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Abstract—As databases increasingly integrate different types of information such as multimedia, spatial, time-series, and scientific

data, it becomes necessary to support efficient retrieval of multidimensional data. Both the dimensionality and the amount of data that

needs to be processed are increasing rapidly. Reducing the dimension of the feature vectors to enhance the performance of the

underlying technique is a popular solution to the infamous curse of dimensionality. We expect the techniques to have good quality of

distance measures when the similarity distance between two feature vectors is approximated by some notion of distance between two

lower-dimensional transformed vectors. Thus, it is desirable to develop techniques resulting in accurate approximations to the original

similarity distance. In this paper, we investigate dimensionality reduction techniques that directly target minimizing the errors made in

the approximations. In particular, we develop dynamic techniques for efficient and accurate approximation of similarity evaluations

between high-dimensional vectors based on inner-product approximations. Inner-product, by itself, is used as a distance measure in a

wide area of applications such as document databases. A first order approximation to the inner-product is obtained from the Cauchy-

Schwarz inequality. We extend this idea to higher order power symmetric functions of the multidimensional points. We show how to

compute fixed coefficients that work as universal weights based on the moments of the probability density function of the data set. We

also develop a dynamic model to compute the universal coefficients for data sets whose distribution is not known. Our experiments on

synthetic and real data sets show that the similarity between two objects in high-dimensional space can be accurately approximated by

a significantly lower-dimensional representation.

Index Terms—Inner-product approximation, dimensionality reduction, p-NORMS, similarity search, high-dimensional data.
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1 INTRODUCTION

SIZE of the data utilized in modern applications grows at
an increasing rate. For example, the number of docu-

ments that can be reached through the Internet is
increasing rapidly and satellite data repositories will soon
add one to two terabytes of data every day [1]. The general
approach is to represent the data objects as multidimen-
sional points and to measure the similarity between objects
by the distance between the corresponding multidimen-
sional points [12], [14], [29], [19], [37]. Many large data sets
in scientific domains contain a large number of attributes
that may be queried and analyzed and, therefore, con-
sidered as high-dimensional data. For example, High
Energy Physics data typically contains more than 500 attri-
butes that describe the properties of the objects in
experiment data [36]. Since the dimensionality and the
amount of data is large, it becomes important to support
efficient high-dimensional searching in large-scale systems.
To this end, a number of index structures for retrieval of
multidimensional data along with associated algorithms for
similarity searching have been developed [35], [31], [24],
[3], [41], [30], [6], [5], [21], [22]. However, it is well-known
that as dimensionality increases, query performance of

these techniques degrades significantly [4]. This anomaly is
referred as the dimensionality curse [20] and has attracted
the attention of several researchers.

Reducing the dimensionality to enhance the performance
of the underlying technique is a popular solution to the
curse of dimensionality [15], [33], [28]. Evidently, there is a
trade off between the accuracy obtained from the informa-
tion stored and the efficiency obtained by the reduction. It is
well-known that, if each data is represented by a smaller
number of dimensions, significant performance speed-ups
can be achieved, while part of the information is lost. The
most common approaches found in the literature for
dimensionality reduction are linear-algebraic methods such
as the Karhunen-Loeve Transformation (KLT) [26], or
applications of mathematical transforms such as the
Discrete Fourier Transform (DFT) [34], Discrete Cosine
Transform (DCT) [27], or Wavelet Transform (DWT) [9]. As
the transformations are known to be distance preserving,
the general approach is to transform the high-dimensional
feature vectors and obtain lower-dimensional vectors by
taking a small subset of dimensions which restore the
highest energy [2], [42]. Several reduction techniques were
proposed for time-series [2], [10], image [42], [33], [19], [28],
and document data [15], [14], [16]. We and Chakrabarti and
Mehrotra recently proposed an integration of dimension-
ality reduction with clustering [10], [22]. Random projec-
tions have been used recently for dimensionality reduction
in image and text data [8], [13]. Theoretical results and
experiments on noisy image data demonstrate the ability of
this method in preserving the distances. And, finally, a
nonlinear dimensionality reduction was proposed in [40]. If
the distance between the transformed vectors is a lower
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bound to the distance between the original feature vectors,
then the lower-bound filtering property is said to hold [38].
Most of the current approaches focus on the lower-bound
property even in the expense of approximation quality.
However, in many applications, approximation quality is
practically more important than the lower-bound property.
Approximate query processing is such an example [28],
[23], [22]. Approximate methods achieve efficiency at the
expense of exact results especially for large-scale data sets.
Exact results are difficult to obtain in several applications to
begin with. One reason is that the generation of feature
vectors from the original objects itself may be based on
heuristics. Besides, the semantics expected from most
application domains are not as strict as the exact queries
used in relational databases [32]. Moreover, imprecise
information will not only appear as the output of queries,
it already appears in data sources as well [7]. In this paper,
we first present a reduction technique that has the lower-
bound filtering property. We then focus more on the
approximation quality and improve the approximations
significantly compared to the state-of-the-art techniques.

In particular, we develop dynamic dimensionality re-
duction techniques for efficient and accurate approximation
of similarity evaluations between high-dimensional vectors.
By using these techniques, the similarity between two high-
dimensional objects can be accurately approximated by the
lower-dimensional representations. More specifically, we
focus on approximating the inner-product and, conse-
quently, approximating the cosine of the angle between
the two vectors in high dimensions. In some sense, the
techniques presented here are the multidimensional analo-
gues of the Cauchy-Schwarz inequality, which can be
thought of as a first order approximation to the inner-
product. In a recent work [11], Charikar discusses a
sketching scheme for estimating the cosine similarity
measure between two vectors. Apart from this, to the best
of our knowledge, there is no other technique for approx-
imation of similarity computation based on inner-products.
Approximating the inner-product, by itself, has a number of
important applications. It is used extensively in the
document database world, for example. Documents are
compared in the semantic space by comparing their
multidimensional representations created by statistical
analysis, and their similarity are measured by the cosine
of the angle between these vectors [39], [15], [14], [16].

The proposed techniques, unlike many others, can be
efficiently adapted also for streaming data. In many recent
applications, data is more conveniently modeled as streams
rather than finite, stored databases. Examples include
network monitoring, security, sensor networks, manufac-
turing, and financial analysis. Data streams are rapid,
continuous, unbounded, and dynamic in nature. Further-
more, in data stream applications, both storage and
computation resources are limited and random access to
the data is not possible. Due to these challenges, most
existing data mining algorithms cannot be utilized for data
stream applications. However, our method is dynamic in
nature and can be efficiently applied in data stream
applications.

This paper is a significantly extended version of the
earlier work which appeared in [18]. In [18], Egecioglu

and Ferhatosmanoglu introduced inner-product approx-
imation based on symmetric p-NORMS. Then, we used
this result to reduce the dimensionality of data sets
whose elements are drawn from a known probability
distribution. Our main contributions in this paper can be
summarized as follows:

1. We develop a dynamic technique to compute the
best set of coefficients for unknown distributions
and apply it to real data sets.

2. We evaluate the query performance of the technique
using various real data sets.

3. We extend the discussion of computing the best set
of coefficients to poisson, power, beta, exponential,
and binomial distributions, and provide correspond-
ing experimental results.

4. We discuss how to utilize our technique in data
stream applications.

The outline of this paper is as follows: In Section 2, we

describe the main tools used in our reduction. Section 3

describes the calculation of the optimal coefficients for the

uniform distribution. The first set of experiments appear in

Section 4. Optimal coefficients for other distributions are

given in Section 5. Theorem 1 is the major result of Section 5,

which characterizes the optimal parameters in terms of the

moments of the assumed density function. This result is

then used to compute the optimal parameters. Section 6

covers the dynamic case. We show that it is possible to

estimate the moments incrementally when the distribution

is nonparametric. Section 7 presents comparisons with well-

known methods such as SVD, DFT, and DCT. Conclusions

and future work appear in Section 8.

2 REDUCTION WITH POWER SYMMETRIC

FUNCTIONS

Developing efficient ways for dimensionality reduction is

crucial for the query performance in multimedia databases.

We first summarize how we represent the high-dimensional

data of dimension n with reduced number of dimensions m

with m� n. Then, we develop techniques for these

representatives so that the similarity measure between

high-dimensional vectors are approximated closely in the

lower-dimensional space. We specifically focus on devel-

oping techniques which provide accurate approximations

for the similarity distance between high-dimensional

objects, which is important for similarity searching.
For a given pair of integers n; p > 0 define

 pðzÞ ¼ zp1 þ zp2 þ � � � þ zpn: ð1Þ

This is the pth power symmetric function in the variables

z ¼ ðz1; z2; . . . ; znÞ. Equivalently,  pðzÞ is the pth power of the

p-norm kzkp which is defined as kzkp¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p�zp1 þ zp2 þ � � � þ zpn

p
.

Thus,  pðzÞ ¼ kzkpp. In particular, kzk2 is the ordinary length

of the vector z, and kx� yk2 is the Euclidean distance

between x and y. Note that the ordinary Euclidean distance

between x and y and the power symmetric functions are

related by
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kx� yk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 2ðxÞ þ  2ðyÞ � 2 < x; y >

p
; ð2Þ

where < x; y > is the standard inner-product given by
< x; y >¼ x1y1 þ x2y2 þ . . .þ xnyn.

In our method, we calculate  1ðxÞ;  2ðxÞ; . . . ;  mðxÞ,
and keep these m real numbers as a representative of
each original high-dimensional vector x. In order to have
the lower-bound property, the original distance needs to
be estimated from below. If we find an upper bound for
< x; y > and use this value in (2), the approximated
distance value computed in this way always becomes
smaller than the original distance value due to the
negative sign of < x; y > . The Cauchy-Schwarz inequality
below provides an upper bound for the inner-product:

< x; y > � kxk2kyk2: ð3Þ

Since  2ðzÞ is already defined as kzk22, we have < x; y >

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 2ðxÞ 2ðyÞ

p
. We approximate < x; y > by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 2ðxÞ 2ðyÞ

p
,

which is always an upper bound to the inner-product.

Therefore, by only storing the  2ðzÞ values for each z in the

database, it is possible to approximate the distance between

them. Furthermore, this particular first order approxima-

tion is guaranteed to have the lower-bound property.

However, this approximation does not minimize the error.

As stated before, it is important to support approximate

answers to get fast queries. Besides the time factor, we also

want the answer to be as accurate as possible. We focus on

the quality of the approximations, i.e., we aim to minimize

the error made on the distance computations. We can try a

correction with lower order terms with the hope of

obtaining a better approximation to < x; y > “most of the

time”; in fact, we can try for a linear combination of the

form < x; y >2� b1 1ðxÞ 1ðyÞ þ b2 2ðxÞ 2ðyÞ for some b1, b2.

Now, we have lost the actual inequality (unless b1 ¼ 0,

b2 ¼ 1), but hopefully the approximation is now better on

the average if the b1 and b2 are chosen well. What “on the

average” means in our treatment is best in the sense of least

squares. In general, using the quantities for  pðzÞ computed

for each data vector z in the database, we look for an

approximation for < x; y > by approximating its mth

power in the form

< x; y >m

� b1 1ðxÞ 1ðyÞ þ b2 2ðxÞ 2ðyÞ þ � � � þ bm mðxÞ mðyÞ ð4Þ

for large n, where bi is a constant chosen independently
of x and y. Our assumption on the structure of the data
vectors is as follows: We have a table of a large number
of n-dimensional vectors x ¼ ðx1; x2; . . . ; xnÞ whose compo-
nents are independently drawn from a common (possibly
unknown) distribution F ðtÞ with density fðtÞ. In other
words, each xi is drawn independently of other coordi-
nates from a probability distribution F ðtÞ. Given an
arbitrary input vector y ¼ ðy1; y2; . . . ; ynÞ, the main pro-
blem is to find the vectors x in the table minimizing (with
high probability) the inner-product < x; y > without
actually calculating all inner-products. This is done by
computing  1ðyÞ;  2ðyÞ; . . . ;  mðyÞ and then using the m
stored quantities  1ðxÞ;  2ðxÞ; . . . ;  mðxÞ via (4). The

coefficients b1; . . . ; bm are fixed for a chosen m and do
not depend on x or y.

We consider approximations of the form (4) by finding
the best set of constants b1; b2; . . . ; bm for the approximation
in the sense of least-squares. If m can be taken much
smaller than the dimension n with reasonable approx-
imation to the inner-product, we also have an overall
gain on the computation time for similarity checking of
large data sets besides efficiency gains in indexing. Note
that, just as the ordinary 2-norm used in the Cauchy-
Schwarz inequality, the quantities  pðzÞ used in (4) are
also symmetric functions of the coordinates. A more
general class of algorithms is obtained by taking instead
 pðqzÞ in (4), where qz ¼ ðq1z1; q2z2; . . . ; qnznÞ with qj � 0
and q1 þ q2 þ � � � þ qn ¼ 1. This has the effect of giving a
degree of importance (weight) to individual features of x
and y. For computational simplicity, we look at the
symmetric case, in which  pðzÞ is as given in (1) and
z 2 In, where In is the n-dimensional unit cube. By taking
each qj ¼ 1=n, we can write  pðzÞ ¼ np pðqzÞ, so the
calculation of the symmetric case is a particular instance.

A secondary problem we address is dynamic in nature.
We show that when the contents of the database change by
adding new data vectors, for example, the parameters used
for the approximation problem to the inner-product
calculation can be adjusted efficiently.

Note that various distances defined from the p-norm in

(1) result in different geometric interpretations and, conse-

quently, different notions of distance. For example, the

geometry of the unit disk is shown in Fig. 1 in the plane for

various values of p. The case p ¼ 2 is the usual Euclidean

metric as defined in (2) in terms of the power symmetric

functions. For 2 < p <1, the resulting disk is squeezed

between the ordinary unit circle and the unit square in the

plane. Methods such as the SVD also have intuitive
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Fig. 1. The geometry of the unit disk in the plane for various norms:

(a) kzk1 � 1, (b) the Euclidean disk kzk2 � 1, (c) kzkp � 1 for 2 < p <1,

and (d) kzk1 � 1.



geometric interpretations. For example, the singular values

of A (6) are the lengths of the principal axes of the ellipsoid

which is the image of the unit disk kzk2 � 1 under A. Our

method is more algebraic in nature. We essentially compute

the projection of the form < x; y >m onto the space defined

by all linear combinations of  1ðxÞ 1ðyÞ; . . . ;  mðxÞ mðyÞ.
We compute the best set of parameters b1; b2; . . . ; bm for an

expansion of the form (4).

3 DETERMINATION OF THE OPTIMAL PARAMETERS

The best approximation in the least-squares sense minimizes

Z
< x; y >m �

Xm
j¼1

bj jðxÞ jðyÞ
" #2

dxdy; ð5Þ

where dx ¼ dx1dx2 � � � dxn, dy ¼ dy1dy2 � � � dyn, and the in-

tegral is over the 2n-dimensional unit cube I2n. The so-called

normal equations that b1; b2; . . . ; bm must satisfy are found by

differentiating (5) with respect to each bi, and setting the

resulting expressions to zero. This results in an m�m

linear system that b1; . . . ; bm must satisfy

Xm
j¼1

Z
 jðxÞ jðyÞ iðxÞ iðyÞdxdy

� �
bj

¼
Z

< x; y >m  iðxÞ iðyÞdxdy

for 1 � i � m. Putting

ai;j ¼
Z
 jðxÞ jðyÞ iðxÞ iðyÞdxdy;

ci ¼
Z

< x; y >m  iðxÞ iðyÞdxdy;
ð6Þ

we find that b1; . . . ; bm satisfy the m�m linear system
Ab ¼ c.

We present the mathematical treatment for the case of

the 2� 2 system that arises form ¼ 2 and work out in detail

the derivation of the asymptotic expansion coefficients b1; b2
in (4). The details of the proof of the general case can be

found in [17]. For m ¼ 2,

a1;1 ¼
Z
I2n
 1ðxÞ 1ðyÞ 1ðxÞ 1ðyÞdxdy;

a2;2 ¼
Z
I2n
 2ðxÞ 2ðyÞ 2ðxÞ 2ðyÞdxdy

a1;2 ¼ a2;1 ¼
Z
I2n
 1ðxÞ 1ðyÞ 2ðxÞ 2ðyÞdxdy

c1 ¼
Z
I2n
< x; y >2  1ðxÞ 1ðyÞdxdy;

c2 ¼
Z
I2n
< x; y >2  2ðxÞ 2ðyÞdxdy:

These quantities can be computed exactly as functions of
n. First of all,Z

In
 1ðxÞ 1ðxÞdx ¼

Z
In

Xn
k¼1

xk 1ðxÞdx ¼
Xn
k¼1

Z
In
xk 1ðxÞdx:

By symmetry, this last expression can be written as

n

Z
In
x1 1ðxÞdx ¼ n

Z
In
x21dxþ nðn� 1Þ

Z
In
x1x2dx

¼ n
1

3

� �
þ nðn� 1Þ 1

4

� �
:

Therefore,

Xn
k¼1

Z
In
xk 1ðxÞdx ¼ n

n� 1

4
þ 1

3

� �
:

Similarly, Z
In
 1ðxÞ 2ðxÞdx ¼ n

n� 1

6
þ 1

4

� �
;Z

In
 2ðxÞ 2ðxÞdx ¼ n

n� 1

9
þ 1

5

� �
:

Therefore,

a1;1 ¼
Z
In
 1ðxÞ 1ðxÞdx

Z
In
 1ðxÞ 1ðyÞdy

¼
Z
In
 1ðxÞ 1ðxÞdx

� �2

¼ n2
3nþ 1

12

� �2

:

By a similar computation for a2;2 and a1;2, we find that the
matrix of coefficients is

n2ð3nþ1
12 Þ2 n2ð2nþ1

12 Þ2

n2ð2nþ1
12 Þ2 n2ð5nþ4

45 Þ2

2
664

3
775:

Next, we compute the quantities c1 and c2 in terms of n. We
have

c1 ¼
Z
I2n

Xn
k¼1

xkyk

 !2

 1ðxÞ 1ðyÞdxdy:

There are two kinds of terms arising from the expansion of
ð
P
xkykÞ2. Diagonal terms of the form x2ry

2
r , and off-

diagonal terms of the form xryrxsys for r 6¼ s. The
contribution of the first kind of terms to c1 is

n

Z
x21y

2
1 iðxÞ iðyÞdxdy ¼ n

Z
x21 iðxÞdx

� �2

¼ n
2nþ 1

12

� �2

:

It can be shown that off-diagonal terms contribute

nðn� 1Þ
Z
x1y1x2y2 iðxÞ iðyÞdxdy

¼ nðn� 1Þ
Z
x1x2 iðxÞdx

� �2

¼ nðn� 1Þ n� 2

8
þ 1

6
þ 1

6

� �2

¼ nðn� 1Þ 3nþ 2

24

� �2

:

nðn� 1Þ 3nþ2
24

� �2
. Therefore,

c1 ¼ n
2nþ 1

12

� �2

þnðn� 1Þ 3nþ 2

24

� �2

: ð7Þ
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By a similar calculation, we find

c2 ¼ n
5nþ 4

45

� �2

þnðn� 1Þ nþ 1

12

� �2

: ð8Þ

Therefore,

c1 ¼ n
2nþ 1

12

� �2

þnðn� 1Þ 3nþ 2

24

� �2

c2 ¼ n
5nþ 4

45

� �2

þnðn� 1Þ nþ 1

12

� �2

:

The resulting system satisfied by b1; b2 is

n2
3nþ 1

12

� �2

b1 þ n2
2nþ 1

12

� �2

b2

¼ n
2nþ 1

12

� �2

þnðn� 1Þ 3nþ 2

24

� �2

n2
2nþ 1

12

� �2

b1 þ n2
5nþ 4

45

� �2

b2

¼ n
5nþ 4

45

� �2

þnðn� 1Þ nþ 1

12

� �2

:

ð9Þ

Since we are interested in these approximations for large n, it

is tempting to let n! 1 in the resulting linear system and

then solve for b1; b2 directly to obtain an asymptotic formula.

Attempting to do this and simplifying the resulting

equations gives the system

1

42
b1 þ

1

62
b2 ¼

1

82

1

62
b1 þ

1

92
b2 ¼

1

122
;

which has determinant 62122 � 8292 ¼ 0 and is therefore

singular. To circumvent this problem, we include not only

the highest order term in n, but the second highest as well.

This results in the (asymptotic) system

n

16
þ 1

24

� �
b1 þ

n

36
þ 1

36

� �
b2 ¼

n

64
þ 19

576

n

36
þ 1

36

� �
b1 þ

n

81
þ 8

405

� �
b2 ¼

n

144
þ 25

1; 296
;

ð10Þ

which is nonsingular for every n. Solving (10) symbolically

for b1 and b2 and taking limits, we find

b1 ¼
9� n

4ð4nþ 1Þ�!� 1

16
; b2 ¼

5ð9n� 7Þ
16ð4nþ 1Þ�!

45

64
:

Therefore, the limiting optimal values are

b1 ¼ � 1

16
; b2 ¼

45

64
: ð11Þ

This means that for m ¼ 2, we approximate < x; y > by the

expression ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

16
 1ðxÞ 1ðyÞ þ

45

64
 2ðxÞ 2ðyÞ

����
����

s
: ð12Þ

3.1 Uniform Distribution: Arbitrary m

For general m, it can be shown [17] that

ai;j ¼
Z
I2n
 iðxÞ iðyÞ jðxÞ jðyÞdxdy

¼ n2ðijþ nðiþ jþ 1ÞÞ2

ðiþ 1Þ2ðjþ 1Þ2ðiþ jþ 1Þ2
:

Therefore, in the resulting matrix for general m, we see
from the above expression that the ði; jÞth entry ai;j satisfies

ai;j 	
n4

ðiþ 1Þ2ðjþ 1Þ2
:

This matrix

1

ðiþ 1Þ2ðjþ 1Þ2

 !

again has rank 1 and, therefore, the system obtained by

ignoring all but the highest degree of n that appears in the

system we are required to solve is singular for m > 1.

Fortunately, the inclusion of the second highest term works

as before [17]. We omit the details of the derivation of the

optimal coefficients b1; b2; . . . ; bm for m > 2. For the uniform

distribution coefficients with m ¼ 2, the approximation (12)

we obtained

< x; y >2� � 1

16
 1ðxÞ 2ðyÞ þ

45

64
 2ðxÞ 2ðyÞ;

does not involve the dimension n. This is not the case for
m > 2. Form ¼ 3, the optimal least-squares approximation is

<x; y>3�� 5

16
n 1ðxÞ 1ðxÞþ

3

2
n 2ðxÞ 2ðyÞ�

7

6
n 3ðxÞ 3ðyÞ;

and for m ¼ 4

< x; y >4 � � 59

256
n2 1ðxÞ 1ðxÞ þ

1; 575

1; 024
n2 2ðxÞ 2ðyÞ

� 175

64
n2 3ðxÞ 3ðyÞ þ

1; 575

1; 024
n2 4ðxÞ 4ðyÞ:

Values of b1; . . . ; bm we have computed for various values of
m for the uniform distribution appear in Fig. 2.

4 ACCURACY OF INNER-PRODUCT APPROXIMATION

In the first set of experiments, we analyze the accuracy of

our approximation techniques by checking the error made

in inner-product calculations, keeping in mind that the

inner-product is directly used as distance measure in

several applications, e.g., LSI. Besides this, the accuracy of

this approximation directly affects the quality of the

similarity distance approximation in Euclidean spaces as

mentioned before.

First, consider the case m ¼ 2 and the approximation

given by (12). The graph of the average absolute error made

appears in Fig. 3. The dimension n ranged from 24 to 211.

For each dimension n, 100 pairs of vectors x; y 2 In were

independently generated by drawing each coordinate from
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the uniform distribution on the unit interval I. The error

calculated for n is the average relative error of these

100 experiments where the relative error of a single

experiment is given by

< x; y > �
Xm
j¼1

bj jðxÞ jðyÞ
�����

�����
1=m

������
������= < x; y > :

These are then accumulated and divided by the number

of experiments. For the experiments of this type with

larger values of m, again 100 pairs of vectors x; y 2 In

were independently generated from the uniform distribu-

tion on In.
Fig. 4 shows the average absolute error versus dimension

for the reduced dimension m ¼ 2; 4; 6; 8, and original

dimension n ranging from 2 to 2,048.

5 OPTIMAL b1; b2 FOR VARIOUS PARAMETRIC

DISTRIBUTIONS

Suppose now that the coordinates of the vectors x and y are

not drawn from the uniform distribution on the unit

interval I, but some other distribution F on the real line.

We assume that F has density f . Thus,

F ðtÞ ¼
Z t

�1
fðxÞdx with

Z 1

�1
fðxÞdx ¼ 1;

and Prfa < x < bg ¼
Z b

a

fðxÞdx:

The ith moment �i of f (about the origin) is defined by

�i ¼
Z 1

�1
xifðxÞdx:

In minimizing the least squared error between < x; y >m

and
Pm

j¼1 bj jðxÞ jðyÞ, the coefficients b1; . . . ; bm to be

determined satisfy a linear system Ab ¼ c, where
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Fig. 2. < x; y >m � b1 1ðxÞ 1ðyÞ þ � � � þ bm mðxÞ mðyÞ: asymptotic expansion coefficients b1; b2; . . . ; bm for the uniform distribution.

Fig. 3. Average absolute error versus dimension n, 2 � n � 2; 048 for

vectors from the uniform distribution with m ¼ 2. Average error plus

minus standard deviation is also shown by dotted lines.

Fig. 4. Average absolute error versus dimension n, 2 � n � 2; 048 for

vectors from the uniform distribution with m ¼ 2; 4; 6; 8. It can be

observed that increasing m decreases average relative error.



ai;j ¼
Z
 jðxÞ jðyÞ iðxÞ iðyÞdF ðxÞdF ðyÞ; ð13Þ

ci ¼
Z

< x; y >m  iðxÞ iðyÞdF ðxÞdF ðyÞ: ð14Þ

Lemma 1. Suppose ai;j is as given in (13). Then,

ai;j ¼ n2ð�iþj þ ðn� 1Þ�i�jÞ2:

Proof. As before,

ai;j ¼
Z
IRn
 iðxÞ jðxÞdF ðxÞ

� �2

andZ
 iðxÞ jðxÞdF ðxÞ ¼ n

Z
xi1 jðxÞdF ðxÞ

¼ n

Z
xiþj1 fðx1Þdx1 þ nðn� 1Þ

Z
xi1x

j
2fðx1Þfðx2Þdx1dx2

¼ n

Z
tiþjfðtÞdtþ nðn� 1Þ

Z
tifðtÞdt

� � Z
tjfðtÞdt

� �

¼ n�iþj þ nðn� 1Þ�i�j:
ut

The quantities ci for the m ¼ 2 case are given in the

following lemma.

Lemma 2. Suppose ci is as given in (14). Then,

c1 ¼ ðn� 1Þ�1�2 þ �3½ �2þnðn� 1Þ ðn� 2Þ�31 þ 2�1�2
	 
2

c2 ¼ n ðn� 1Þ�22 þ �4
	 
2þnðn� 1Þ ðn� 2Þ�21�2 þ 2�1�3

	 
2
:

ð15Þ

Proof. Omitted. tu

These expressions for c1; c2 are a special case of a more

general theorem that appears in [17]. For m ¼ 2, using the

expressions in (15) for c1; c2 and the 2� 2 matrix of

coefficients from Lemma 1 for m ¼ 2, we have

n2½�2 þ ðn� 1Þ�21�
2 n2½�3 þ ðn� 1Þ�1�2�2

n2½�3 þ ðn� 1Þ�1�2�2 n2½�4 þ ðn� 1Þ�22�
2

2
64

3
75

b1

b2

2
64

3
75 ¼

c1

c2

2
64

3
75:

Inverting this system symbolically and letting n! 1, we

obtain the following result, whose proof can be found in [17].

Theorem 1. The constants b1; b2 which minimizeZ
IR2n

< x; y >2 �b1 1ðxÞ 1ðyÞ � b2 2ðxÞ 2ðyÞ
	 
2

dF ðxÞdF ðyÞ

are functions of the first four moments of the density fðxÞ.
They are given by the formulae

b1 ¼ �21 �
2�3

2 þ �21�4 � 3�1�2�3
�32 � �21�4 � 2�1�2�3

;

b2 ¼
�41
�2

� �1�3 � �22
�32 � �21�4 � 2�1�2�3

:

ð16Þ

Suppose now that the coordinates of x; y 2 IRn are drawn
identically and independently from a probability distribu-
tion with density function fðxÞ. In view of Theorem 1,
explicit formulas for the approximation coefficients b1; b2 in
the expansion

< x; y >2� b1 1ðxÞ 1ðyÞ þ b2 2ðxÞ 2ðyÞ

can be found using (16) as soon as the first four moments
of the density are known. For most common distributions,
these moments can be calculated explicitly as functions of
the parameters of the distribution (see, for example, [25]).
Below, we work out a number of examples. It is
interesting to note that the expressions for the optimal
constants b1 and b2 both have �1 as a multiplicative
factor. Therefore, if the mean of the distribution of the
coordinates is zero, then, for the approximation with
m ¼ 2, the algorithm gives < x; y >� 0. In this case, the
distance between x and y is approximated by

kx� yk2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
 2ðxÞ þ  2ðyÞ

p
in accordance with the identity (2).

5.1 Power Distribution

For a shape parameter c, the distribution function on 0 �
x � 1 is given by F ðxÞ ¼ xc, with density function

fðxÞ ¼ cxc�1. The ith moment of fðxÞ (around the origin)

is given by �i ¼ c=ðcþ iÞ. From Theorem 1, we get

b1 ¼ � 2c3

ðcþ 1Þ2ðc2 þ 3cþ 4Þ
;

b2 ¼
c2ðcþ 2Þ2ðcþ 4Þ

ðcþ 1Þ2ðc2 þ 3cþ 4Þ
:

ð17Þ

For c ¼ 1, fðxÞ ¼ 1 on 0 � x � 1 and the distribution is

uniform. In this case, the formulas in (17) specialize to

b1 ¼ � 1

16
; b2 ¼

45

64
;

which are the previously computed values for the uniform

distribution given in (11).

5.2 Exponential Distribution

For a scale parameter b, the distribution function on 0 �
x � 1 is given by F ðxÞ ¼ 1� expð�x=bÞ, with density

function fðxÞ ¼ ð1=bÞexpð�x=bÞ. The ith moment of fðxÞ
(around the origin) is �i ¼ i! bi. From Theorem 1, we get

b1 ¼
b2

2
; b2 ¼

1

8
:

5.3 Binomial Distribution

Let 0 � x � N be the number of successes inN independent

Bernoulli trials where the probability of success at each trial

is p and the probability of failure is q ¼ 1� p. The
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distribution function is
Px

i¼0
N
i

� �
piqN�x and the probability

density function is fðxÞ ¼ N
x

� �
pxqN�x. The first four mo-

ments of fðxÞ (around the origin) are given by

�1 ¼ Np

�2 ¼ NpððN � 1Þpþ 1Þ
�3 ¼ NpððN � 1ÞðN � 2Þp2 þ 3ðN � 1Þpþ 1Þ
�4 ¼ NpððN � 1ÞðN � 2ÞðN � 3Þp3

þ 6ðN � 1ÞðN � 2Þp2 þ 7ðN � 1Þpþ 1Þ:

From Theorem 1, we get

b1 ¼
N2p2ð1� 2pÞ
np� 3pþ 2

; b2 ¼
N2p2

ðnp� pþ 1Þðnp� 3pþ 2Þ :

5.4 Normal Distribution
Normal distribution with mean � and standard deviation �
has the probability density function

fðxÞ ¼ 1

�
ffiffiffiffiffiffi
2�

p exp
�ðx� �Þ2

2�2

 !

for �1 � x � 1. The first four moments of fðxÞ (around

the origin) are given by

�1 ¼ �; �2 ¼ �2 þ �2;

�3 ¼ �3 þ 3��2; �4 ¼ �4 þ 6�2�2 þ 3�4:

From Theorem 1, we get

b1 ¼
2�2�4

�4 þ �4
; b2 ¼

�4ð�2 � �2Þ
ð�2 þ �2Þð�4 þ �4Þ :

5.5 Poisson Distribution

Poisson distribution with parameter � > 0 (the mean) has

density function fðxÞ ¼ �xexpð��Þ=x! for integer x in the

range 0 � x � 1. The first four moments of fðxÞ (around

the origin) are given by

�1 ¼ �; �2 ¼ �ð�þ 1Þ;
�3 ¼ �ð�2 þ 3�þ 1Þ; �4 ¼ �ð�3 þ 6�2 þ 7�þ 1Þ:

From Theorem 1, we get

b1 ¼
�2

�þ 2
; b2 ¼

�2

ð�þ 2Þð�þ 1Þ :

5.6 Beta Distribution

Beta distribution on 0 � x � 1 has two shape parameters

v; w > 0, and density function

fðxÞ ¼ ðvþ w� 1Þ!xv�1ð1� xÞw�1

ðv� 1Þ!ðw� 1Þ!

(for integer v; w). The ithmoment about the origin is given by

�i ¼
Yi�1

r¼0

ðvþ rÞ=ðvþ wþ rÞ:

Using the first four of these moments in Theorem 1, we get

b1 ¼
2v2ðw� v� 1Þ

ðvþ wÞ2ððvþ 1Þ2 þ ðvþ 3ÞwÞ
;

b2 ¼
v2ðwþ vþ 1Þ2ðwþ vþ 3Þ

ðvþ wÞ2ððvþ 1Þ3 þ ðvþ 1Þðvþ 3ÞwÞ
:

A summary of these calculations for power, exponential,

binomial, normal, Poisson, and Beta distributions appears

in Fig. 5. The last two columns are the optimal values of b1
and b2 expressed in terms of the parameters of the

corresponding distribution.

6 NONPARAMETRIC CASE: ESTIMATING THE

MOMENTS FOR AN UNKNOWN DENSITY

Data streams are rapid, continuous, unbounded, and

dynamic in nature. Hence, the best set of coefficients

b1; b2; . . . ; bm may vary with time. Consequently, we need a

technique to dynamically compute best coefficients for

nonparametric distributions. In the following section, we

show how to estimate the moments of an unknown density

and use them to compute b1; b2; . . . ; bm. Note that this result

can be utilized both for static databases with unknown

densities and data streams. If the psi values grow
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indefinitely for the data stream case, one can reset them to
zero and restart the approximation process.

If the coordinates of each vector x are drawn from a
known parametric distribution family, then the parameters
can be estimated by various methods and the moments
computed as we indicated. Now, we describe a method to
estimate, and also incrementally update the moments �i
when the components are drawn from a distribution with
an unknown density fðtÞ. As before, we assume that each
coordinate of x is drawn independently from the corre-
sponding distribution. By a transformation of the real line,
we may also assume that f is identically zero outside the
interval 0 � t � 1.

Suppose we know the empirical moments ��i�i ¼ ��i�iðNÞ of
density fðtÞ, 0 � t � 1, based on samples t1; t2; . . . ; tN . Given
tNþ1, how do we update ��i�iðNÞ to obtain the estimate
��i�iðN þ 1Þ?

The idea is based on the following lemma.

Lemma 3. An estimate of the moment �i under the assumptions
above is given by

��i�iðNÞ ¼ 1

Nðiþ 1Þ N � ðtiþ1
1 þ tiþ1

2 þ � � � þ tiþ1
N Þ

� �
:

Proof. An estimate fNðtÞ for the density given the samples
t1; t2; . . . ; tN is the histogram

fNðtÞ ¼
1

N
jftjjtj < tgj;

where the bars denote cardinality. Therefore,

��i�iðNÞ ¼
Z 1

0

tifNðtÞdt ¼
1

N

XN
j¼1

j

iþ 1
tiþ1
jþ1 � tiþ1

j

� �
;

where tNþ1 ¼ 1. This sum simplifies to

��i�iðNÞ ¼ 1

Nðiþ 1Þ �tiþ1
1 � tiþ1

2 � � � � � tiþ1
N þN

� �
:

ut

Using Lemma 3, we can write ��i�iðN þ 1Þ in terms of
��i�iðNÞ and the ðN þ 1Þst sample tNþ1 as

��i�iðN þ 1Þ ¼ N

N þ 1
��i�iðNÞ þ

1� tiþ1
Nþ1

ðN þ 1Þðiþ 1Þ :

This update rule takes on a particularly nice form when we
think of a table of vectors and run this update rule for every
vector incrementally, instead of individual components.
Suppose currently there are r vectors present in the table,
each n-dimensional with entries in the unit interval, drawn
from a distribution with unknown density. Let ��i�i½r� denote
the estimate of the ithmoment of this density obtained from
the N ¼ nr samples which are the components of these
r vectors. If x is the ðrþ 1Þst vector, then the new estimate is
obtained by the update rule

��i�i½rþ 1� ¼ r

rþ 1
��i�i½r� þ

n�  iþ1ðxÞ
nðrþ 1Þðiþ 1Þ : ð18Þ

Note that, for the m ¼ 2 approximation, we need to
compute  1ðxÞ and  2ðxÞ anyway. To estimate the moments

up to i ¼ 4 (which are needed for the calculation of b1; b2 by
Theorem 1), we also compute  3ðxÞ;  4ðxÞ, and  5ðxÞ.

7 PERFORMANCE EVALUATION

The techniques presented in this paper can be readily used
for the approximation of the similarity both with respect to
inner product and Euclidean distance metric. Suppose x; y 2
In are two n-dimensional real vectors. We use the expression
(2) for the Euclidean distance between x and y. Since we
already have  2ðxÞ and  2ðyÞ stored as a part of our
dimensionality reduction, it is enough to compute < x; y >

to find the distance between two feature vectors. By using
the stored  values we approximate < x; y > and, hence,
the original distance. Next, we compare the performance of
our technique p-NORMS, with current approaches on real
and synthetic data sets. Singular Value Decomposition
(SVD) and Discrete Fourier Transform (DFT) are the best
known and the most widely used approaches in the
literature. Here, we also consider the Discrete Cosine
Transform (DCT) for dimensionality reduction, which we
found to be quite effective in our experiments. We
implemented SVD, DFT, and DCT and our new algorithm,
and analyzed their approximation quality for distance
measurements. We first compute the distance for each pair
of data vectors in the data set. A motivation for this is
similarity joins, in which in the worst case, the distance
between each pair is computed and is compared to a given
threshold criteria of similarity. For similarity queries,
instead of computing the distance between each pair of
vectors, the distances between the query point and all of the
points in the data set are computed. The query point may be
chosen from the data set or can be specified by the user.

In the experiments, pairwise distances of the data vectors

are computed. We use SVD, DFT, DCT, and p-NORMS to

reduce the dimensionality of high-dimensional vectors.

Since the reduced dimensional vectors are representatives

of original high-dimensional vectors, we approximate the

real distance by computing the distance between each pair

of vectors of smaller dimensions. For each technique, we

compute the absolute error, i.e., the difference between the

approximate and real distances, for each pair of vectors.

First, the summation of the errors for all pairs is computed,

then this value is divided by the number of pairs, i.e., the

number of distance calculations. In the first setup, we

generated 500 32-dimensional random points from the

uniform distribution on I32. Pairwise distances are calcu-

lated both for original data and reduced dimensional data.

In the figures, we refer to our approximation as p-NORMS.

First, we reduce the number of dimensions to m ¼ 2 using

p-NORMS. Due to the symmetry property of the DFT, stated

asXðkÞ ¼ X
ð�kÞ, the knowledge ofXð2Þ revealsXðN � 1Þ,
where XðkÞ is the DFT of the original data. For this reason,

we reduce the dimensionality of the other techniques to 3.

For each technique, the average absolute approximation

error is computed over all pairs of points (25,000). This

average error gives the quality of the approximations

achieved by each technique. Even when the other techni-
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ques use three coefficients, in this case their approximation

quality appears much worse than our technique.
We repeated the experiments by varying the number of

dimensions n from 2 to 2,048 and analyzing the resulting

approximations. Fig. 6a illustrates the measurements for

each of SVD, DFT, DCT, and p-NORMS. Since we use

average of absolute errors, the error naturally increases as

dimensionality increases. However, it can be seen that as n

increases, the quality difference between p-NORMS and the

other three also increases. For 80-dimensional data, for

instance, the new technique’s approximation is 7.45 times

better than the current best approach. For 200-dimensional

data, for instance, the new technique’s approximation is 10.2

times better than the current best approach. For 2,048

dimensional data, the average absolute error of p-NORMS

is 0.6 and the average absolute error of the SVD technique,

the best of the three is 17.2. Similar experiments with m ¼ 4

for all techniques were also performed. Fig. 6b illustrates the

results of these.

We also compute the approximation quality ratio of our
technique with SVD as dimensionality increases in order to
illustrate the scalability of our approach. Fig. 7 illustrates
the superiority of p-NORMS over SVD as a function of
dimensionality.

We also analyzed the quality of the approximations
developed for data sets where the components are drawn
from a normal, exponential, and poisson distributions. We
generated 500 random points from a normal distribution
with mean 0 and variance 1. We note that since the data is
not restricted to be within the range ½0 . . . 1� as before, there
are dimensions that are much greater than 1 in the data set.
Therefore, the absolute errors of the experiments are greater
than the previous cases. We computed the average absolute
error as in the previous case. Approximations based on
p-NORMS gave an error 12 times lower than the best of the
three other techniques, in this case SVD. Fig. 8a illustrates
the results of these experiments. For exponential distribu-
tion, fðxÞ ¼ ð1=bÞexpð�x=bÞ, we selected the parameter b ¼
1 and followed the same steps. Finally, for poisson
distribution, fðxÞ ¼ �xexpð��Þ=x!, we set � ¼ 0:5. We
obtained similar results as shown in the graphs of Figs. 8b
and 8c, respectively.

The techniques were also compared on real data sets.
The first data set is the stock market data [43] which is a
time-series containing 256 days stock price movements of
2,000 companies, i.e., 2,000 data points with dimension-
ality 256. We reduce the number of dimensions to m ¼ 2
using (18) and Theorem 1. Similar to the synthetic data
case, we computed the pairwise distances and took the
average of absolute errors made by low-dimensional
distance computations. Approximations based on
p-NORMS performs six times as well as SVD and 6.2
times better than DCT. We note that SVD performs better
than DCT on real data as well. We also found the nearest
100 neighbors for each vector in the data set using the
methods mentioned above. Then, we compared them
with the actual results and computed the number of false
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Fig. 6. Error comparisons of dimensionality reduction techniques (for m ¼ 2 and higher dimensions). The standard deviations (STD) for p-NORMS
and DFT are also plotted. The STDs of KLT and DCT are not shown for the clarity of the figures since they produced almost identical results.
(a) illustrates the variation of the error for increasing m and (b) results when m ¼ 4.

Fig. 7. Scalability comparison of SVD and p-NORMS.



hits. Finally, we took the average of the number of false
hits over the data set. Similar to previous experiments,
the p-NORMS has considerably higher performance than
the other methods. The average number of false hits
obtained with p-NORMS is 22.05, which is almost one
third of the result of other methods. Fig. 9 shows the
average absolute errors and average number of false hits
for each technique. We performed additional experiments,
where the number of nearest neighbors is varied from 10
to 500 and observed the number of false hits. We
repeated this experiment for 50 different query points
and averaged the results. Fig. 10 shows that the quality of
the result increases with the increasing query size.
Furthermore, p-NORMS performs better than KLT like

the previous experiments. For the clarity of the figure,
other methods which produced weaker results are not
shown. Further experiments are performed with other
real data sets. The average absolute errors obtained for
wireless telephony data, which stores the data received
by 64 stations over 1,000 periods, is shown in Fig. 11. It
can be observed that the p-NORMS results in lower error
compared to the other methods. Furthermore, the average
error plus its standard deviation is always smaller than
the average errors minus standard deviations of other
methods. p-NORMS has an average absolute error of
262.5+-78.5, KLT has an error of 865+ -240.2. With respect
to the average number of false hits, p-NORMS achieves
consistently better results and it achieves on the average 7
to 10 less false hits than other techniques. We also
performed experiments where the query is not decom-
posed into the same number of coefficients as the
summary. Using all of the coefficients of the query
improves the approximation of errors about 50 percent
for the DCT and DFT, and 40 percent for KLT. However,
the number of false hits was not affected since the
relative distances of the data points remains the same.

724 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 8. Comparison of average absolute errors for (a) Normal distribution �ð0; 1Þ, (b) Exponential distribution (b ¼ 1), and (c) Poison distribution

(� ¼ 0:5).

Fig. 9. Comparison of the dimensionality reduction methods with respect
to averageabsolute error andaveragenumberof falsehits using real data.

Fig. 10. The variation of number of falsehits for different query sizes for the
stock market data. Number of neighbors asked is varied from 10 to 500.

Fig. 11. Average absolute errors and standard deviations for wireless
telephony data.



We also compared the preprocessing times of the

methods mentioned in the experiments. We computed the

 values for p-NORMS approximation and the DFT, DCT,

and KLT of stock market data of size 360� 1; 000 using

MATLAB�. The results are summarized in Fig. 12.

p-NORMS has a preprocessing time 5.7 times lower than

the DFT, which is considerably faster than the other

methods. Particularly, p-NORMS is 67.7 times faster than

KLT, which has the closest performance to it in terms of

approximation quality and number of false hits.

8 CONCLUSIONS AND FUTURE WORK

We developed dynamic dimensionality reduction techni-

ques for efficient and accurate approximation of similarity

measures between high-dimensional vectors. The method is

based on the approximation of the standard inner-product

as a certain function of the p-NORMS of the vectors. A high-

dimensional real vector x of dimension n is represented as

the sequence of values ð 1ðxÞ;  2ðxÞ; . . . ;  mðxÞÞ where

 pðxÞ is the pth power of the p-norm of x. The magnitude

of m controls the magnitude of the reduction made.

Assuming that the components of the vectors in the data

set are identically distributed, we find optimal universal

constants b1; b2; . . . ; bm so that the approximation

<x; y>m � b1 1ðxÞ 1ðyÞþb2 2ðxÞ 2ðyÞþ� � �þbm mðxÞ mðyÞ

is the best possible for large n in the least-squares sense.

This approximation is then used for estimating the inner-

product, and consequently for approximating the similarity

distance between x and y. Since p-norm reduction directly

targets to minimize the error made in the approximations, it

achieves consistently better performance than the well-

known methods such as the KLT (SVD), DFT, and DCT. The

approximation error is better than well-known methods as

verified by experiments on synthetic and real data sets.
We showed that if the components are from a distribu-

tion with a standard density, then the moments of the

density directly determine the best constants. If the

distribution of the components of the vectors is not known,

then the method can be adapted to work dynamically by

incremental adjustment of the parameters.

There are a number of issues and extensions that can be

pursued. Among these are the analytic solution of the best

constants when the distribution of the components of the

vectors in the data set are described by some arbitrary

probability vector ðq1; q2; . . . ; qnÞ, and hybrid approaches

which can take advantage of various methods currently

available for dimensionality reduction.
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[18] Ö. Egecioglu and H. Ferhatosmanoglu, “Dimensionality Reduc-
tion and Similarity Distance Computation by Inner Product
Approximations,” Proc. Ninth ACM Int’l Conf. Information and
Knowledge Management, pp. 219-226, Nov. 2000.

[19] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D.
Petkovic, and W. Equitz, “Efficient and Effective Querying by
Image Content,” J. Intelligent Information Systems, vol. 3, pp. 231-
262, 1994.

EGECIOGLU ET AL.: DIMENSIONALITY REDUCTION AND SIMILARITY COMPUTATION BY INNER-PRODUCT APPROXIMATIONS 725

Fig. 12. The preprocessing times for the methods.



[20] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast
Subsequence Matching in Time-Series Databases,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 419-429, May 1994.

[21] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Abbadi,
“Vector Approximation Based Indexing for Non-Uniform High
Dimensional Data Sets,” Proc. Ninth ACM Int’l Conf. Information
and Knowledge Management, pp. 202-209, Nov. 2000.

[22] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. El Abbadi,
“Approximate Nearest Neighbor Searching in Multimedia Data-
bases,” Proc. 17th IEEE Int’l Conf. Data Eng. (ICDE), pp. 503-511,
Apr. 2001.

[23] A. Gionis, P. Indyk, and R. Motwani, “Similarity Searching in
High Dimensions via Hashing,” Proc. Int’l Conf. Very Large Data
Bases, pp. 518-529, Sept. 1999.

[24] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 47-57, 1984.

[25] N.A.J. Hastings and J.B. Peacock, Statistical Distributions. New
York, Halsted Press, 1975.

[26] N.S. Jayant and P. Noll, Digital Coding of Waveforms. Prentice-Hall,
1984.

[27] T. Kailath, Modern Signal Processing. Springer Verlag, 1985.
[28] K.V.R. Kanth, D. Agrawal, and A. Singh, “Dimensionality

Reduction for Similarity Searching in Dynamic Databases,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, 1998.

[29] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z.
Protopapas, “Fast Nearest Neighbor Search in Medical Image
Databases,” Proc. Int’l Conf. Very Large Data Bases, pp. 215-226,
1996.

[30] K. Lin, H.V. Jagadish, and C. Faloutsos, “The TV-Tree: An Index
Structure for High-Dimensional Data,” VLDB J., vol. 3, pp. 517-
542, 1995.

[31] D.B. Lomet and B. Salzberg, “The hb-Tree: A Multi-Attribute
Indexing Method with Good Guaranteed Performance,” ACM
Trans. Database Systems, vol. 15, no. 4, pp. 625-658, Dec. 1990.

[32] B.S. Manjunath and W.Y. Ma, “Texture Features for Browsing and
Retrieval of Image Data,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 18, no. 8, pp. 837-42, Aug. 1996.

[33] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D.
Petkovic, and P. Yanker, “The QBIC Project: Querying Images by
Content Using Color, Texture and Shape,” Proc. SPIE Conf. 1908 on
Storage and Retrieval for Image and Video Databases, vol. 1908,
pp. 173-187, Feb. 1993.

[34] A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing.
Prentice-Hall, 1989.

[35] J.T. Robinson, “The kdb-Tree: A Search Structure for Large Multi-
Dimensional Dynamic Indexes,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 10-18, 1981.

[36] SciDAC, Scientific data management center, http://sdm.lbl.gov/
sdmcenter/, 2002.

[37] T. Seidl and H.-P. Kriegel, “Efficient User-Adaptable Similarity
Search in Large Multimedia Databases,” Proc. Int’l Conf. Very Large
Data Bases, pp. 506-515, 1997.

[38] T. Seidl and H.P. Kriegel, “Optimal Multistep k-Nearest Neighbor
Search,” Proc. ACM SIGMOD Int’l Conf. Management of Data, June
1998.

[39] V.S. Subrahmanian, Principles of Multimedia Database Systems.
Morgan Kaufmann Publishers, 1999.

[40] M. Vlachos, C. Domeniconi, D. Gunopulos, G. Kollios, and N.
Koudas, “Non-Linear Dimensionality Reduction Techniques for
Classification and Visualization,” Proc. Eighth ACM SIGKDD Int’l
Conf. Knowledge Discovery and Data Mining, July 2002.

[41] D. White and R. Jain, “Similarity Indexing with the SS-Tree,” Proc.
Int’l Conf. Data Eng., pp. 516-523, 1996.

[42] D. Wu, D. Agrawal, A. El Abbadi, and T.R. Smith, “Efficient
Retrieval for Browsing Large Image Databases,” Proc. Conf.
Information and Knowledge Management, pp. 11-18, Nov. 1996.

[43] Y. Wu, D. Agrawal, and A. El Abbadi, “A Comparison of DFT and
DWT Based Similarity Search in Time-Series Databases,” Proc.
Ninth Int’l Conf. Information and Knowledge Management, 2000.
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