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Abstract—Most frequent and expensive queries in social networks involve multi-user operations such as requesting the latest tweets

or news-feeds of friends. The performance of such queries are heavily dependent on the data partitioning and replication

methodologies adopted by the underlying systems. Existing solutions for data distribution in these systems involve hash- or

graph-based approaches that ignore the multi-way relations among data. In this work, we propose a novel data partitioning and

selective replication method that utilizes the temporal information in prior workloads to predict future query patterns. Our method

utilizes the social network structure and the temporality of the interactions among its users to construct a hypergraph that correctly

models multi-user operations. It then performs simultaneous partitioning and replication of this hypergraph to reduce the query span

while respecting load balance and I/O load constraints under replication. To test our model, we enhance the Cassandra NoSQL system

to support selective replication and we implement a social network application (a Twitter clone) utilizing our enhanced Cassandra. We

conduct experiments on a cloud computing environment (Amazon EC2) to test the developed systems. Comparison of the proposed

method with hash- and enhanced graph-based schemes indicate that it significantly improves latency and throughput.

Index Terms—Cassandra, social network partitioning, selective replication, replicated hypergraph partitioning, twitter, NoSQL
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1 INTRODUCTION

SOCIAL networks have fast-growing, ever-changing
dynamic structures and strict availability requirements.

These challenges are partially handled by emerging solu-
tions such as NoSQL (Not Only SQL) systems [1], which use
data partitioning and replication to achieve scalability and
availability. In these systems, the general approach is to use
hash-based partitioning and random replication of data.
This approach ignores the relations among the data and
often leads to redundant replications and significant com-
munication overheads during query processing, which in
turn leads to performance degradation [2], [3], [4], [5].

Recently, a number of approaches based on modeling
the social network structure and user interactions have
been proposed [4], [6], [7] to alleviate the shortcomings of
hash-based partitioning and random replication schemes.
These approaches try to capture the interactions between
social network users via two-way relations, e.g., edges in
graphs. On the other hand, most common social network
operations such as propagating a user’s tweets to all of his
followers, requesting the latest tweets of followed users,
collecting the latest news-feeds of Facebook friends, or
sharing/commenting/liking a news-feed are all expand-/
gather-like operations that require multi-casting/gather-
ing of data to/from multiple users in a single operation.
These popular social network operations generally tend
to be more expensive than operations that only involve
bilateral interactions. In this study, we claim and show

that hypergraphs are more suitable for modeling these
multi-user operations, since they can inherently model
multi-way interactions via hyperedges. We also show that
performing partitioning and replication in a single phase
enables more accurate cost prediction and better load
balancing.

There are a number of problems with graph-partition-
ing-based models and we adress these problems using our
replicated hypergraph partitioning (RHP) model. We first
present a simple example in Fig. 1 to illustrate why hyper-
graphs are more suitable for capturing multi-user opera-
tions. In this example, user ui tweets and this tweet is
propagated to his followers. This can be done by commu-
nicating the tweet data to servers S1, S2, and S3. The graph
representation of this operation in Fig. 1a observes a cut of
six, wrongly assuming that ui’s tweet has to be sent to S2

and S3 three times each, where only a single message suffi-
ces for each server. As shown in Fig. 1b, hypergraph model
captures this operation’s cost via a net with a connectivity
of three, correctly modeling the number of activated serv-
ers (or the span).

More importantly, graph model cannot accurately model
the effect of replication on the span of multi-user operations.
For example, in Fig. 1, replicating up from S3 to S1 does not
reduce the span of the query, but it removes an edge in the
graph model, wrongly giving an impression of improve-
ment. To alleviate this deficiency, one-hop replication
schemes are proposed [2], [3]. In these schemes, by replicat-
ing all boundary vertices, the span of all queries are reduced
to one, but in turn, overheads associated with write opera-
tions increase severely.

It is not vital to enforce the span of all queries to one.
Solutions that benefit from reasonable span reductions
with low update overheads can provide better system per-
formance. Such solutions can be obtained by performing
partitioning and replication decisions at the same time in

� A. Turk is with Yahoo Labs, Barcelona. E-mail: ata@yahoo-inc.com.
� R.O. Selvitopi, H. Ferhatosmanoglu, and C. Aykanat are with Bilkent Uni-

versity. E-mail: {reha, hakan, aykanat}@cs.bilkent.edu.tr.

Manuscript received 17 Apr. 2013; revised 28 Nov. 2013; accepted 10 Jan.
2014. Date of publication 22 Jan. 2014; date of current version 26 Sept. 2014.
Recommended for acceptance by Y. Tao.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2014.2302291

2832 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2014

1041-4347 � 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



harmony. In fact, studies like [7] try to achieve this by
augmenting graph models. However, the deficiency of
graph models in representing multi-way relations hinders
their effectiveness in exploring replication solutions as
well. For example, in Fig. 1, replicating up; uq; ur from S3

to S2 does reduce the span of the query by one and hyper-
graph model can correctly observe this reduction,
whereas, the graph model cannot foresee to perform such
a replication, since it is not aware of the relation between
S2 and S3 due to this query. If partitioning and replication
are performed in separate phases, load balancing efforts
made during partitioning can be futile, since based on
replica selection decisions, certain servers can be highly
loaded. To alleviate such problems, we consider a close-
to-optimal query scheduling algorithm while performing
replicated partitioning, and hence observe true balancing
and cost estimations at the end of our replicated partition-
ing scheme.

Query processing performance of social networks has a
direct influence on their success. In our empirical analysis,
we observe that (i) server load imbalance, (ii) the total
number of I/O operations (read and write operations), and
(iii) the number of servers processing a query (query span),
have direct correlation with the performance of the system.
Thus, we focus on these metrics for possible improvements
in query performance.

In this work, we propose a selective partitioning and
replication method for data distribution in social networks
by utilizing the workload and time information. Our
method uses a novel hypergraph model (called the tempo-
ral activity hypergraph model) to represent the social net-
work structure and interactions among its users. This
model values the time of interactions between users and
predicts the interactions that are likely to occur in the
near future. We show that simultaneous partitioning and
replication (replicated partitioning) of this hypergraph
model can accurately capture the objective of reducing the
span of multi-user queries, subject to load balance and
replication constraints. After performing a replicated par-
titioning of this hypergraph model, we decode the
obtained result as a data-to-server mapping. This scheme
greatly reduces the average query span while balancing
the server loads. It also limits the amount of increase in I/
O load due to replications by respecting to a user-pro-
vided threshold on the replication amount and by per-
forming selective replication.

To test the proposed data distribution method, we first
introduced selective replication capabilities to Cassandra
NoSQL system [8]. Then we implemented a Twitter clone
via adapting the Twissandra project [9] to make use of this
enhanced system. We tested our Twitter clone on Amazon
EC2 cluster under social network loads derived from actual
Twitter data (including connections and interactions over
time) to show the benefits of the proposed data distribution
method. Even though we validate our approach on a Twit-
ter-like system, the proposed method is applicable to other
social network applications that frequently utilize multi-
user operations.

The rest of the paper is organized as follows. Section 2
presents a background on technologies used in social net-
works and replicated hypergraph partitioning. Motivating
insights and problem definition are presented in Section 3.
Section 4 presents and discusses the proposed temporal
activity hypergraph model. Replicated partitioning of the
proposed hypergraph model is discussed in Section 5. In
Section 6, we compare the proposed approach against the
state-of-the-art approaches. Section 7 covers related studies.
Finally we conclude in Section 8.

2 BACKGROUND AND SYSTEM ARCHITECTURE

2.1 Partitioning and Replication in NoSQL Systems

Most NoSQL systems use either hash-based or range-based
(or a blend of the two) partitioning schemes. In range-based
partitioning, the keyspace is divided into ranges and each
range is assigned to a server and potentially replicated to
others. The main advantage of range-partitioning is that
two consecutive keys are likely to appear in the same parti-
tion, which is beneficial when range scan type queries are
frequent. Range-based partitioning schemes generally
maintain a map that stores information about which servers
are responsible for which key ranges. Hash-based partition-
ing simply uses the hash of data to determine the responsi-
ble server for storing that data. Consistent hash rings are a
blend of range- and hash-based partitioning schemes and
many NoSQL systems such as Cassandra [8], Dynamo [10],
Voldemort [11], and Riak [12] adopt this scheme.

2.1.1 Partitioning and Replication in Cassandra

Servers in a Cassandra cluster can be considered to be
located around a ring and the data stored is distributed
according to this ring analogy. The ring is divided into
ranges and each server is responsible for one or more
ranges. When a new server joins Cassandra, it is assigned a
new token, which determines its position on the ring and
the range of data it is responsible for. Column family (cf)
data is partitioned across servers based on the row key
(horizontal partitioning). Each server is responsible for the
region of the ring between itself and its predecessor in
token order.

There are two basic partitioning strategies employed in
Cassandra: Random Partitioning, which partitions the data
using the MD5 hash of each row key, and Ordered Partition-
ing, which stores the row keys in sorted order across serv-
ers. Once a Cassandra cluster is initialized with a
partitioning strategy, this strategy cannot be changed with-
out reloading all the data to the system. When a data is

Fig. 1. User ui’s tweet is propogated to his followers. (a) Graph model
and (b) Hypergraph model for this operation.
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inserted and assigned a row key, a copy of this data is repli-
cated for a fixed number of times (replication factor) across
servers based on the preferred replication strategy. Default
replication strategy in Cassandra is RackUnawareStrategy,
which places the original data on the server determined by
the partitioner. Additional replicas are placed on the follow-
ing servers in the ring with respect to token order.

2.1.2 Writes, Reads, and Consistency in Cassandra

Cassandra is designed for providing fast and available
writes. A write is first inserted into a commit log for durabil-
ity, then to an in-memory table structure called memtable,
and then it is acknowledged as successful. Periodically, the
writes collected in the memory are dumped to the disk in a
format called SSTable (sorted string table). SSTables are
immutable and thus different columns of the same row can
be stored in different SSTables. Due to this fast write mecha-
nism, reads in Cassandra are costlier. When a read for a row
is issued to Cassandra, the row must be collected from the
unflushed memtables and the SSTables containing the col-
umns of the requested row. In background, Cassandra peri-
odically merges SSTables to form larger SSTables. During
this merge process, row fragments are collected together
and deleted columns are removed.

In a distributed system with replicas, consistency issues
arise in realizing write and read operations. Cassandra is
eventually consistent, i.e., in sufficient time, all writes are
applied to all replicas making all replicas eventually con-
sistent. The write consistency level specifies the number of
replicas a write must succeed before returning an acknowl-
edgement. Similarly, the read consistency level specifies
the minimum number of replicas for which the result of
the read must be agreed upon before generating a
response. Write/read consistency levels can be determined
according to the sensitivity of the used application to read-
ing stale data and its need for fast query processing.

2.1.3 Twitter on Cassandra

To test our proposed method and enhanced Cassandra
system on a real-world application, we modified Twissan-
dra [9], a project that provides a fully-working Twitter
clone. In Twissandra, the data is stored in Cassandra and
in terms of data partitioning and replication decisions,
scaling Twissandra carries most fundamental problems
observed in scaling Twitter. Twissandra data model con-
sists of six column families: USER: Stores user informa-
tion; key for each row is username and columns contain
user details such as passwords, gender, phone, email, etc.
FRIENDS: Stores the users that are followed by a user
(friends); key for each row is the username and columns
are the usernames of the friends, which are the users fol-
lowed by the user in the row key. FOLLOWERS: Stores the
followers of a user; key for each row is the username and
columns are the usernames of the users that follow the
user in the row key. TWEET: Stores the tweets; key for
each row is a unique tweet ID and columns are the tweet
body and the username of the tweeting user. TIMELINE:
Stores the tweets of a user’s friends; key for each row is
the username, column names are time stamps, and col-
umn values are tweet IDs. USERLINE: Stores all the IDs of

a given user’s tweets; key for each row is the username,
column names are time stamps and column values are
tweet IDs.

Using this data model, it is possible to implement most of
the existing functionalities in Twitter. We mainly investigate
the operations performed when a user tweets (which is
propagated to his followers), and when a user checks his
homepage for the latest tweets of his friends (here, a
“friend” is somebody that a user follows). These are multi-
user operations. The former operation is a multi-write
request (also referred as a write request) and requires
(i) insertion of a tweet to the TWEET cf, (ii) addition of the
unique tweet ID into the USERLINE cf of the tweeting user,
and (iii) addition of the unique tweet ID into the TIMELINE
column families of the followers of the tweeting user. The
latter operation is a multi-read request (also referred as a
read request) and requires (i) a lookup for the latest tweet
IDs in a user’s respective row at the TIMELINE cf and then
(ii) the retrieval of the tweets for those tweet IDs from the
TWEET cf. We choose to model these operations since they
are representative of the most frequent multi-user opera-
tions in social networks [13]. Note that a read request and a
write request consist of a set of individual read and write
operations, respectively.

Our Cassandra-based Twitter-clone is designed such
that, both multi-reads and multi-writes require multi-way
interactions. This is because, in our data model we
assume that actual tweet data is only stored in the servers
where the tweeting user is stored, and it is not replicated
in follower TIMELINEs. There can be other application
implementations which choose to do only “pushes” (by
storing the actual tweet data instead of the tweet id on all
followers’ TIMELINEs) or only “pulls” (by not storing
tweet id’s at all on followers’ TIMELINEs, which would
necessitate a sorting and selection for finding recent
tweets). We opted to use a “mixed” strategy since, first
we believe that replicating actual tweet data (or feed
data) on all followers can be quite expensive (considering
tweets or feeds may contain large pieces of data such as
pictures or videos), and second we want to show that our
approach can capture the underlying interactions for both
pull- and push-based applications.

2.2 Hypergraph Partitioning (HP) and Replication

A hypergraph H ¼ ðV;NÞ is defined as a set V of vertices
and a set N of nets (hyperedges), where each net connects a
number of distinct vertices. The vertices connected by a net
nj are said to be its pins (PinsðnjÞ). A cost cðnjÞ and a weight
wðviÞ may be associated with a net nj2N and a vertex vi2V,
respectively.

P ¼ fV1;V2; . . . ;VKg is said to be a K-way partition of a
given hypergraph H, if parts are mutually disjoint and col-
lectively exhaustive. In P, a net is said to connect a part if it
has at least one pin in that part. Connectivity set LðnjÞ of a
net nj is the set of parts connected by nj:

LðnjÞ ¼ fVk : Vk \ PinsðnjÞ 6¼ ;g: (1)

The connectivity �ðnjÞ ¼ jLðnjÞj of a net nj is the number of

parts connected by nj. A net nj is said to be cut if �ðnjÞ > 1
and uncut otherwise.
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In the Hypergraph Partitioning Problem, given a hyper-
graph H ¼ ðV;NÞ and an imbalance ratio �, we want to find
a K-way vertex partition P of V that optimizes a partition-
ing objective defined over the nets, while satisfying a
given partitioning constraint. The partitioning constraint is
to maintain the balance criteria on part weights, i.e.,
W ðVkÞ � Wavgð1þ �Þ; for k ¼ 1; . . . ; K: Here, the weight
W ðVkÞ of a part Vk is defined as the sum of the weights
wðviÞ of the vertices in Vk, Wavg is the average part weight
(Wavg ¼ WðVÞ=K), and � is the maximum allowed imbal-
ance ratio.

In the HP problem, the partitioning objective is to mini-
mize the cutsize based on the connectivity metric

xðPÞ ¼
X

nj2N
cðnjÞ�ðnjÞ; (2)

defined over the set of nets N .

The HP problem is known to be NP-hard [14], [15]. Fortu-
nately, there are successful HP tools (e.g., hMETIS [16] and
PaToH [17], [18]) that implement efficient and effective
heuristics.

PR ¼ fV1;V2; . . . ;VKg is said to be a K-way replicated
partition of a given hypergraph H, if vertex parts are collec-
tively exhaustive. Note that parts need not be pairwise
disjoint.

In the Replicated Hypergraph Partitioning Problem [19],
given a hypergraph H ¼ ðV;NÞ, an imbalance ratio �, and a
replication ratio r, we want to find a K-way replicated par-
tition PR that minimizes the cutsize defined in Eq. (2), while
satisfying the following constraints:

� Balancing constraint: Wmax � ð1þ �ÞWavg, where
Wmax ¼ max1�k�KWðVkÞ and Wavg ¼ ð1þ rÞW ðVÞ=
K.

� Replication constraint:
PK

k¼1 WðVkÞ � ð1þ rÞWðVÞ
In RHP, using Eq. (1) for calculating connectivity of a

net may not be exact due to vertex replications. The rep-
licated connectivity LRðnjÞ of a net nj can only be
defined after solving a pin selection (or replica selection)
problem [19]. LðnjÞ is a superset of LRðnjÞ. So,
�RðnjÞ ¼ jLR ðnjÞj � �ðnjÞ. Pin (replica) selection for a net
corresponds to selecting a set of parts whose vertices
cover all pins of that net. In RHP, connectivity of a net is
defined as the set of covering parts. Note that finding
the minimum set of covering parts is NP-hard [20].

The cutsize definition for the RHP problem can be
obtained by replacing �ðnjÞ with �RðnjÞ in Eq. (2). We
explain how we address the pin selection problem in detail
in Section 5.2.

3 MOTIVATION AND PROBLEM DEFINITION

3.1 Motivating Insights

We devised a number of experiments to understand the
effects of various metrics on multi-user query performance.
In these experiments, more than two million read/write
requests are directed to a 16-node Cassandra system using
the standard hash-based data distribution. As a result, we
observed three critical metrics for further exploration of
their effects on system performance.

Metric 1, Server load imbalance: Load imbalance has a neg-
ative impact on the performance of a distributed system. In
Fig. 2a, we display this negative impact on system latency
and throughput. Note that high imbalances in token ranges
are usual in NoSQL systems such as Cassandra due to ran-
dom server-token generation. Even though there are ways
to achieve more uniform range distributions, due to skewed
query distributions, imbalance in randomized partitioning
methods that do not utilize query logs is pretty common. As
seen in the figure, as the imbalance increases, the overall
query latency tends to increase and the overall system
throughput tends to decrease.

Metric 2, I/O load: Increasing replication can cause
increases in read/write latencies due to consistency
requirements. Even in an eventually consistent system,
whenever a user data is replicated, all write requests to
that user’s data must be (eventually) propagated to all
replicas, which causes an increase in the total amount of
I/O operations performed by the system when compared
with an unreplicated scenario. This may have a negative
effect not only on the write performance but also on the
overall system performance as well. In Fig. 2b, we display
the impact of increased replication on the I/O load and
system latency. As seen in the figure, as the replication
factor increases, the I/O load and the overall query
latency tend to increase as well.

Metric 3, Number of servers processing a query (query span):
Several studies already indicate that minimizing query span
also minimizes query latency [2], [3], [4], [5], [6], [7]. In
Fig. 2c, we display the correlation between the query span
and latency. As seen in the figure, as the number of servers

Fig. 2. Investigated metrics and their effects on latency.
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processing a query increases, the latency tends to increase.
Similar experiments with different number of nodes and
with different query loads exhibit similar patterns.

3.2 Problem Definition

In this study, we utilize the social network and interactions
between users to predict the user actions that are likely to
occur in the near future. Using these predictions, we per-
form a selective replicated partition of the user data. Given
the metrics presented in Section 3.1, our problem definition
is as follows:

Definition (Selective replicated partitioning for mini-
mized server interaction problem): Given a set U of users,
a set Q of queries, K homogeneous servers, an imbalance ratio
�, and a maximum allowed replication percent r, find a user-
to-server placement that minimizes the average query span in
Q, while balancing the number of queries processed by each
server (within the imbalance ratio �) and increasing the I/O
load (when compared to an unreplicated scenario) by at most r
percent.

In order to address this problem, we perform a replicated
partitioning of the constructed hypergraph and interpret the
partition result as a solution to the selective replicated parti-
tioning for minimized server interaction problem. To test

our solution, we enhance the Cassandra NoSQL system,
design a Twitter clone utilizing the enhanced Cassandra,
and compare the performance of our solution on Amazon
EC2 with existing solutions. Note that we assume a single
datacenter setting.

4 TEMPORAL ACTIVITY HYPERGRAPH MODEL

4.1 Model Input

We are given a log Q of queries and the log contains
information on the timing of the activities. We divide
the activities into time periods and utilizing the activities
in the previous periods, we aim to identify the pattern
and frequency of the activities that are likely to occur in
the next period. We then partition and replicate data
according to this prediction. The time periods can be
months, weeks, days, or even hours. The model
appraises the activities in recent periods more than the
activities in older periods and appraises all activities
that occur in the same period equally. The selection of
these time periods also determines the frequency of par-
titioning actions.

We assume that the time span T of the activities in the
log is divided into T ¼ jT j time spans, that is
T ¼ ft1; t2; . . . ; tTg, where t1 denotes the earliest time
period and tT denotes the most recent time period in the
log. We also assume that the log Q consists of a set
R ¼ fr1; r2; . . .g of read requests and a set W ¼ fw1; w2; . . .g
of write requests. That is, Q ¼ R [W. A read request
necessitates the retrieval of a fixed number (e.g., m) of lat-
est tweets of a user’s friends. These type of requests are
issued whenever a user checks his homepage in Twitter
and thus they are pretty common. A write request necessi-
tates the update of a user’s and his followers’ data. These
type of requests are issued whenever a user tweets and
thus they are also pretty common.

Each read request rj2R has attributes: userðrjÞ, timeðrjÞ,
and participantsðrjÞ. Here, userðrjÞ denotes the user that
issues rj, and timeðrjÞdenotes the time of rj. participantsðrjÞ
denotes the set of users whose tweets are returned to
userðrjÞ in response to rj. That is, participantsðrjÞ corre-
sponds to the set of users followed by userðrjÞ and has at
least one tweet in the set ofmost recentm tweets userðrjÞ can
retrieve at timeðrjÞ.

Each write request wj2W has attributes: userðwjÞ,
timeðwjÞ, and participantsðwjÞ. Again, userðwjÞ denotes the
user that performs wj, and timeðwjÞ denotes the time of wj.
participantsðwjÞ denotes the set of users who receive the
tweetmade by userðwjÞ at timeðwjÞ. That is, participantsðwjÞ
corresponds to the set of users who follow userðwjÞ at
timeðwjÞ.

4.2 Model Construction

For a given log Q ¼ R[W, the construction of the temporal
activity hypergraph HðQÞ ¼ ðV;N ¼ N r[N wÞ is per-
formed as follows. For each user ui, there exists a vertex vi
in V. For each read request rj 2 R, there exists a read net nr

j

in N r. For each write request wj 2 W, there exists a write
net nw

j in N w. A read net nr
j connects the vertices corre-

sponding to the users in participantsðrjÞ. A write net nw
j

Fig. 3. Modelling read and write requests.
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connects the vertex for userðwjÞ and the vertices corre-
sponding to the users in participantsðwjÞ. That is,

Pinsðnr
jÞ ¼ fvi : ui 2 participantsðrjÞg:

Pinsðnw
j Þ ¼ fvi : ui 2 participantsðwjÞg

[ fvi : ui ¼ userðwjÞg:

Note that a write net nw
j connects the vertex for userðwjÞ since

wj must be propagated to the server storing userðwjÞ, whereas
a read net nr

j does not connect the vertex for userðrjÞ since rj
gathers data only from friends of userðrjÞ. Also note that the

degree of each read net nr
j can be at mostm under the assump-

tion that upon visiting their homepages users are served the

latestm tweets of their friends.

The relations between read/write requests and nets are
depicted in Fig. 3. In Figs. 3a and 3b, squares represent
users. Fig. 3a shows the social network of a sample user ui

at two different time periods t1 and t2. At time t1, ui follows
users u1-u5 and is followed by users u4-u8, and at time t2, ui

follows users u2-u6 and is followed by users u6-u9. Fig. 3b
illustrates two sample write scenarios, where ui tweets at t1
and t2. After the tweet, the data of ui and his followers are
updated. Note that the set of users that receive ui’s tweets
may change in time due to the changes in the social network
structure. Fig. 3b also illustrates two sample reads, where ui

checks his homepage at t1 and t2 and receives the latest
tweets of his friends. We assume only the latestm tweets of
the friends of a user are returned as a response to a read
request (m ¼ 4 in this example). Depending on the activities
of friends and social network of ui at the time of the request,
the set of users whose tweets are returned to ui can change.

Fig. 3c shows the temporal activity hypergraph that mod-
els the read and write requests of Fig. 3b. As seen in the
figure, the temporal hypergraph successfully distinguishes
the read and write requests performed by the same user in
different time periods by placing separate nets for such
requests.

Apart from forming the structure of the hypergraph

model, temporality also comes into play in setting vertex

weights and net costs. We use a decay factor aðtÞ to impose

an order of precedence among read/write requests in dif-

ferent time periods so that requests in recent periods have

higher importance. Hence, the costs of nets representing

these recent queries and the weights of vertices represent-

ing users who are active in the recent periods are assigned

higher values. In this study we use the decay function pro-

posed in [4]. For time period t, the decay factor aðtÞ is com-

puted as aðtÞ ¼ jQt\QT j
jQT j

; where Qt denotes the set of queries

in time period t. The decay function only affects the

costs of nets and weights of vertices, thus our model can

be coupled with any other decay function (e.g., exponen-

tial smoothing [21]). The cost cðnjÞ of a net nj associated

with a read request rj or a write request wj is set equal to

the decay factor for the time period timeðrjÞ or timeðwjÞ to
reflect the closeness of the associated request to the current

time, i.e., cðnr
jÞ ¼ aðtimeðrjÞÞ and cðnw

j Þ ¼ aðtimeðwjÞÞ.
The weight wðviÞ of a vertex vi is set to reflect the total

amount of activity ui is expected to perform and is com-
puted as wðviÞ ¼

P
nj2NetsðviÞ cðnjÞ.

5 REPLICATED PARTITIONING OF TEMPORAL

ACTIVITY HYPERGRAPH

5.1 Replicated Partitioning ofHðQÞHðQÞHðQÞ
A K-way replicated partition PR of the temporal activity
hypergraph HðQÞ can be used in replicated placement of
user data in a distributed system. That is, a K-way repli-
cated partition PR ¼ fV1;V2; . . . ;VKg of HðQÞ is decoded to
induce a K-way user-to-server mapping as follows: The set
of users and their data corresponding to the set of vertices
in Vk are assigned to server Sk. In other words, for each ver-
tex vi 2 Vk, Sk is held responsible for storing the data associ-
ated with user ui.

With the cost and weight schemes described in Sec-
tion 4.2, maintaining the partitioning constraint of bal-
anced part weights is expected to balance the number of
read and write requests that will be processed by the
servers in the next time period (Metric 1). Maintaining
the replication constraint is expected to limit the amount
of increase in I/O load due to replicated data (Metric 2).
Optimizing the partitioning objective of reducing cutsize
is expected to minimize the average query span in the
next time period (Metric 3), thus minimizing the distrib-
uted query processing overhead.

Consider a read net nr
j with LRðnr

jÞ for a given PR. If
LRðnr

jÞ ¼ fVkg, then nr
j is uncut and internal to Vk. This

implies that all users contributing to the latest tweets that
are retrieved by the read request rj are grouped in server
Sk, and Sk can process rj by using only local data. On the
other hand, if a net nr

j is cut with connectivity set LRðnr
jÞ,

this implies that, due to replica selection, the servers corre-
sponding to the parts in LRðnr

jÞ will process rj. So,
�Rðnr

jÞ ¼ jLRðnr
jÞj denotes the number of distinct servers

that will process rj. Thus, minimizing the objective in Eq.
(2) with �ðnjÞ replaced by �Rðnr

jÞ corresponds to minimiz-
ing the span of read requests.

Consider a write net nw
j with Lðnw

j Þ and LRðnw
j Þ for a

given PR. Even though acknowledging a write request on
one server is enough for processing it, the write is propa-
gated to all replicas eventually causing an increase in the I/
O loads of all servers storing a replica. Thus, unlike a read
net nr

j which contributes to the loads of the servers corre-
sponding to the parts in LRðnr

jÞ, a write net nw
j contributes

to the loads of the servers corresponding to the parts in
Lðnw

j Þ. So, the discussion given for a read net nr
j in the previ-

ous paragraph can be made for a write net nw
j by replacing

LRðnr
jÞ with Lðnw

j Þ as follows. wj enforces the system to per-
form write operations on all servers that store replicas of the
users corresponding to the pins of nw

j . Thus, the servers cor-
responding to the parts in Lðnw

j Þ are involved in processing
wj. That is, minimizing the objective in Eq. (2) with
�ðnjÞ ¼ �ðnw

j Þ corresponds to minimizing the span of write
requests.

Consequently, the cutsize definition that covers both
read and write nets can be formulated as

xðPRÞ ¼
X

nw
j
2Nw

c
�
nw
j

�
�
�
nw
j

�
þ

X

nr
j
2N r

cðnr
jÞ�R

�
nr
j

�
: (3)

Fig. 4 shows the temporal activity hypergraphHðQsampleÞ
corresponding to the sample log Qsample of read and write
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requests given in the figure. In this example, we assume that
all requests are assumed to be performed in the same time
period for simplicity.

Fig. 5 shows a four-way replicated partition PR of the
hypergraph in Fig. 4 after pin selection is applied on read
nets. In the figures, empty circles represent unreplicated
vertices, shaded and dashed circles represent replicated
vertices and small black dots represent nets. Numbers in
circles indicate vertex weights. Since we assume that all
requests are performed in the same time period, the nets
can be considered to have unit costs. Due to the costs of
the nets they are connected, the weights of vertices are
wðv1Þ ¼ 2, wðv2Þ ¼ 3, wðv3Þ ¼ 4, wðv4Þ ¼ 2, wðv5Þ ¼ 2,
wðv6Þ ¼ 4, wðv7Þ ¼ 1, and wðv8Þ ¼ 1. Considering these ver-
tex weights, the part weights for the four parts in Fig. 5 are
W ðV1Þ ¼ 8, WðV2Þ ¼ 7, WðV3Þ ¼ 10, and W ðV4Þ ¼ 6.

Write nets nw
1 and nw

2 are cut with connectivity
�ðnw

1 Þ ¼ �ðnw
2 Þ ¼ 4, thus each incurring a cost of four to the

cutsize. Among read nets, nr
1, n

r
2, and nr

4 are internal and
thus each incur a cost of one, whereas net nr

3 is cut with con-
nectivity �Rðnr

3Þ ¼ 2 and thus incurs a cost of two. The cut-
size according to Eq. (3) is 4þ 4þ 1þ 1þ 1þ 2 ¼ 13.

If we decode the four-way replicated partition PR as a
four-way user-to-server mapping, then both write requests
w1 and w2 necessitate writes on servers S1, S2, S3, and S4.
Replication of v2 and v3 to V1 makes net nr

1 internal to V1

enabling r1 to be processed locally on S1. Similarly, replica-
tion of v3 to V4 enables read request r2 to be processed
locally on S4, and replication of v3 and v6 to V3 enables read
request r4 to be processed locally on S3. Also, replication of
v2 and v6 to V2 enables r3 to be processed only on two serv-
ers (S2 and S4). Thus, total number of servers processing
queries in Qsample is equal to 13, which is equal to the
cutsize.

The resultant replicated partition provides a user-to-
server mapping. In our evaluations, we utilize this map-
ping to generate a horizontal partition of the Twissandra
column families. To be more precise, the user partition
induces a partition of all cfs of Twissandra. It is clear that
a partition of users implies a row-based partition of the

USER, FRIENDS, FOLLOWERS, TIMELINE, and USERLINE

column families since the row keys for all these cfs are the
username (Section 2.1.3). The partitioning of TWEET cf is
performed according to the username of the tweeting
user. In the end, each user’s personal information, friends,
followers, userline, timeline and tweets are stored on the
same server(s).

5.2 Replica Selection

When user data is replicated, the problem of selecting which
replicas to use arises during query processing. The objective
of replica selection is to minimize the span of a read query
in a replicated environment. In HP-theoretic view the rep-
lica selection problem corresponds to the pin selection
problem.

The pin selection problem can be formulated as a set
cover problem. An instance ðX ;FÞ of the set-cover problem
consists of a finite set X and a family F ¼ fX1; X2; . . . ; g of
subsets of X , which cover X (i.e., X ¼

S
Xi2FXi), and the

problem is to find a minimum-size subset C � F whose
members cover all of X . The transition from the pin selec-
tion problem to the set cover problem can be done as fol-
lows: For a net nj in a given replicated partition PR of
HðQÞ, X is set equal to the set of pins of nj, and the family
of subsets F is set equal to the subsets of the pins of nj that
reside in the parts of LðnjÞ, i.e.,

X ¼ PinsðnjÞ
F ¼ fXk : Xk ¼ PinsðnjÞ \ Vk; where Vk 2 LðnjÞg:

Note that the number of subsets in F is equal to �ðnjÞ. For a
net nj, after the above transition, the solution C to the defined

set-cover problem is then decoded as a solution LRðnjÞ of the
replica selection problem.

The set-cover problem is known to be NP-hard [20].
We use a simple ðlnðnÞ þ 1Þ-approximation algorithm
[19], [20] to solve the pin selection problem. For a net nj,
this greedy heuristic first selects the part/subset, say Xk,
in LðnjÞ that contains the largest number of uncovered
pins of nj, then includes this Xk into CðnjÞ, and then elim-
inates the vertices covered by Xk from X. Selection and
elimination processes are repeated till there remains no
uncovered vertices. We should note that X may contain
unreplicated vertices. So prior to executing the above
heuristic, the unreplicated vertices and their respective

Fig. 4. Temporal activity hypergraph modelHðQsampleÞ.

Fig. 5. A four-way replicated partition of HðQsampleÞ. The dashed, red-
filled circles indicate replicated vertices.
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vertex parts (subsets) are pre-selected for the sake of run-
time efficiency. The resulting set cover CðnjÞ for net nj is
decoded as follows to induce LRðnjÞ:

LRðnjÞ ¼ fVk : Xk 2 CðnjÞg:

After pin selection, LRðnjÞ determines the set of servers
that will process rj. That is, for each Vk 2 LRðnjÞ, server Sk

will process rj. Replica selection can be performed at a gate-
way node accepting user queries on behalf of Twitter and
directing them to Cassandra.

6 EXPERIMENTAL RESULTS

To evaluate the proposed method for achieving replicated
partitioning of social networks, we embedded a selective
partitioning and replication scheme into Apache Cassandra
version 0.8.7. We also modified Twissandra [9] to utilize our
enhanced Cassandra, and obtained a Twitter-like system,
where the social network structure and user tweets are
stored by Cassandra. We tested this Twitter clone on the
Amazon Elastic Computing Cloud (EC2), which provides
Linux-based virtual machines (instances) running on top of
the Xen virtualization engine.

6.1 Experimental Setup

6.1.1 Data Set

In our experiments we made use of the Twitter data set
from [22]. This data set was crawled from Twitter
between October 2006–November 2009 and contains
tweets of 465,107 distinct users. The crawl was seeded
from a set of genuine (or authoritative) users collected
from Mashable.1 The social graph of the seed set was
expanded by following friendships of the users. The
tweets of these users were collected every 24 hours.
Among these users there are 836,541 social relationships
and the data set contains a total of 25,378,846 tweets.
Within this data set, we selected one year’s worth of
queries, used the first eleven months for modeling, and
the last month for evaluations. Specifically, we made use
of 8,105,164 tweets made between November 2008–Sep-
tember 2009 for constructing the temporal activity hyper-
graph model and the alternative graph models. Since
social relationships of some users were missing in the
original data set, we recrawled these social relationships
between 10–14 of September 2012. This recrawl added
80,523 new social relationships to our data set making a
total of 917,064 social relationships. The investigated data
distribution methods are tested with the tweets made in
October 2009, which contains 1,882,256 tweets.

Since the Twitter data set from [22] only contains tweets
and social relations, and does not contain any read queries,
we designed the following method to generate read
queries. For each user, we go over the log of tweets in
increasing time order to count the number of new tweets
received by that user and whenever this count exceeds a
certain number (set to two in our experiments), a read
request for the last 40 tweets of that user is generated, if

the number of distinct users in the last 40 tweets is greater
than a threshold (set to two in our experiments). There are
two main motivations behind this query generation
method. First, we expect there to be a correlation between
the number of tweets a user receives and the number of
times he checks his homepage. Second, by default, Twitter
sends reminder/informer emails to a user who has a num-
ber of unread tweets and has not logged-in to the system
for a while, which occasionally causes users to login to
Twitter upon receipt of such emails.

Generated read queries are interleaved with write
queries based on time information. The interleaved query
set for November 2008–September 2009 period contains
5,300,407 read and 8,105,164 write queries and the inter-
leaved query set for October 2009 contains 1,429,303 read
queries and 1,882,256 write queries.

We assume that a user visiting his homepage retrieves
the latest m ¼ 40 tweets of his friends. On average, a read
query contains 39.8 individual read and a write query con-
tains 3.9 individual write operations.

6.1.2 Amazon EC2 Setup

EC2 instances are classified based on their memory, CPU,
network, and I/O characteristics. In our experiments, we
used the m1.medium instances for Cassandra servers, and
the t1.micro instances for the Twissandra system and
submitting queries (called submitters). The properties of
these instance types are given in Table 1. One EC2 Com-
pute Unit provides the equivalent CPU capacity of a 1.0-
1.2 GHz 2007 Opteron or 2007 Xeon processor [23]. Since
EC2 instances are virtual servers, they share resources
with other virtual servers.

We used instance store volumes instead of EBS volumes
for storage in Cassandra servers to avoid variations that
might occur in EBS during I/O operations. In order to
model a single-datacenter setting, we selected all Cassandra
servers from the same region (us-east-1a). Instead of using
multiple submitter threads from a single machine, we opted
to create multiple EC2 submitter instances to more closely
emulate distributed multiple users, since threads from the
same machine would not have great variations in terms of
network overhead.

6.2 Alternative Methods for Comparison

We compare the performance of the proposed replicated
hypergraph-partitioning-based data distribution method
(RHP) with the standard hash-based mapping of Cassan-
dra (HASH), a graph-partitioning-based scheme (GP/L)
that extends the approach in [3] to utilize query logs, a
further extended graph-partitioning-based scheme (GP/
T) that utilizes the temporal information in user
interactions in the same way we do in RHP, and a third

TABLE 1
Properties of Used EC2 Instance Types

1. http://mashable.com/2008/10/20/25- celebrity-twitter-users/.
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graph-partitioning-based scheme called SCHISM [7]
(SCH), which achieves data distribution with a unified
partitioning and replication approach.

Details of HASH and RHP are given in Sections 2.1.1
and 4, respectively. Both GP/L and GP/T construct a graph
model from the social network structure [3]. In GP/L, we
extend the graph model to utilize the query logs by weight-
ing its edges. For each write query wj, we increment
the weight of each edge ðuserðwjÞ; ukÞ, where uk 2
participantsðwjÞ, by one. Similarly, for each read query rj,
we increment the weight of each edge ðuserðrjÞ; ukÞ, where
uk 2 participantsðrjÞ, by one. In GP/T we further extend
GP/L so that contributions of interactions to edge weights
are scaled utilizing the decay factor used in RHP (Sec-
tion 4.2). In both GP/L and GP/T, after partitioning, one-
hop replication strategy [3], [6] is utilized to achieve
replication.

In SCH, each user is represented by a vertex and the
edges are used to capture the relations among the users of a
query. The users that interact in a query are modeled with a
completely connected subgraph, which is then incorporated
into the original graph by adding new edges/vertices. Rep-
lication in SCH is achieved by exploding vertices into star-
shaped structures in the graph prior to partitioning. All
three graph models are partitioned with the multilevel
graph partitioning tool MeTiS [24]. After partitioning, repli-
cas of a vertex that belong to the same part are collapsed
into a single vertex.

In RHP, for replicated partitioning of the proposed
hypergraph model, we used the rpPaToH tool [19]. rpPa-
ToH is capable of replicating vertices of a hypergraph
during the partitioning process in order to improve a tar-
get objective under given balancing and replication con-
straints. During the RHP runs, since rpPaToH supports
the same connectivity metric for all nets, we included
only the read nets as read requests are more expensive
than write requests.

To integrate GP/L, GP/T, SCH, and RHP into Cassandra,
we implemented a new replication strategy called selec-
tive replicated partitioning strategy (SRPStrategy), which
extends the abstract AbstractReplicationStrategy class of
the locator package. SRPStrategy initially loads a lookup
table that describes the user-to-server mapping. For any
user whose mapping is not provided, SRPStrategy acts
the same as RackUnawareStrategy. We should note that,
utilizing lookup tables for data placement necessitates the
use of efficient schemes for maintaining such structures in
highly distributed settings. This issue is beyond the scope
of this work but there exist studies addressing this prob-
lem [25].

All five schemes are tested using 100 percent replication.
This corresponds to two-copy replication for HASH, whereas
GP/L, GP/T, SCH, and RHP perform selective replication.

The models used in GP/L, GP/T, SCH and RHP are con-
structed using the query logs between November 2008–Sep-
tember 2009. All five schemes are evaluated using the query
logs of October 2009.

6.3 Preprocessing Costs and Time Dissections

In Table 2, the preprocessing overheads of GP/L, GP/T,
SCH, and RHP are presented. The overheads of GP/L and
GP/T are lower than RHP, whereas SCH has the longest pre-
processing time due to its much larger graph size. To give a
perspective, the number of edges in SCH are 80 times the
number of pins in RHP.

As seen in Table 2, the preprocessing times are in the
order of minutes. Since we assume that the preprocessing
is to be performed in relatively long intervals such as
days or weeks, they are within acceptable limits. Also
note that, in social networks, only a fraction of users are
extremely active and they generate a significant portion
of the total workload (e.g., see the 90-9-1 rule [26]). Given
this knowledge, the size of the processed graphs/hyper-
graphs can be significantly reduced by eliminating verti-
ces corresponding to inactive users. That is, it is possible
to eliminate infrequent queries from the workload, which
enables workload-aware approaches to keep their prepro-
cessing overhead low. Data of relatively inactive users
can be handled by using the default partitioning/replica-
tion scheme of the underlying NoSQL system, e.g., HASH.
This also reduces the size of the lookup tables utilized by
the graph/hypergraph models.

In Fig. 6, dissections of the overall query processing
times of GP/L, GP/T, HASH, SCH, and RHP are illustrated
for S ¼ 8; 16, and 32 servers. The query processing times
are composed of three portions. The server-side portion
includes the I/O overheads associated with read/write
operations and intra-server communication overheads
required for server-side coordination. The client-side por-
tion includes the communication overheads between cli-
ents and servers such as the times spent during query
submission, retrieval of results/acknowledgments, as
well as overheads associated with query preparation. The
other portion includes the time spent during replica selec-
tion process and server-side threading.

As seen in Fig. 6, the percentages of the server-side
portion of RHP are the lowest among all schemes. We
note that the times spent during the operations depicted
in the client-side portion of all schemes would roughly be
equal, since the submitted queries and the gathered

TABLE 2
Preprocessing Overheads (Secs)

Fig. 6. Dissection of overall query processing time.
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results are the same for all schemes. Given that, the low
percentages in the server-side portion of RHP indicate
that it is successful in its objective of reducing server-side
overhead. As also seen in the figure, with increasing
number of servers, the server-side portion of GP/L and
GP/T increase, whereas they remain roughly the same for
HASH and RHP. This suggests that HASH and RHP scale
better than GP/L and GP/T.

6.4 Evaluation

In our experiments, we set the number of Cassandra
servers to S ¼ 8, 16, and 32. The number of submitters is
set to U ¼ S � 2, S � 3, and S � 4. The metrics used for
performance evaluation are separated into two as server-
side and client-side metrics. The server-side metrics
include (i) server read and write load imbalance, (ii) total
and average number of I/O operations performed by the
system for writes, (iii) average read and write query
span, and (iv) average number of messages per write.
The client-side metrics include (i) average latency and
(ii) average throughput for read and write requests. In
the following figures and tables, a bold value in a table
indicates the best performance result obtained among
the five schemes for the respective experiment instance.

6.4.1 Server-Side Performance Evaluation

In Table 3, we compare the performance of GP/L, GP/T,
HASH, SCH, and RHP for the server-side metrics. We do
not present the number of read operations in Table 3,

since it is the same for all schemes. When we compare bal-
ancing performance of the five schemes (here, imbalance
is computed as: 100� ðWmax �WavgÞ=Wavg), we observe
that GP-based approaches (GP/L, GP/T, and SCH)
have the worst balancing performance for both read and
write requests. This is because the one-hop replication
scheme used by GP/L and GP/T does not take the balanc-
ing constraint into account during replication and the rep-
lication method in SCH does not consider the balance after
query scheduling during partitioning. On the other hand,
RHP can simultaneously perform objective optimization
and balancing under replication in a single replicated par-
titioning phase and thus has superior read and write bal-
ancing performance.

In Table 3, we also compare the total number of write
operations (I/O load). Apart from the very good perfor-
mance of SCH on S ¼ 8 servers, GP-based approaches gen-
erally have the worst performance and they scale poorly
with increasing number of servers, whereas HASH and RHP

lead to similar I/O loads. The poor performance of GP/L
and GP/T approaches is due to their aggressive replication
methods that replicate the most active users, e.g., users that
tweet more and have many friends and followers, leading
to excessive I/O loads.

We also present query span results in Table 3. Since GP/L
and GP/T use the one-hop replication scheme, they can
respond to all read and write requests from a single node
performing the best in terms of read and write span. SCH
performs better than RHP in terms of read and write span
and RHP performs better than HASH. Furthermore, when the
number of servers increases, the rate of increase in the read
and write query span is lower for SCH and RHP compared
to HASH.

We should note that, as an indicator of query perfor-
mance, presented span figures should be taken with a
pinch of salt. Recall that we adopted a write consistency
level of one in our Twissandra implementation and this
enables acknowledging a write as soon as a single server
acknowledges it. In this respect, write span can be thought
as the minimum number of servers that cover all the data
items in the multi-write query. However, for eventual
consistency, a write to a data item is propagated to all rep-
licas of that data item in the background. For a multi-
write query, this means sending messages to all servers
containing a replica of the data items in the query. In
terms of average number of messages sent for a write,
SCH performs the best and RHP performs the second best
for K ¼ 8 and 16 servers but for K ¼ 32, RHP performs
much better than all other schemes.

The results in Table 3 can be summarized as follows: GP-
based approaches optimize only query span while disre-
garding balancing and I/O load minimization. HASH is gen-
erally used for its good load balancing properties, but as
seen in the table, in fact it performs poorly in terms of bal-
ancing under skewed query workloads as is observed in
real life query workloads. It achieves reasonable I/O load
but has the worst locality performance. RHP strikes a bal-
ance on these three metrics by trading locality with load bal-
ancing and I/O load minimization, which leads to its
superior query processing performance, as will be seen in
the following section.

TABLE 3
Comparison of Server-Side Performance Metrics
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6.4.2 Client-Side Performance Evaluation

Table 4 displays the average latency and throughput val-
ues observed by submitter nodes for read and write
requests under the presence of both types of requests.
Table 4 also shows the overall average latency per query
(including both read and write queries) and the aggre-
gate throughput.

Among all schemes, RHP achieves the best latency and
throughput values in all experiment instances since it pro-
vides the best balance among the server-side metrics. GP-
based approaches perform the worst in read latency and
throughput, whereas HASH performs the worst in write
latency and throughput. Relatively better write perfor-
mance of GP-based approaches is due to their better locality
compared to HASH.

As seen in Table 4, for all five schemes, the write latencies
are far lower than the read latencies. This is due to the facts
that, on average, write requests contain less operations then
read requests (3.9 versus 39.8), and Cassandra is optimized
for write latency (see Section 2.1.2).

An interesting pattern noticable in Table 4 is that, in sev-
eral experiment instances, GP-based schemes perform
worse than HASH. In fact, among GP-based schemes, only
SCH performs better than HASH, and only for low server
counts. This is due to the excessive I/O load and poor load
balancing performance of GP-based schemes. Some servers
utilizing the GP-based schemes are simply overwhelmed

with the amount of writes they need to perform and this
has a significant negative impact both on their read and
write performance. Since our query log contains an inter-
laced mixture of reads and writes (as is the case for any real
system), performance of reads are highly dependent on the
performance of writes and vice versa.

Fig. 7 presents a visual comparison of the latency and
throughput performance of GP/L, GP/T, HASH, SCH, and
RHP under increasing workload. We fix the number of serv-
ers to S ¼ 32 and vary the number of submitters U ¼ S � 2,
S � 3, S � 4. As the number of submitters increases, the
read and write latencies of all schemes increase. This is due
to the load increase on servers. Since the increase in latency
is not as high as the increase in load in most cases, the
throughput values of all schemes improve slightly with
increasing load. The performance of HASH can vary unpre-
dictably across different runs. This is mainly due to its ran-
dom token generation at the beginning of each experiment
for keyspace partitioning.

Fig. 8 presents the weak scalability comparison of GP/L,
GP/T, HASH, SCH, and RHP under increasing number of
servers. In each experiment instance, number of submitters
is set to U ¼ S�4 and the number of servers is varied
S ¼ 8; 16; 32. The read and write latency figures show that,
among the five schemes, GP-based approaches display the
worst scalability characteristics, whereas RHP displays
the best. Furthermore, both HASH and RHP scale less

TABLE 4
Performance Comparison in Terms of Latency (msec) and Throughput (Queries/Sec)
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than ideally, which is probably due to the increase in com-
munication overhead with increasing number of servers,
as also seen in Table 3.

In Fig. 9, we compare the latency histograms of HASH and
RHP. As seen in the presented CDF curves, for RHP, 90 per-
cent of the read queries and 98.5 percent of the write queries
can be answered below 200 ms, whereas in HASH, only
74 percent of read and 88 percent of write queries can be
answered below 200 ms. RHP can perform 99th percentile of
the queries below 700 ms for reads and below 300 ms for
writes, whereas HASH can perform the same feat around
1 sec for reads and 800 ms for writes.

7 RELATED WORK

There are recent studies indicating the deficiencies of the
partitioning and replication methodologies used in social
network data storage systems. [7] proposes a GP-based
database partitioning scheme called SCHISM for OLTP-
type Web applications that utilize distributed databases.
Data items are represented via nodes, transactions are
modeled via edges, and the partitioning objective is to
minimize the number of distributed transactions. The
partitioning/replication scheme in [7] requires genera-
tion of a much larger graph from the transaction graph.
Replication is handled by “exploding” each node to a
star shaped configuration of nþ 1 nodes, where n indi-
cates the number of transactions accessing the data rep-
resented by that node. After partitioning of this larger
graph, replicas that fall into the same part are collapsed
to a single replica. Another disadvantage of the replica-
tion mechanism in [7] is it is not possible to set the
amount of replication that will be performed.

Pujol et al. [2] proposes social network partitioning
schemes based on graph-partitioning, modular-optimiza-
tion and random partitioning. Partition qualities are

measured via metrics such as the number of internal mes-
sages or dialogs. Tests are performed over data sets col-
lected from Twitter and Orkut. For small partition counts,
graph-based approaches are shown to perform superior,
whereas for large partition counts, modular optimization
algorithms perform slightly better.

Pujol et al. [3] extends the work in [2] so that replication
is also considered. The proposed replication scheme (one-
hop replication) replicates all data items that are in partition
boundaries. That is, data items that might be required in
multiple servers are replicated to all of those servers. Unfor-
tunately, this replication scheme enforces too much replica-
tion and can lead to high I/O loads due to excessive
replication of frequently updated data.

Pujol et al. [6] is an extension of the above two studies
with an alternative partitioning scheme. However, still the
one-hop replication scheme is used for replication. Further-
more, all schemes in [2], [3], [6] use the social network struc-
ture for partitioning whereas in this study we make use of
both the social network structure and interactions between
users (query logs).

The work in [27] focuses on generating personal feed
pages, pages containing recent activities of followed/
tracked users/news-sources. In certain respects, issues
addressed in [27] coincide with the problems we tackle.
The news-sources broadcast their activities to many
users and personal feed pages contain activities collected
from many news-sources. However, the main problem in
[27] is efficient construction of these personal Web pages.
To this end, they compare the benefits of pre-materializ-
ing these pages with dynamic generation of them upon
receipt of queries. We believe that our work and the
studies in [27] are complimentary since the pre-material-
ized pages are generated via multi-user queries as well,
so our optimizations are easily applicable to a system
running the algorithms proposed in [27].

Fig. 7. Effect of increased load on read/write latency/throughput for S ¼ 32 servers and U ¼ S � 2, S � 3, S � 4 submitters.

Fig. 8. Weak scalability analysis for U¼S � 4 submitters.
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In [28], the distributed partition management environ-
ment Sedge is proposed for processing large graphs.
Sedge is based on Pregel [29], uses graph and comple-
mentary partitioning for static primary partitions and
workload-aware dynamic secondary partitions. Sedge
partition management involves identification and replica-
tion of hotspot partitions. Sedge is designed for distrib-
uted graph processing applications.

Yuan et al. [4] proposes GP-based models for efficient
query processing in time-dependent social network queries.
The activity prediction graph model in [4] enables handling
of power-law relations observed in social network data via
producing lighter tailed interactions. Unfortunately, this
study does not address the replication problem.

In [5] and [30], dynamic data placement and replication
algorithms for social networks are proposed. The authors of
[30] propose the WEPAR dynamic partitioning and replica-
tion system. WEPAR differentiates the replicas of a record
as either master or slave copies. The main idea in WEPAR is
based on placing the master copies of related records in the
same node and to generate slave copies for records that
receive more read queries.

Authors of [5] extend PNUTS to support selective repli-
cation and their algorithm generates placements that respect
given replication policy constraints. Their dynamic data
placement scheme tries to make use of the temporal locality
on data item accesses by adding new replicas when a read
miss occurs, removing replicas when a local read is not per-
formed for a while, and a write occurs. In our study, unlike
in [5] where reactions to misses and unexpected hits are per-
formed after the fact that these undesired operations are
observed, we make use of previous logs to make a temporal
prediction of future requests to avoid such operations.

8 CONCLUSION

In this work, we proposed a temporal activity hypergraph
model whose replicated partitioning can be used for data
partitioning and replication in social networks. The pro-
posed model naturally encodes multi-way interactions
incurred by the most common social network operations.
The performance of the proposed model was tested over a
popular social network application Twitter. Experimental
results using the Cassandra NoSQL system running over
Amazon EC2 cluster indicate that the proposed model
achieves significant improvements over state-of-the-art
hash- and graph-partitioning-based counterparts in terms
of important metrics such as latency, throughput, and
scalability.

Our results provide insights on parameters affecting the
performance of social network storage systems in a cloud

setting. Hash-based approaches distribute workload and
enhance parallelism but suffer from communication over-
head. Graph-partitioning-based approaches enhance read
locality at the expense of increasing I/O loads and possibly
perturbing load balance. All-in-all, optimizing solely one of
these conflicting metrics does not yield satisfactory results.
Our approach performs partitioning and replication simul-
taneously to reduce the number of servers processing
queries while respecting load balancing and I/O load con-
straints under replication, thus striking a balance between
conflicting metrics to achieve the best performance.

Future research avenues of this work include investiga-
tion of repartitioning mechanisms that avoid migration of
data items in subsequent partitioning iterations and addi-
tion of mechanisms that can provide certain performance
guarantees for certain percentile of queries.
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