on
MultiMedia, vol. 4, no. 2, pp. 235–247, Jun. 2002.

[7] A. Blum and P. Langley, “Selection of relevant features and examples
in machine learning,” AI, 1997.

[8] R. Kohavi and G. John, “Wrappers for feature subset selection,” AI,
1997.

[9] I. Guyon and A. Elissef, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, 2003.

[10] M. Ip, L. Saxton, and V. Raghavan, “On the selection of an optimal set
of indexes.” IEEE Transactions on Software Engineering, 1983.

[11] K. Whang, “Index selection in relational databases,” in International
Conference on Foundations on Data Organization (FODO), Kyoto,
Japan, 1985.

[12] E. Barucci, R. Pinzani, and R. Sprugnoli, “Optimal selection of sec-
ondary indexes.” IEEE Transactions on Software Engineering, 1990.

[13] M. Frank, E. Omiecinski, and S. Navathe, “Adaptive and automated
index selection in rdbms,” in International Conference on Extending
Database Technologhy (EDBT), Vienna, Austria, 1992.

[14] S. Choenni, H. Blanken, and T. Chang, “On the selection of secondary
indexes in relational databases.” Data and Knowledge Engineering,
1993.

[15] A. Capara, M. Fischetti, and D. Maio, “Exact and approximate algo-
rithms for the index selection problem in physical database design.”
IEEE Transactions on Knowledge and Data Engineering, 1995.

[16] S. Chaudhuri and V. Narasayya, “Autoadmin ’what-if’ index analysis
utility,” in Proceedings ACM SIG-MOD Conference, 1998, pp. 367–378.

[17] S. Chaudhuri and V. R. Narasayya, “An efficient cost-
driven index selection tool for microsoft SQL server,” in
The VLDB Journal, 1997, pp. 146–155. [Online]. Available:
citeseer.ist.psu.edu/chaudhuri97efficient.html

[18] S. Agrawal, S. Chaudhuri, L. Kollár, A. P. Marathe, V. R. Narasayya, and
M. Syamala, “Database tuning advisor for microsoft sql server 2005.”
in VLDB, 2004, pp. 1110–1121.

[19] A. Dogac, A. Y. Erisik, and A. Ikinci, “An automated index selection tool
for oracle7: Maestro 7.” TUBITAK Software Research and Development
Center, Technical Report LBNL/PUB-3161, 1994.

[20] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skelley, “Db2
advisor: An optimizer smart enough to recommend its own indexes,” in
Proceedings International Conference Data Engineering, 2000.

[21] S. Kai-Uwe, E. Schallehn, and I. Geist, “Autonomous query-driven
index tuning,” in International Database Engineering & Applications
Symposium, Coimbra, Portugal, 2004.

[22] R. L. D. C. Costa and S. Lifschitz, “Index self-tuning with agent-
based databases,” in XXVIII Latin-American Conference on Informatics
(CLIE), Montevideo, Uruguay, 2002.

[23] N. Bruno and S. Chaudhuri, “To tune or not to tune? a lightweight
physical design alerter.” in VLDB, 2006, pp. 499–510.

[24] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” in 2000 ACM SIGMOD Intl. Conference
on Management of Data, W. Chen, J. Naughton, and P. A.
Bernstein, Eds. ACM Press, 05 2000, pp. 1–12. [Online]. Available:
citeseer.ist.psu.edu/han99mining.html

[25] J. Pei, J. Han, and R. Mao, “CLOSET: An efficient algorithm for
mining frequent closed itemsets,” in ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, 2000, pp.
21–30. [Online]. Available: citeseer.ist.psu.edu/pei00closet.html

[26] C. Faloutsos, T. Sellis, and N. Roussopoulos, “Analysis of object
oriented spatial access methods,” in SIGMOD ’87: Proceedings of the
1987 ACM SIGMOD international conference on Management of data.
New York, NY, USA: ACM Press, 1987, pp. 426–439.

[27] C. Bohm, “A cost model for query processing in high dimensional data
spaces,” ACM Trans. Database Syst., vol. 25, no. 2, pp. 129–178, 2000.



15

Michael Gibas is a PhD candidate in the Depart-
ment of Computer Science and Engineering at The
Ohio State University. He currently works in the
Database Research Group and his research interest
is efficient access to large and high-dimensional data
sets. His projects include indexing data based on
access patterns, developing techniques to efficiently
handle optimization queries, and providing database
support for scientific research projects.

Guadalupe Canahuate is a PhD Candidate at The
Ohio State University. She received her MS degree
in 2003 in Computer Science and Engineering from
The Ohio State University and currently works in
the Database Research Group supporting scientific
applications and enhancing bitmap indexes. Her re-
search interests are in the area of high dimensional
data management and indexing.

Hakan Ferhatosmanoglu is an associate professor
of computer science and engineering at The Ohio
State University. He received the PhD degree in
2001 from the Computer Science Department at the
University of California, Santa Barbara, and worked
as an intern at AT & T Research Labs. His research
interest is developing data management systems for
multimedia, scientific, and biomedical applications.
He leads projects on microarray and clinical trial
databases, online compression and analysis of mul-
tiple data streams, and high-performance databases

for multidimensional data repositories. Dr. Ferhatosmanoglu is a recipient
of the Early Career Principal Investigator award from the US Department of
Energy and the Early Career award (CAREER) from the US National Science
Foundation (NSF).


