
The VLDB Journal (2006) 15(1): 84–98
DOI 10.1007/s00778-004-0149-x

REGULAR PAPER

Umit Y. Ogras · Hakan Ferhatosmanoglu

Online summarization of dynamic time series data

Received: 18 March 2004 / Revised version: 9 October 2004 / Accepted: 9 October 2004 / Published online: 26 July 2005
c© Springer-Verlag 2006

Abstract Managing large-scale time series databases has
attracted significant attention in the database community
recently. Related fundamental problems such as dimen-
sionality reduction, transformation, pattern mining, and
similarity search have been studied extensively. Although
the time series data are dynamic by nature, as in data
streams, current solutions to these fundamental problems
have been mostly for the static time series databases. In
this paper, we first propose a framework to online summary
generation for large-scale and dynamic time series data,
such as data streams. Then, we propose online transform-
based summarization techniques over data streams that can
be updated in constant time and space. We present both the
exact and approximate versions of the proposed techniques
and provide error bounds for the approximate case. One of
our main contributions in this paper is the extensive per-
formance analysis. Our experiments carefully evaluate the
quality of the online summaries for point, range, and k–nn
queries using real-life dynamic data sets of substantial size.

Keywords Dimensionality reduction · Transformation-
based summarization · Data streams · Time-series data

Edited by W. Aref

1 Introduction

Managing large-scale time series databases has attracted
much attention in the database community. Current solu-
tions mostly focus on the static version of the problem where
the time series data are already stored in the database and is
available for further processing. However, in many real-life

U. Y. Ogras (B)
Department of Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh, PA, USA
E-mail: uogras@andrew.cmu.edu

H. Ferhatosmanoglu
Department of Computer Science and Engineering, The Ohio State
University, Columbus, OH, USA
E-mail: hakan@cse.ohio-state.edu

applications involving time series data, such as data streams
of stock tickers, network monitoring, and sensor networks,
the data are modeled as dynamic time series, which are usu-
ally continuous and unbounded in nature. Since the data
points arrive sequentially, storing each data point and per-
forming an offline analysis is prohibitive and random access
to the data is not allowed, unlike the traditional approaches.
As a result, there is a need to develop novel, fast, online,
and preferably one-pass analysis tools with small storage re-
quirements for dynamic time series data.

Summaries of large databases have been utilized exten-
sively in many applications. Specifically, transform-based
methods have been widely used in databases to express the
raw data in a coordinate system, where most of the energy
is confined to a small subset of the transform coefficients.
The summary, obtained by storing only the most significant
transform coefficients, is used for many purposes includ-
ing data mining, classification, clustering, selectivity esti-
mation, query optimization, indexing, and efficient process-
ing of queries including point, range, and similarity queries
[1, 6, 28, 31, 33, 44]. Discrete Fourier transform (DFT) has
been one of the most commonly used transformation tech-
niques for a long time, also in the database literature [1, 13,
22, 41, 42, 48]. Similarly, discrete wavelet transform (DWT)
[8], discrete cosine/sine transforms [29], and Karhunen–
Loève transform (KLT) [32, 35, 43] have been applied
to database systems, e.g., approximate query processing
[13, 19, 24, 27, 38, 47] and selectivity estimation [34, 37].

The success of the transformation-based methods
suggests that they can be applied to environments involving
highly dynamic time series data, such as data streams,
and by storing the summary in a small auxiliary space.
Such an approach provides the ability to account for the
previous data points with much smaller space requirements.
Moreover, these summaries can be used in sensor networks
and monitoring applications to analyze the rapidly evolving
dynamic behavior of the environment [10, 36, 49]. However,
developing the summary from scratch after the arrival of
each element is very expensive. Hence, the application of
the transformation-based methods to data streams depends

Online summarization of dynamic time series data 85

critically on the development of efficient techniques to
incrementally update the transform coefficients. Incre-
mental generation of DWT-based summaries is discussed
in [27]. The authors compute a sketch of the underlying
data set to estimate the wavelet coefficients. The sketch of
the data is updated incrementally as new data points are
received. Then, the approximate wavelet-based summary
is obtained as a batch process from this sketch. Similarly,
maintenance histograms have been discussed in [26, 34, 38].
However, a general framework for dynamically maintaining
the most significant transform coefficients of the time
series data has not been explored. Moreover, there has been
little work on extending the summarization techniques to
sliding windows, and maintaining the top coefficients of the
transform-based summaries for sliding window applications
is open to discussion, as mentioned in [21].

In this paper, we develop a technique to dynamically
maintain the transform-based synopsis of a data set based on
the following observation. Computing the transform-based
synopsis of a data set is equivalent to finding the coeffi-
cients that minimize the squared error between the original
sequence and the sequence reconstructed from the synop-
sis. For static databases, directly transforming the data and
keeping the desired coefficients is obviously cheaper than
solving the least squares error (LSE) problem. On the other
hand, transforming the data from scratch after the arrival of
each element is prohibitive in applications where the data
points arrive sequentially at a fast rate. Ideally, we want
to find the synopsis as a function of the previous synop-
sis. The proposed technique constructs a fixed-size summary
and maintains the summary efficiently using the observation
mentioned above, as the data flows continuously.

Contributions of the paper We develop a general framework
based on recursive least squares estimation (RLSE) to dy-
namically update the top M transform coefficients of stream-
ing data. Then we extend the methodology for maintaining
the synopsis of a sliding window of length N . The number of
computations needed for maintaining the summary depends
on the size of the synopsis, M , rather than the window size
N � M . We illustrate this framework on DFT and show that
the recursive computation produces the exact synopsis (the
same result as transforming the data from scratch and keep-
ing the top M coefficients) by using only O(M) time and
space. Extension to the sliding window case increases the
space requirement to O(N) for the maintenance of the exact
synopsis. Hence, we devise an alternative technique that re-
quires only O(M) space, as well as O(M) time, to generate
an approximate synopsis with proven error bounds. Our fi-
nal contribution is the extensive performance analysis. Our
experiments with four real data sets demonstrate the follow-
ing: (i) The proposed technique produces exact and approx-
imate summaries with much greater efficiency than explicit
computations, (ii) both the exact and approximate synopses
keep most of the energy of the sliding window, and (iii) the
summaries can be used to answer continuous and streaming
queries with high performance.

The rest of the paper is organized as follows. Section 2
presents our framework. Section 3 illustrates the application
of our framework to DFT. Section 4 presents a one-pass
technique to generate approximate synopsis and derives
the corresponding error bound. Section 5 includes an ex-
tensive evaluation and analysis of the proposed techniques
using experiments on real data sets. Section 6 summarizes
the related work including a detailed comparison to the
wavelet-based summary generation method presented in
[27]. Finally, Section 7 concludes the paper.

2 Development of the framework

In what follows, we first introduce our notation and then
present the methodology for dynamically maintaining the
synopsis of the time series data.

Stream model and notation We denote the time series data
as a semi-infinite sequence s(t), where t is an integer in
the interval [0,∞]. A sliding window covering N elements
starting with the i th data point is denoted as xi = [s(i) :
s(i + N − 1)]. Hence the most recent N elements can be ex-
pressed as xt−N+1 = [s(t − N + 1) : s(t)], where s(t) is the
most recent data point. Note that if N = t , the first window
covers the whole data set, and x reduces to s. Hence, we rep-
resent the time series by x for both the general and sliding
window case. The transformation of x , e.g., the DFT coeffi-
cients of x , is shown by X . The transformation coefficients
X has the same dimensionality as the original sequence x .
Therefore, the original sequence can be perfectly recovered
from X . On the other hand, we denote the M-dimensional
synopsis of x (M � N) by X̂ . Finally, the window that can
be reconstructed using this synopsis, which is an approxima-
tion to the original sequence, is denoted by x̂ . The models of
incremental computation and sliding window are shown in
Fig. 1. We assume that a large number of streams are con-
tinuously flowing into the system.

Fig. 1 Stream models

86 U. Y. Ogras, H. Ferhatosmanoglu

2.1 Recursive computation of the transform coefficients

An N -dimensional vector can be expressed by its transform
coefficients and the basis vectors of the transformation B =
[b0, b1, . . . , bN−1] as x = ∑N−1

i=0 X (i)bi . Suppose that we
want to approximate x using only M < N basis vectors
and denote the indices of these vectors by the set L . The
approximation of x is obtained by a linear combination of
the basis vectors as

x̂ =
∑

i∈L

X̂ (i)bi .

The projection theorem [45] guarantees that the summary
generated using this approach is optimum in the least
squares sense, provided that X̂ (i) = X (i) for ∀i ∈ L . For-
mally, it can be stated as follows. The sum of the squared
errors between x(n) and x̂(n)

D2(x, x̂) =
N−1∑

t=0

[x(t) − x̂(t)]2 (1)

is minimized if and only if

X̂ (k) =
(X (k) k ∈ L

0 k /∈ L

)

.

This result implies that we can determine the transform-
based synopsis of a data set either by directly transforming
the data (e.g., taking DFT, DCT, KLT, DWT etc.) and pre-
serving the top coefficients or by finding the sequence X̂ (k)
such that Eq. 1 is minimized. In the static case, the former
way is preferred due to the higher computational efficiencies
achieved using the fast transformation algorithms. However,
when the data consist of a large number of rapid streams, we
do not have sufficient processing time and space to store the
data points and transform them. At this point, the recursive
solution of LSE (RLSE) problem stands as an attractive al-
ternative to computing the summary once and maintaining
it continuously as the data flow. In what follows, we will
represent the framework both formally and conceptually.

We start with a general model to solve the RLSE problem
and extend it such that the new estimate is found recursively
using the previous estimate and the new data point [39]. The
following linear model can be used to estimate the synopsis
of a sequence:

x(t) = H(t)θ + v(t) .

In this model, θ ∈ CM is the synopsis that should be es-
timated. x(t) ∈ RN stands for the current window and
H(t) ∈ CN×M is the truncated inverse transformation ma-
trix. H(t) is obtained from the actual inverse transform ma-
trix by preserving the columns corresponding to the M trans-
form coefficients with the highest energy and deleting the re-
maining columns. Note that the linear system x(t) = H(t)θ
has no solution since M < N . Hence the sequence v(t) is
added to satisfy the equality. This model is particularly use-
ful when the number of data points is much larger than the

number of parameters. This case is in fact what we are really
interested in. Hence we consider the case M � N , where M
is the dimension of the summary vector and N is the dimen-
sion of the data taken into account to generate the summary.
Let the estimator of θ be X̂ . Since we do not know θ itself,
we cannot use ‖θ − X̂‖ as an objective function. Instead, the
estimate of x(t) is defined as x̂(t) = H(t)X̂ and the objec-
tive function becomes

J [X̂] = [x(t) − x̂(t)]T W [x(t) − x̂(t)] . (2)

This objective function is simply the weighted sum of the
squared errors between the real sample and its estimate.
Note that this objective function is identical to the expres-
sion we want to minimize (Eq. 1), when W is the identity
matrix. W is a weight matrix that reflects the relative impor-
tance of each sample. In applications where the recent data
are believed to bear more information, a weight proportional
to the age of the data can be assigned to each sample. The
estimate that minimizes Eq. 2 is X̂ = (H T W H)−1 H T x(t).
Remember that H is an N × M matrix, where N is probably
a large number. Therefore, it is expensive to compute the es-
timate using this equation. On the other hand, it has a nice
form that enables us to compute the estimate recursively as
the new elements arrive. Let us assume that we have already
observed N points and receive the (N + 1)th point next. We

express H as H = [
hT

0 , hT
1 , . . . , hT

N−1

]T
, where h0 through

hN−1 are the rows of H . The picture at time instant N is

x(0)
x(1)

...
x(N − 1)

 =

h0
h1
...

hN−1

 X̂ (N − 1) +

v(0)
v(1)

...
v(N − 1)

 .

The index (N − 1) in expression X̂ (N − 1) shows that the
estimate is computed before the arrival of the N th data point.
The estimate after the addition of the next point is given in
terms of the previous estimate and the latest data point by

X̂ (N) = X̂ (N − 1) + P(N)hT
N w(N)[x(N)

− hN X̂ (N − 1)] , (3)

where

P(N)−1 = P(N − 1)−1 + hT
N w(N)hN (4)

P = (H T W H)−1 , (5)

as shown in [39]. After the first N data points arrive, the
exact summary of the data is computed by a batch process.
Then, the initial P matrix is computed using Eq. 5, and
the summary is updated after the addition of each data
point as follows: Eq. 4 updates P based on its previous
value. Then Eq. 3 updates the summary using the previous
estimate, the new P matrix, the new data point, and the
inverse transformation matrix. Hence we use the recursive
Eqs. 3 and 4 to compute the desired transform coefficients
of the stream incrementally. Illustration of the maintenance

Online summarization of dynamic time series data 87

technique is left to Sect. 3, where we specifically consider
DFT-based synopsis generation.

Maintaining the synopsis of a sliding window is more
challenging because it requires that the oldest element in the
window be dropped after a new element is received. In this
case, we reflect the change in the window to the transform
coefficients and update the synopsis. This is done as follows.
We circularly shift the current window. The oldest element
that has to leave the window becomes the first element
after this operation. Then we replace this element with
the most recent data point and reflect the effect of shifting
and replacement operations to the transform. Storing the
complete sliding window is the only way to account for the
oldest element perfectly. Our framework produces the exact
synopsis of each window, if we are allowed to store the

whole sliding window. For other applications, where this is
prohibitive, we approximate the element leaving the win-
dow accurately using the current synopsis and produce an
approximate summary with proven error bounds. The fol-
lowing section illustrates the framework by dynamically
maintaining DFT-based summaries.

3 Incremental DFT computation

In this section, we illustrate the framework developed in the
preceding section by solving the following problem:

Problem definition Given a large number of dynamic time
series data, dynamically maintain the DFT-based synopsis
of the latest N points of each stream.

The DFT analysis and synthesis equations are X (k) =
∑N−1

t=0 x(t)W kt
N and x(t) = 1

N

∑N−1
k=0 X (k)W −kt

N , respec-

tively, where WN = e
− j2π

N . The synthesis equation expresses
a sequence of length N as a sum of complex exponentials at
frequencies 2πk

N , where k is an integer, ranging from zero to
N −1. In database applications, the lower-dimensional sum-
mary of data is obtained by truncating X (k) such that only
the elements with the highest energy are retained. Although
we are not interested in recovering the original data set from
its summary, the similarity of the recovered data with the
original set is used as a measure of the summary quality.

We represent the DFT operation as a matrix multiplica-
tion X = T x , where

Ti j] = [
W −(i−1)(j−1)

N

]
, i, j = 1, . . . , N .

Since we are interested in the summary of the data, we want
to keep only the top M coefficients of the DFT while setting
the remaining ones to zero. Without loss of generality, dur-
ing the derivation we assume that the leading M coefficients
have the highest energy, as is the case for many real data sets
[1]. The selection of these coefficients, which is made based
on our knowledge about the data of interest, can be changed
adaptively without affecting the derivation. We express the
relation between the data set and its DFT-based synopsis as

x(t) = H X̂ (k) + v(t) ,

where X̂ is the M×1 synopsis and H is the N ×M truncated
DFT matrix obtained by retaining the basis vectors corre-
sponding to the desired coefficients, as shown below.

H = 1

N

1 1 1 · · · · · · 1 1

1 W −1.1
N · · · W

−1. M−1
2

N W
−1.(N− M−1

2)

N · · · W −1.(N−1)
N

1 W −2.1
N · · · W

−2. M−1
2

N W
−2.(N− M−1

2)

N · · · W −2.(N−1)
N· ·

1 W −(N−2).1
N · · · W

−(N−2). M−1
2

N W
−(N−2).(N− M−1

2)

N · · · W −(N−2).(N−1)
N

1 W −(N−1).1
N · · · W

−(N−1). M−1
2

N W
−(N−1).(N− M−1

2)

N · · · W −(N−1).(N−1)
N

Note that the columns of T corresponding to the zero co-
efficients are deleted. As shown in Sect. 2, the synopsis X̂
that minimizes the objective function (Eq. 2) is the truncated
DFT of the sequence x(t). Since there is a model for solv-
ing this minimization problem recursively, we can compute
and update the DFT coefficients dynamically as the new ele-
ments arrive. As an example, assume that 5 data points have
already arrived and we need to dynamically update the DFT
of the incoming stream. First, we compute the DFT of the
sequence using the DFT analysis equation. Having obtained
the initial summary, we compute the P matrix using Eq. 5.
Then, the DFT coefficients are updated using Eqs. 3 and 4
after the arrival of each new data point. The initial number
of data points, which is 5 in this simple example, is selected
such that the batch process requires affordable time and stor-
age. In our experiments, this number is selected as the size
of the synopsis itself.

In what follows, we focus on maintaining the synopsis of
a sliding window of size N . This is a more general problem
than the incremental computation of the synopsis since the
element leaving the window has to be accounted for in addi-
tion to the new data point. We can arbitrarily increase N to
take all data points into account, as our update rule depends
on the synopsis size rather than N .

Suppose a window consisting of N data points has al-
ready arrived and its most significant coefficients have been
computed. We start with the summary, X̂ , obtained for the
first N points and update it as the new data points arrive. The
picture at time instant N is

x(0)
...

x(N − 1)

 =

h0
...

hN−1

 X̂ (N −1)+

v(0)
...

v(N − 1)

 . (6)

88 U. Y. Ogras, H. Ferhatosmanoglu

Unlike the scenario in Sect. 2.1, in sliding windows the old-
est element is dropped when a new element is received. To
take this fact into account, we make some manipulations.
Let us take x(0) and append it to the bottom. To preserve the
equality, we also shift the rows of H and obtain

x(1)
...

x(N − 1)
x(0)

 =

h1
...

hN−1
h0

 X̂ (N − 1) +

v(1)
...

v(N − 1)
v(0)

 .

Since we have only applied row operations to Eq. 6,
X̂ (N − 1) remains unchanged. Note that this estimate could
have been computed by appending x(0), h0, and v(0) to the
(N − 1)-dimensional system given by

x(1)
...

x(N − 1)

 =

h1
...

hN−1

 X̂aux +

v(1)
...

v(N − 1)

 .

Using Eq. 3 and the hypothetical estimate X̂aux (an auxiliary
estimate to be eliminated), we can express X̂N−1 as

X̂ (N − 1) = X̂aux + P(N)hT
0 [x(0) − h0X̂aux].

Now, assume that we append x(N) instead of x(0) to
the sequence (i.e., the window slid one point and cov-
ers [x(1), x(2), . . . , x(N)]). In that case, the new estimate
would be

X̂ (N) = X̂aux + P(N)hT
0 [x(N) − h0X̂aux].

If we let x(N)−x(0) = �N and substitute x(N) with �N +
x(0), we can obtain X̂ (N) in terms of X̂ (N −1) as X̂ (N) =
X̂ (N −1)+ P(N)hT

0 �N . In general, the synopsis of the nth
window is given by

X̂n = X̂n−1 + P(N)hT
0 �n .

This equation gives a simple update rule to estimate X̂n

using the previous estimate X̂n−1. It only requires the
difference between the last point and the point leaving the
window, h0 = [1, 1, . . . , 1]M×1 and P(N). However, the
updated estimate is not the DFT of the new window because
H is distorted by changing the rows. Consequently, it is
not equal to the matrix H given in Table 1. If we can find a
matrix A such that
[
hT

1 , . . . , hT
N−1, hT

0

]T
A = H =

[
hT

0 , hT
1 , . . . , hT

N−1

]T
,

then we can find DFT coefficients from X̂n . That is, we want

x(1)
...

x(N − 1)
x(N)

 =

h1
...

hN−1
h0

 AA−1X̂n +

v(1)
...

v(N − 1)
v(N)

 ,

where A−1X̂n will give the desired DFT coefficients.
Since we do not need to find A itself to compute the DFT,

we directly compute A−1. Matrices A and P take very
convenient forms for DFT. P is found as P = N × Ik×k
and A turns out to be a diagonal matrix

A−1 = diag
(
1, W −1

N , . . . , W
− M−1

2
N , . . . , W

−(N− M−1
2)

N

, . . . , W −(N−2)
N , W −(N−1)

N

)
. (7)

The details of the computations are provided in the
appendix.

To sum up, we obtain the DFT of the nth window in
terms of the previous window as

X̂n = A−1X̂n−1 + A−1

N
hT

0 (x(N) − x(0)). (8)

The first operation in Eq. 8 requires only M multiplications
and additions since A−1 is a diagonal matrix given in Eq. 7.
The second operation also requires only M multiplications
since h0 = [1, 1, . . . , 1]M×1. So a total of 2M multiplica-
tions and M additions are needed. This is much more ef-
ficient than computing the DFT of each window explicitly
since the number of coefficients stored is much less than the
size of the window (M � N).

The method presented in this section produces the ex-
act synopsis with computational complexity depending only
on the synopsis size M . However, it requires that the sliding
window be stored to access the window’s oldest element.
This may be prohibitive in applications where the size of
the data to be processed is very large. Hence, it may be de-
sirable to trade accuracy with space for these applications.
In the following section, we derive an algorithm to produce
one-pass, approximate synopses with corresponding error
bounds.

4 Approximate synopsis generation

There is a tradeoff between the accuracy of the synopsis and
the space requirement of the method. Computation of the ex-
act synopsis requires both the newest data point, x(N), and
the oldest element, x(0), that leaves the window. Instead of
storing the complete window for just one value and access-
ing it during the update process, we can use the current syn-
opsis to approximate x(0). The resulting algorithm has the
one-pass property besides being highly efficient in time and
space.

The inverse DFT of the synopsis is given by

x̂(t) = 1

N

N−1∑

k=0

X̂ (k)W −kt
N .

Since we are interested in the first value in the window, we
do not need to compute the entire inverse DFT. Instead, we
substitute t = 0 and find only x̂(0) as

x̂(0) = 1

N

N−1∑

k=0

X̂ (k) = 1

N

M−1∑

k=0

X (k) . (9)

Online summarization of dynamic time series data 89

In the above equation, we use the fact that the first M co-
efficients of X̂ are equal to those of X and the remaining
are zero. In this way, we can update the synopsis using only
the previous synopsis and the newest data point. Hence, the
space requirement of the algorithm drops dramatically at the
expense of the error introduced by the estimation. It is neces-
sary to keep the error within acceptable bounds to maintain
the quality of the results. Therefore, we analyze the error and
find an upper bound in the next section.

4.1 An error bound for the approximation

The update rule to generate the synopsis of the nth window
in terms of the previous synopsis and the latest data point is
given by Eq. 8. If we use the estimate of x(0) instead of the
actual value, the approximate update is found as

X̄n = A−1X̄n−1 + A−1

N
hT

0 (x(N) − x̂(0)) . (10)

Hence the error in the synopsis evaluated at the nth time
instant is found by subtracting Eq. 10 from Eq. 8:

X̃n = A−1X̃n−1 + A−1

N
hT

0 (x̂(0) − x(0)) . (11)

This equation gives the error in the nth synopsis in terms
of the error in the previous synopsis. Since we know that
X̃0 = 0, we can rewrite Eq. 11 as

X̃n = (A−1)nhT
0

N
�x0 + (A−1)n−1hT

0

N
�x1

+ · · · + A−1hT
0

N
�xn−1

X̃n = 1

N
[(A−1)nhT

0 | · · · |A−1hT
0]

�x0
�x1

...
�xn−1

 , (12)

where �xn = x̂n(0)− xn(0). Since A−1 is diagonal, (A−1)n

can be found as

(A−1)n = diag
(
1, W −n

N , W −2n
N , . . . , W −(N−1)n

N

)
.

As a result, ‖(A−1)nhT
0 | · · · |A−1hT

0 ‖1 = M . If we take
the norm of both sides of Eq. 12, we obtain

‖X̃n‖1 ≤ M

N

n−1∑

l=0

‖�xl‖ . (13)

Note that �xl = − 1
N

∑N−1
k=M Xl(k). Since we take the top M

coefficients, we can write

‖�xl‖ ≤ N − M

N
‖Xl(M − 1)‖ .

Fig. 2 Maintaining the approximate synopsis

Hence we obtain the following upper bound for the error

‖X̃n‖ ≤ M(N − M)

N 2

n−1∑

l=0

‖Xl(M − 1)‖ . (14)

The error bound given in Eq. 14 is a function of the syn-
opsis and window sizes. As M approaches the window size
N , i.e., we take more coefficients, the bound goes to zero as
expected. Similarly, the error is accumulating as more ele-
ments are received and the synopsis is updated by approxi-
mating x(0). In practical applications, the theoretical bound
can be tracked, and when it exceeds a threshold value, the
synopsis can be reconstructed again. We propose to reset
the synopsis (i.e., replacing the approximate synopsis with
the exact one) periodically to keep the error always within
a very small range, as illustrated in Fig. 2. Suppose that we
select the window size as 1,024 and our reset rate as 2,000.
The algorithm goes as follows:

Period I The exact synopsis is constructed incrementally
as the data points arrive using Eqs. 3 and 4. The queries are
answered using the exact synopsis.

Period II The exact synopsis, obtained after the arrival
of the 1,024th data point, is used as the initial summary.
Then, the approximate synopsis is computed after the arrival
of each data point. The queries are answered using the ap-
proximate synopsis.

Period III During this period, two processes run concur-
rently. The first one is the computation of the approximate
synopsis as in period II. We continue to answer the queries
using this approximate synopsis. The second process is the
construction of an exact synopsis assuming that the 2,001th
data point is the first element in the window (the same pro-
cess as performed in period I). This concurrency is afford-
able since both tasks are performed very efficiently.

Period IV At the end of period III, there are two synopses
for the same sliding window. The first one is the approximate
synopsis used during periods II and III, while the other one
is the exact synopsis whose construction started at the be-
ginning of period III. At the beginning of period IV, we drop
the approximate synopsis and proceed exactly as period II.
After that, periods III and IV are repeated in an alternating
sequence. Hence, the patten is: I, II, III, IV, III, IV,

Such an approach enables us to maintain very accurate
summaries of a large number of time series data originating
from different sources using only O(M) space for each se-
ries. In the experiments, we show that a period in the order of
the window size can keep the error within 10% of the exact
synopsis.

90 U. Y. Ogras, H. Ferhatosmanoglu

5 Experiments

In the preceding sections, we developed a recursive method
to compute and maintain exact and approximate summaries
of time series data. In this section, we perform a complete
set of experiments to demonstrate the efficiency of our tech-
nique and the accuracy of the results. The experiments are
performed on a standard machine equipped with 512 MB
memory and a Pentium 4 processor operating at 2.26 GHz.
The proposed techniques are implemented in Matlab 6.1.
The first set of experiments show that our techniques achieve
high caliber results with superior performance compared to
explicit DFT computation. The second set of experiments
illustrates usefulness of the summaries in answering contin-
uous and streaming queries.

5.1 Performance of synopsis generation

Time and space requirements of the technique and the qual-
ity of its results are the main criteria in assessing the perfor-

100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

Computation Times

Window size

tim
e

 p
e

r
w

in
d

o
w

 (
se

c)
 (

F
o

r
3

2
5

0
0

 s
tr

e
a

m
s) Explicit FFT

Proposed Exact Method
Approximation

a

100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4
Computation Times

Window size

tim
e
 p

e
r

w
in

d
o
w

 (
se

c)
 (

F
o
r

3
2
5
0
0
 s

tr
e
a
m

s) Explicit FFT
Proposed Exact Method
Approximation

b

c

0 100 200 300 400 500 600 700
0

10

20

30

40

50
Ratio of computation times

Window size

t e
xp

lic
it

/ t
re

cu
rs

iv
e

Explicit FFT / Exact Method
Explicit FFT / Approximation

Fig. 3 a Time it takes to update the synopsis for each window of 32,500 time series data sets. b Performance of the proposed techniques are
independent of window size. Approximation causes a slight increase in computation time. c The ratio of the computation times of the explicit
DFT and our methods multiples for increasing window size since explicit DFT requires N log N time

mance. For this reason, we run experiments to explore these
aspects in a complete manner. In these experiments, we as-
sumed that there was a large number of sources supplying
time series data. We analyzed the effects of the sliding win-
dow size, the synopsis size, and the approximation error on
the efficiency by employing four real data sets.

5.1.1 Computation time

The first experiment illustrates the fact that the proposed
exact synopsis generation technique produces the same re-
sult as taking the DFT of each window explicitly and retain-
ing the desired coefficients, with much higher efficiency. We
used a time series data set representing stock market move-
ments of 32,500 companies over 1,080 periods, i.e., there are
32,500 different streams flowing to our system and we con-
tinue the experiment until 1,080 data elements are received.
We selected the synopsis size as 11 and varied the window
size from 16 to 750.

Figure 3a shows the total time it takes to update the syn-
opses of all 32,500 different series. In this figure, the x-axis

Online summarization of dynamic time series data 91

is the window size while the y-axis shows the total computa-
tion time of the 32,500 DFTs for the corresponding window
sizes (computation time per window). Our method clearly
outperforms explicit computation. To analyze the perfor-
mance of the proposed techniques more clearly, we provide
the zoomed version of this plot in Fig. 3b. It takes about
190 ms for the proposed technique to compute the synopses
of all series. This means that the proposed technique can
handle about 171,050 streams per second with a nonopti-
mized code on a standard machine. While this rate is suf-
ficient for many applications, the capacity can be further
increased using other newly proposed techniques, such as
smart sampling and shedding [4, 15, 17, 30]. Figure 3b also
shows that the time required to update the DFT coefficients
using our approach remains constant as N increases. This
is expected since the update process is a function of the
synopsis size rather than the window size. The approxima-
tion, which needs M more additions and one division, takes
slightly more time, as expected. Finally, we present the ratio
of the computation times of the explicit DFT and our method
in Fig. 3c. Our technique performs about 34 times faster for
window size N = 512 and the ratio increases with the win-
dow size. Further experiments showed that the computation
time, indeed, increases linearly with increasing synopsis size
as predicted by Eq. 8.

5.1.2 The quality of the synopsis

We evaluated the quality of our results following a system-
atic approach. First, we compared the summaries with the
complete description of the data and justified that they pre-
serve most of the energy of the original data set. After veri-
fying that the exact synopsis was indeed a good approxima-
tion, we compared it with the approximate synopsis. These
experiments demonstrate that our one-pass technique gener-
ates accurate summaries of the original data. Furthermore,
they provide an explanation for the outstanding query per-
formance of the resulting summaries.

We start the experiments with the same time series data
of size 1,080 × 32,500. In this part, we fix the window size
to 128. First, we compute the total energy of the i th window,
given by x = [s(i) : s(i +127)], of each stream by assuming
that we already had them. Then, the sum of the squared er-
rors (SSE) between each window and its synopsis are found
both for the exact and approximate summaries. Finally, the
results are averaged over all different time series. The set
of plots given in Fig. 4 shows that most of the energy of
the original data set is preserved by the exact synopsis. The
ratio decreases, i.e., more energy is confined in the synop-
sis, as we enlarge the synopsis size. We also compute and
plot the corresponding results for the approximate synop-
sis. While the approximate synopsis results in a higher ratio,
it still captures more than 90% of the energy for M = 5.
As the procedure is repeated at different time instances, we
are able to observe the variation of the performance with
time. In particular, we show the results for the windows 20,
60, 100, 140, 180, and 220 in Fig. 4. The performance of

5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Number of coefficients

S
S

E
 /

E
ne

rg
y

Exact
Approximate

5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Number of coefficients

S
S

E
 /

E
ne

rg
y

Exact
Approximate

a

5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Number of coefficients

S
S

E
 /

E
ne

rg
y

Exact
Approximate

5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Number of coefficients

S
S

E
 /

E
ne

rg
y

Exact
Approximate

b

5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Number of coefficients

S
S

E
 /

E
ne

rg
y

Exact
Approximate

S
S

E
 /

E
ne

rg
y

5 10 15 20 25
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Number of coefficients

Exact
Approximate

c

Fig. 4 Ratio of SSE and energy of original data for varying synopsis
sizes. The SSE decreases as more coefficients are retained in the syn-
opsis. The increase of the SSE for the approximate synopsis as win-
dow number increases is illustrated by plotting the results for a series
of windows. a 20th and 60th windows. b 100th and 140th windows. c
180th and 220th windows

the exact synopsis is almost the same for all of the win-
dows. On the other hand, the performance of the approxi-
mate synopsis degrades as time passes. This is expected, be-
cause we have proven that the error in this result accumulates
due to the approximation of the oldest data point in each
window.

Next, we analyze the error caused by the approximation
in our one-pass synopsis generation technique. For this case,
we compute the difference between the exact and approxi-
mate synopses of size 11 and find the sum of the squared

92 U. Y. Ogras, H. Ferhatosmanoglu

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

Window Number

S
S

E
 /

S
yn

op
si

s
en

er
gy

Synopsis size 11

0 50 100 150 200 250
0

0.5

1

1.5

Window Number

||E
rr

or
|| 1

/ |
|S

yn
op

si
s|

| 1

Experimental result
Theoretical Error Bound

a

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

Window Number

S
S

E
 /

S
yn

op
si

s
en

er
gy

Synopsis size 15

||E
rr

or
|| 1

/ |
|S

yn
op

si
s|

| 1

0 50 100 150 200 250
0

0.2
0.4
0.6
0.8

1
1.2
1.4

Window Number

Experimental result
Theoretical Error Bound

b

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

S
S

E
 /

S
yn

op
si

s
en

er
gy

Synopsis size 25

||E
rr

o
r|

| 1
/
||S

yn
o
p
si

s|
| 1

Window Number

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Window Number

Experimental result
Theoretical Error Bound

c

Fig. 5 The ratio of the SSE between the exact and approximate summaries, and the energy of the exact synopsis are given in the upper plots.
The lower plots show the same ratio for the L1-norms and the theoretical error bound. a Synopsis size 11. b Synopsis size 15. c Synopsis size 25

errors (SSE). Then these results are divided by the energy of
the exact synopsis. We plot the results for windows 1–232 as
shown in Fig. 5. It is observed that the ratio increases as the
window slides over the data. However, the rate of increase
reduces to zero. The same procedure is repeated for different
synopsis sizes, as shown in Fig. 5. We also compute the ratio
of the L1-norm of the error and the exact synopsis and com-
pare it with the theoretical error bound. We observe that it is
indeed below the theoretical bound and its behavior is simi-
lar to the ratio of energies. We repeat these experiments with
isolated letter speech recognition data of size 617 × 2,000
and obtain similar results.

To analyze the effect of the error accumulation better,
we used other real data sets with much larger number of
dimensions. The results obtained with 180,000 dimensional
electrocardiogram (ECG) data recorded from a human
(male) in a supine position are shown in Fig. 6. Figure 6a–c
gives the ratio of SSE and the energy of the original data
set for varying synopsis sizes. The ratio diminishes as
more coefficients are retained in the summary as for the
previous data set. The variation of SSE between exact and
approximate summaries is illustrated in Fig. 6d–f. Unlike
the previous experiment, we reset the approximate synopsis

with period 512 as explained in Sect. 4. As can be seen,
the error accumulates as for the previous data set. However,
when we replace the approximate with the exact synopsis,
the error, and hence the ratio, drops to zero. In this way, we
manage to keep the approximate synopsis within 90% of the
exact synopsis. Similarly, we repeat the same experiments
for a data set of length 26,612 (Dow Jones Industrial
Average between 1900 and 1993). The results obtained with
synopsis size 9 for this data set are provided in Fig. 7. In this
case, the window size is selected as 2,400. In Fig. 7a–c, it
is observed that the exact and approximate summaries keep
more than 99% of the total energy for a synopsis size larger
than 9. In Fig. 7d,e, we see that the approximate synopsis
captures more than 95% of the exact synopsis for most of
the windows, while for some of the windows this ratio drops
to 80%.

If the error is crucial, the reset rate can be make as
low as the window size. In this case, the number of data
streams the technique can handle will be halved, since the
update of the approximate synopsis and construction of the
exact one that will replace it will be performed concurrently.
Hence, the data rate will be 85,525 streams/s with the current
setup.

Online summarization of dynamic time series data 93

5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of coefficients

S
S

E
 /

E
ne

rg
y

a

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

Number of coefficients

S
S

E
 /

E
ne

rg
y

b

5 10 15 20 25 300

0.05

0.1

0.15

0.2

0.25

Number of coefficients

S
S

E
 /

E
ne

rg
y

c

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

x 104

x 104

0

0.02

0.04

0.06

0.08

0. 1

0.12

Window Number

S
S

E
 /

S
yn

op
si

s
en

er
gy

0 500 1000 1500 2000 2500 3000

0

0.05

0.1

0.15

0.2

Window Number

S
S

E
 /

S
yn

op
si

s
en

er
gy

d

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

Window Number

S
S

E
 /

S
yn

op
si

s
en

er
gy

0

0.1

0.2

0.3

0.4

0.5

S
S

E
 /

S
yn

op
si

s
en

er
gy

0 500 1000 1500 2000 2500 3000
Window Number

e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

Window Number

S
S

E
 /

S
yn

op
si

s
en

er
gy

Synopsis size 15

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

Window Number

S
S

E
 /

S
yn

op
si

s
en

er
gy

f

Fig. 6 a–c Ratio of SSE (between synopsis and original data) and energy of original data for different windows (— exact synopsis, -·- approx-
imate synopsis). d–f Ratio of SSE between exact and approximate summaries and energy of exact synopsis for varying synopsis sizes. Note
that in a–c we analyze the variation of the ratio with respect to the synopsis size at a certain time instant. On the other hand, in d–f we analyze
the variation of the ratio with time for a constant synopsis size. a 5,000th window. b 11,000th window. c 14,000th window. d Synopsis size 25.
e Synopsis size 20. f Synopsis size 15

5.2 Query processing

The results of the first set of experiments suggest that the
proposed techniques should achieve satisfactory query per-
formance. In this part, we validate this expectation using real
data sets. For the first experiments, we used time series data
of size 1,080×32,500, which is also used in the first experi-
ments. The window size is selected as 128, and the synopsis

size is set to 9, since it was observed that more than 98% of
energy is preserved by the approximate synopsis of this size.
Particularly, we sought answers to the following questions:

– Point query: Is a particular point in the data set?
– k–N N search: What are the closest k vectors to the query?
– Range query: What are the vectors within the ε neighbor-

hood of the query?

94 U. Y. Ogras, H. Ferhatosmanoglu

5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

0.03

Number of coefficients

S
S

E
 /

E
ne

rg
y

Exact Synopsis
Approximate Synopsis

a

5 10 15 20 25 30 35 400

0.005

0.01

0.015

0.02

0.025

0.03

Number of coefficients

S
S

E
 /

E
ne

rg
y

Exact Synopsis
Approximate Synopsis

b

5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

0.03

Number of coefficients

S
S

E
 /

E
ne

rg
y

Exact Synopsis
Approximate Synopsis

c

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
x 104

x 104

0

0.05

0.1

0.15

0.2

0.25

Window Number

S
S

E
 /

S
yn

op
si

s
en

er
gy

Synopsis Size:5 d

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0

0.05

0.1

0.15

0.2

0.25

Window Number

S
S

E
 /

S
yn

op
si

s
en

er
gy

Synopsis Size: 25e

Fig. 7 a–bf c Ratio of SSE (between the synopsis and original data) and energy of original data for different windows. d–e Ratio of SSE (between
exact and approximate summaries) and energy of exact synopsis for varying synopsis sizes. a 5,000th window. b 11,000th window. c 14,000th
window. d Synopsis size 5. e Synopsis size 25

These questions are answered for both continuous and
streaming queries. Like the DFT-based summaries of static
databases, the proposed techniques underestimate the dis-
tance of the query to the data set. Hence we may encounter
false hits (or false alarms), but there are no false dismissals,
as we show in the experiments.

5.2.1 Continuous query

Unlike one-time queries, continuous queries are issued once
and then they run continuously over the database [5]. To
evaluate the performance of the algorithm for continuous
queries, a query is selected from a similar data set and kept
constant as it slides over the data stream. Whenever a new

data element is received, the synopsis is updated using our
algorithm. Then, the queries are answered using this syn-
opsis. In this experiment, we ran 500 different queries and
averaged the results.

We started the experiments by verifying that the synop-
sis always generated correct answers to point queries. After
that, we evaluated the performance of the algorithm for k–
N N search. For this purpose, we first found the k-nearest
neighbors of the query in the data set using the exact and ap-
proximate summaries. Then, we compared the results with
the actual k–N N and determined the number of false hits.
We repeated this experiment for various different queries
and found the average number of false hits as shown in
Fig. 8. In this figure, the x-axis denotes the sequence of the

Online summarization of dynamic time series data 95

20 40 60 80 100 120 140 160 180 200 220
0

5

10

15

20
Continuous Query, kNN Search (k=20)

N
um

be
r

of
 fa

ls
e

hi
ts

Window Number

Approximate synopsis
Exact Synopsis

20 40 60 80 100 120 140 160 180 200 220
50

55

60

65

70

75

80
Range Query

N
um

be
r

of
 S

tr
ea

m
s

in
 th

e
 R

an
ge

Window Number

Actual result
Exact Synopsis
Approximate synopsis

Fig. 8 Variation of number of false hits for a continuous query as the
window slides over the stream

windows obtained as new elements are received. The cor-
responding value on the y-axis is the number of false hits
computed for that window for k = 20. It is seen that the ap-
proximate synopsis produces 2–3 more false hits on average.
However, the result is still below 5 false hits for 20 nearest
neighbors.

The performance is also evaluated based on range
queries. A continuous query is defined as for the previous
case, and the data points within the ε-neighborhood in the
latest window of the data stream are searched. For this
experiment we selected ε as 1% of the average expected
distance of the point in the stream. As in the previous
experiment, we also found the actual points in the stream
that are within the desired distance using the original data
and evaluated the performance. The result is shown in
Fig. 8. The dotted line shows the actual number of points in
the desired neighborhood, while the solid and dash-dotted
lines show the number of points selected correctly using the
exact and approximate synopsis, respectively.

5.2.2 Streaming query

In some emerging applications such as data recharging and
Web monitoring, streaming queries may be encountered as
well as streaming data [9]. In this part, we selected a query
from a similar stock market data and used this query contin-
uously on the data streams. In addition to the data, the query
was also assumed to be a stream in this case. As the window
slid over both the stream and the query, we computed the
approximate answers based on the synopsis maintained by
the proposed method. We also found the exact answers and
evaluated the performance by the methods used for contin-
uous queries. Both exact and approximate synopses gener-
ated correct answers to point queries. The results for k–N N
query with k set to 20 are given in Fig. 9. This plot shows
the number of false hits obtained for each window. Out of a

0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

20
Stream Query, kNN Search (k=20)

N
um

be
r o

f f
al

se
 h

its

Window Number

Approximate synopsis
Exact Synopsis

Fig. 9 Variation of number of false hits for streaming query as the
window slides over the stream

total of 232 windows analyzed in this experiment, the aver-
age number of false hits caused by the exact synopsis is less
than 1. The approximate synopsis causes 2 false hits on aver-
age. We can also observe the increase in the number of false
hits caused by the approximate synopsis as time progresses.
This increase is due to the accumulation of the error, which
was analyzed in the first set of experiments (Fig. 5). We also
evaluated the proposed method for range queries. A stream-
ing query is defined as for the previous case, and the points
within ε-neighborhood in the latest window of the incoming
query are sought. The results are not included since they are
similar to those obtained for continuous queries.

6 Related work

Data stream management systems have very recently
attracted the attention of the database and networking
communities [5, 7, 9, 10, 11, 14, 16, 18, 20, 21, 23, 25, 27,
36, 46, 49]. In [14], the authors provide an extensive survey
of the emerging issues and existing work on data streams. A
language for continuous queries over data streams is defined
in [5]. A system capable of processing old queries on the
new data or new queries on the old data is introduced in [9].
The authors focus on general select project join views and
simple classes of aggregates. One of the main application
areas of continuous and streaming queries is sensor net-
works. The advances in sensor technologies have led to the
development of sensor networks providing large amounts of
data streams. Unlike traditional data sources, sensors suffer
from limited power source, processing power, and storage
space [10, 36, 49]. In [36], the authors present an architec-
ture to manage multiple queries over many sensor inputs.
Processing queries in sensor networks is discussed in [49].
The authors develop a query layer and analyze in-network
aggregation, the interaction of the in-network aggregation
with the wireless routing protocol, and distributed query
processing. In [18], the authors concentrate on monitoring

96 U. Y. Ogras, H. Ferhatosmanoglu

continuous data streams and introduce a system to monitor
streams from sensors.

Motwani et al. [16, 20] discuss maintaining statistics
over sliding windows. The authors present methods to
approximate the variance, k-medians clustering, and simple
statistics over sliding windows with proven error bounds.
Histogram-based methods are widely used for selectivity
estimation. Maintenance of classical partition-based his-
tograms are discussed in [26]. To increase the accuracy of
the classical histogram-based methods, transform-based
histogram methods are introduced [38]. The maintenance
of such histograms, which are relatively more difficult than
classical histograms, is discussed in [34, 38]. In [38], the
authors develop a method based on probabilistic counting
and sampling to dynamically maintain wavelet-based
histograms. Gehrke et al. [25] present a one-pass technique
to answer correlating aggregate queries over streams using
histograms summaries. In [34], the authors use DCT-based
compressed histograms for multidimensional selectivity
estimation. The changes in the histogram are reflected in the
summary using the linearity property of the DCT.

Generating online summaries of data streams based on
wavelet transform approximations is discussed in [27]. In
this paper, the authors discuss generating one pass sum-
maries of data streams. However, our technique differs from
their technique in many aspects. They use a sketch, using a
random projection approach, e.g., the one from [3], of the
underlying data set that can be used to estimate the wavelet
coefficients. In their technique, the sketch of the data, not
the wavelet coefficients, is updated incrementally as new
data points are received. That is, while the update process
of the sketch is online, computation of the wavelet-based
synopsis is a batch process, which runs on a sketch of
data corresponding to a certain period, e.g., one day. As a
result, obtaining a wavelet-based synopsis requires extra
processing (�(N log N)) on top of online maintenance of
the sketch with logarithmic time and space. Although this
cost can be reduced (as is done in their final experiment)
by computing 1 coefficient for every 1,000 data items in
the background, this degrades the accuracy, as is pointed
out by the authors [27]. A more serious limitation is that
the background computation catches up with the batch
computation, and even surpasses it, if more and more
wavelet coefficients are computed.

In contrast, our technique computes the synopsis incre-
mentally in O(M) time and space (M � N , is the synop-
sis size), although the focus of our work has been on slid-
ing window computations. Furthermore, it produces the ex-
act set of transform coefficients (identical to computing the
transform offline and selecting the best coefficients), unlike
the technique in [27]. As we have shown, our technique
maintains the synopsis of the sliding window covering most
recent N points successfully. It can produce both exact syn-
opses (with O(M) time and O(N) space) and approximate
synopses (with O(M) time and O(N) space).

On the other hand, the technique in [27] is extended to
concatenated streams by defining the λ-aging data stream.

This approach can be used to compute the synopsis of a
sliding window over a block of data. Decreasing the size
of the block to a single data point would make this process
truly incremental, as in our case. However, this is prohibitive
for their technique, since implementing this would require
�(N log N) time to compute the wavelet coefficients from
the sketch as discussed above. In [27], it is also argued that
the sketch can directly be used to answer queries online,
which could have been an alternative to our solution. How-
ever, this produces the worst approximations as pointed out
in [27].

Finally, computation of a moving Fourier transform has
been discussed in the signal processing area [2, 40], and DFT
over sliding windows has been studied in [12].

7 Conclusions and future work

Summaries of large databases have been used extensively in
many applications. Although time series data are dynamic
by nature, the current summary generation techniques have
been mostly for static time series databases. Due to the
recent applications, in which dynamic time series data are
collected from many sources, online and update-efficient
methods are needed to generate and maintain the summaries.
In this paper, we develop a transformation-based framework
to online summary generation for large-scale and dynamic
time series data. Specifically, we concentrate on DFT-based
synopsis generation and introduce a recursive method to
update the highest energy transform coefficients of the time
series data. The computational complexity of the proposed
technique depends on the size of the synopsis, while the
computational complexity of DFT is N log N . Furthermore,
we develop a one-pass technique to compute an approximate
synopsis with proven error bound using O(M) space as well
as O(M) time. In Sect. 5, we demonstrate our results using
four real data sets and evaluate the performance using con-
tinuous and stream queries over dynamic time series data.

A possible extension of the work is to monitor the per-
formance of the summaries. If the performance is below a
threshold, the size of the synopsis can be increased adap-
tively. Also, for cases when the frequency distribution of the
data has significant changes, the set of coefficients that are
updated can be revised.

Acknowledgements This material was prepared with the sup-
port of the U.S. Department of Energy (DOE) Award No.
DE-FG02-03ER25573. However, any opinions, findings, conclusions,
or recommendations expressed herein are those of the authors and do
not necessarily reflect the views of DOE.

We would like to acknowledge the constructive comments made
by the reviewers, which have improved the presentation of the paper
significantly.

This work was completed when the first author was with the
Department of Computer Science and Engineering, The Ohio State
University

Online summarization of dynamic time series data 97

Appendix: Calculation of A and P

The DFT matrix is given as

Ti j = W −(i−1)(j−1)
N , i, j = 1, . . . , N .

During the update process of the synopsis, H is modified as
follows: the rows from 2 to n are shifted up, while the first
row comes to the bottom. If we apply the same operations to
T , the resulting matrix becomes

T́i j =
{

W −i(j−1)
N for i = 1, . . . , N − 1

1 for i = N

}

.

We are looking for a matrix A such that T́ = T × A−1.
Note that, if we multiply each column of T by W −(j−1)

N ,
we can obtain T́ . The result for rows i = 1, . . . , n − 1 are
clear. The result for the last row stems from the fact that DFT
coefficients are periodic with 2π . As a result, A−1 is found
as shown in Eq. 7.

P is given by Eq. 5 as P = (H T H)−1. As a result, we
obtain P−1 as

P−1 = [hT
1 hT

2 · · · hT
N]

h1

h2

...

hN

,

P−1 =
N∑

i=1

hT
i hi .

Hence, interchanging the rows does not change P . Remem-
ber that hi is given by

hi = [
1 W −(i−1)

N W −2(i−1)
N · · · W

− M
2 (i−1)

N W
−(N− M

2)(i−1)

N

· · · W (N−2)(i−1)
N W (N−1)(i−1)

N

]
/N . (A1)

As a result, the diagonal of the product hT
i hi is 1

N 2 , while

the other entries are of the form W m(i−1)
N , where m takes the

values ∓1, ∓2, . . . ,∓(N − 1):

N∑

i=1

W m(i−1)
N =

N∑

i=1

e− j 2pi
N m(i−1) = 1 − e j 2πm N

N

1 − e j 2πm
N

= 0 .

(A2)
since m
= 0. Thus,

P−1 =
N∑

i=1

hT
i hi = 1

N
Ik×k .

References

1. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search
in sequence databases. In: Proceedings of the 4th International
Conference on Foundations of Data Organization and Algorithms
(1993)

2. Albrecht, S., Cumming, I., Dudas, J.: The momentary fourier
transformation derived from recursive matrix transformations.
In: Proceedings of the 13th International Conference on Digital
Signal Processing (1997)

3. Alon, N., Matias, Y., Szegedy, M.: The space complexity of
approximating the frequency moments. In: ACM STOC (1996)

4. Ayad, A.M., Naughton, J.F.: Static optimization of conjunctive
queries with sliding windows over infinite streams. In:
Proceedings of the ACM SIGMOD International Conference on
Management of Data (2004)

5. Babu, S., Widom, J.: Continuous queries over data streams. In:
Proceedings of the ACM SIGMOD International Conference on
Management of Data (2001)

6. Berchtold, S., Bohm, C., Kriegel, H.-P.: The Pyramid-Technique:
Towards breaking the curse of dimensionality. In: Proceedings of
the ACM SIGMOD International Conference on Management of
Data (1998)

7. Bulut, A., Singh, A.: Swat: Hierarchical stream summarization in
large networks. In: Proceedings of the International Conference
on Data Engineering (2003)

8. Castleman, K.R.: Digital Image Processing. Englewood Cliffs:
Prentice-Hall (1996)

9. Chandrasekaran, S., Franklin, M.J.: Streaming queries over
streaming data. In: Proceedings of the International Conference
on Very Large Data Bases (2002)

10. COUGAR. The cougar sensor database project: the network is the
database. http://www.cs.cornell.edu/database/cougar/index.htm/

11. Dobra, A., Garofalakis, M., Gehrke, J.E., Rastogi, R.: Processing
complex aggregate queries over data streams. In: ACM SIGMOD
(2002)

12. Douglas, S.C., Soh, J.K.: A numerically-stable slidingwindow
estimator and its application to adaptive filters. In: Proceed-
ings of the 31st Asilomar Conference on Signals, Systems, and
Computers (1997)

13. Egecioglu, O., Ferhatosmanoglu, H., Ogras, U.: Dimensionality
reduction and similarity computation using inner product
approximations. IEEE Trans. Knowl. Data Eng. 16(6), 714–726
(2004)

14. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.:
Models and issues in data stream systems. In: Proceedings of
the 21st ACM Symposium on Principles of Database Systems
(2002)

15. Babcock, B., Babu, S., Datar, M., Motwani, R.: Chain: Operator
scheduling for memory minimization in data stream systems. In:
Proceedings of the ACM SIGMOD Interantional Conference on
Management of Data (2003)

16. Babcock, B., Datar, M., Motwani, R., O’Callaghan, L.: Sliding
window computations over data streams. In: Proceedings of the
Symposium on Principles of Databases Systems (2003)

17. Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey,
C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: A
new model and architecture for data stream management. In: Pro-
ceedings of International Conference on Very Large Data Bases
(2003)

18. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S.,
Seidman, G., Stonebraker, M., Tatbul, N., Zdonik, S.: Monitor-
ing streams – a new class of DBMS applications. In: International
Conference on Very Large Data Bases (2002)

19. Chakrabarti, K., Garofalakis, M., Rastogi, R., Shim, K.: Approx-
imate query processing using wavelets. In: Proceedings of the In-
ternational Conference on Very Large Data Bases (2000)

98 U. Y. Ogras, H. Ferhatosmanoglu

20. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream
statistics over sliding windows. In: Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms (2002)

21. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S.,
Datar, M., Manku, G., Olston, C., Rosenstein, J., Varma, R.: Query
processing, approximation, and resource management in a data
stream management system. In: Proceedings of the CIDR Con-
ference (2003)

22. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast
subsequence matching in time-series databases. In: Proceedings
of the ACM SIGMOD International Conference on Management
of Data (1994)

23. Gao, L., Wang, X.: Continually evaluating similaritybased pat-
tern queries on a streaming time series. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data
(2002)

24. Garofalakis, M., Gibbons, P.B.: Wavelet synopses with error
guarantees. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data (2002)

25. Gehrke, J., Korn, F., Srivastava, D.: On computing correlated
aggregates over continual data streams. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data
(2001)

26. Gibbons, P.B., Matias, Y., Poosala, V.: Fast incremental
maintenance of approximate histograms. In: Proceedings of the
Internatinal Conference on Very Large Data Bases (1997)

27. Gilbert, A., Kotidis, Y., Muthukrishnan, S., Straus, M.: Surfing
wavelets on streams: one pass summaries for approximate
aggregate queries. In: International Conference on Very Large
Data Bases (2001)

28. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high
dimensions via hashing. In: Proceedings of the International Con-
ference on Very Large Data Bases (1999)

29. Kailath, T.: Modern Signal Processing. Berlin, Heidelberg,
New York: Springer (1985)

30. Kang, J., Naughton, J.F., Viglas, S.: Evaluating window joins
over unbounded streams. In: Proceedings of the International
Conference on Data Engineering (2003)

31. Kanth, K.V.R., Agrawal, D., Singh, A.: Dimensionality reduction
for similarity searching in dynamic databases. In: Proceedings of
the ACM SIGMOD International Conference on Management of
Data (1998)

32. Karhunen, H.: Uber lineare methoden in der wahrscheinlich-
keitsrechnung. Ann. Acad. Sci. Fennicae, Ser. A1 Math.-Phys. 37,
3–79 (1947)

33. Keogh, E.J., Chakrabarti, K., Mehrotra, S., Pazzani, M.J.: Locally
adaptive dimensionality reduction for indexing large time series
databases. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data (2001)

34. Lee, J., Kim, D., Chung, C.: Multi-dimensional selectivity
estimation using compressed histogram information. In: Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data (1999)

35. Loeve, M.: Fonctions aleatoires de seconde ordre. Processus
Stochastiques et Mouvement Brownien. Paris: Hermann (1948)

36. Madden, S., Franklin, M.J.: Fjording the stream: an architecture
for queries over streaming sensor data. In: Proceedings of the
International Conference on Data Engineering (2002)

37. Matias, Y., Vitter, J.S., Wang, M.: Wavelet based histograms
for selectivity estimation. In: Proceedings of the ACM Sigmod
International Conference on Management of Data (1998)

38. Matias, Y., Vitter, J.S., Wang, M.: Dynamic maintenance of
wavelet-based histograms. In: International Conference on Very
Large Data Bases (2000)

39. Mendel, J.: Lessons in Estimation Theory for Signal Processing,
Communications, and Control. Englewood Cliffs: Prentice-Hall
(1995)

40. Populis, A.: Signal Analysis. New York: McGraw-Hill (1977)
41. Rafiei, D., Mendelzon, A.: Similarity-based queries for time

series data. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data (1997)

42. Rafiei, D., Mendelzon, A.: Efficient retrieval of similar time
sequences using dft. In: Proceedings of the International
Conference on Foundations of Data Organization and Algorithms
(FODO) (1998)

43. Rao, K.R., Yip, P.C.: The Transform and Data Compression
Handbook. Boca Raton: CRC (2001)

44. Seidl, T., Kriegel, H.P.: Optimal multi-step k-nearest neighbor
search. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data. Chicago: ACM (1998)

45. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and Its
Applications. Berlin, Heidelberg, New York: Springer (2000)

46. Viglas, S., Naughton, J.F.: Rate-based query optimization for
streaming information sources. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data,
Madison, WI (2002)

47. Vitter, J.S., Wang, M.: Approximate computation of
multidimensional aggregates of sparse data using wavelets.
In: Proceedings of the ACM SIGMOD International Conference
on Management of Data (1999)

48. Wu, D., Agrawal, D., El Abbadi, A., Smith, T.R.: Efficient
retrieval for browsing large image databases. In: Proceedings of
the Conference on Information and Knowledge Management,
pp. 11–18 (1996)

49. Yao, Y., Gehrke, J.: Query processing for sensor networks. In:
Proceedings of CIDR (2002)

