
Aggregate Profile Clustering for Telco Analytics

Mehmet Ali Abbasoğlu†,‡, Buğra Gedik†, Hakan Ferhatosmanoğlu†

†
Computer Engineering Department, Bilkent University, Ankara, Turkey

‡
Korvus Bilişim R&D, Bilkent Cyberpark, Ankara, Turkey

[abbasoglu,bgedik,hakan]@cs.bilkent.edu.tr

ABSTRACT
Many telco analytics require maintaining call profiles based on re-
cent customer call patterns. Such call profiles are typically orga-
nized as aggregations computed at different time scales over the
recent customer interactions. Customer call profiles are key inputs
for analytics targeted at improving operations, marketing, and sales
of telco providers. Many of these analytics require clustering cus-
tomer call profiles, so that customers with similar calling patterns
can be modeled as a group. Example applications include optimiz-
ing tariffs, customer segmentation, and usage forecasting. In this
demo, we present our system for scalable aggregate profile clus-
tering in a streaming setting. We focus on managing anonymized
segments of customers for tariff optimization. Due to the large
number of customers, maintaining profile clusters have high pro-
cessing and memory resource requirements. In order to tackle this
problem, we apply distributed stream processing. However, in the
presence of distributed state, it is a major challenge to partition the
profiles over machines (nodes) such that memory and computation
balance is maintained, while keeping the clustering accuracy high.
Furthermore, to adapt to potentially changing customer calling pat-
terns, the partitioning of profiles to machines should be continu-
ously revised, yet one should minimize the migration of profiles
so as not to disturb the online processing of updates. We provide
a re-partitioning technique that achieves all these goals. We keep
micro-cluster summaries at each node, collect these summaries at
a centralize node, and use a greedy algorithm with novel affinity
heuristics to revise the partitioning. We present a demo that show-
cases our Storm and Hbase based implementation of the proposed
solution in the context of a customer segmentation application.

1 Introduction
Telecommunications (telco) is a data-intensive domain where live
feeds that carry customer interaction data stream into the data cen-
ters of service providers. Analytics performed on such data can
help improve operations (such as forecasting for resource provi-
sioning), marketing (such as customer segmentation for campaign
management), and sales (such as regression for churn prediction).

Keeping a recent history of customer calling behavior, creating
customer calling profiles from it, and maintaining such profiles as
clusters are key enabling techniques for many of the telco analytics.
For example customer segmentation by clustering is a fundamen-
tal operation for churn analysis [6] and customer equity manage-
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 5

Copyright 2013 VLDB Endowment 2150-8097/13/03... $ 10.00.

ment [3]. Also, modeling and forecasting the call patterns of users
is more effective when applied on customers with similar calling
profiles rather than on individual customers [5].

As these examples motivate, many telco analytics operate on
clusters of customer calling profiles. Given the continuous and live
nature of these analytics and the potentially dynamic behavior of
customers, there is a clear need to maintain the customer call pro-
files in a clustered manner. However, processing customer interac-
tions for performing analytics on a large set of customers requires
high processing resources and keeping a recent history of interac-
tions (such as a sliding window) for the purpose of maintaining
calling profiles requires high memory resources.

In this demo, we present our system for scalable profile cluster-
ing in a streaming setting. The demo highlights the effectiveness of
our solution in the context of a telco customer segmentation appli-
cation for tariff optimization. The main idea is to cluster large num-
ber of profiles, where each profile is an incrementally updated ag-
gregate over streaming updates — aka an aggregate profile. While
the problem has general applicability, our work is motivated by
the telco domain. For instance, our updates are call detail records

(CDRs), which contain meta-data about calls made between cus-
tomers. Each CDR has a caller associated with it and contributes
to that caller’s aggregate profile (e.g., the daily number of interna-
tional calls can be a feature in the aggregate profile). The goal is to
maintain profile clusters, so that callers with similar behaviors are
grouped together, and use these profile clusters for analytics such
as forecasting and customer segmentation.

Given the large number of profiles, maintaining these clusters
on a single machine may not be feasible, especially if the profiles
are large in terms of size or the cost to process each profile update
is high (e.g., updating a forecasting model for the profile or for
the cluster). Furthermore, in most real-world scenarios the profile
updates are not used for the sole purpose of cluster maintenance
and clustered analytics, but for miscellaneous processing, such as
enrichment, model scoring, visualization, etc. Thus, the need for
parallel and distributed processing is paramount.

To address this challenge, we employ partitioned stateful paral-

lelism. We partition the incoming stream over a set of processing
nodes based on a partition by attribute (such as the caller id in a
CDR) and have each node process its portion of the sub-stream,
maintaining a subset of the clusters and the associated state needed
to maintain the aggregate profiles. Here, we want to make sure that
each node gets assigned similar amount of processing load, since
the slowest node will form a bottleneck for the system. Similarly,
and for memory constrained scenarios, each node needs to store
similar amount of state for maintaining the profiles.

There are a number of challenges in achieving this. First, in or-
der to distribute the incoming updates over the set of nodes, we
need a way of partitioning them such that each update is routed to
the node that contains profiles similar to its own. Note that the sim-
ilarity here applies to the aggregate profiles, and not to the update

itself. Initially, there is no information on the profile clusters, and
as a result the partitioning will be hash based. Thus, after some time
all nodes will form similar clusters. This is a problem, since similar
profiles cannot be co-located on the same machine and as the num-
ber of nodes increase the fidelity of the clusters will decrease. As
we know more about the nature of the profiles and frequencies of
the partitioning attribute values, we need to incrementally update
our partitioning scheme and migrate profiles as needed, in order to
increase the clustering quality.

Second, this re-distribution has to make sure that each node gets
a similar sized flow of updates (good processing balance). Simi-
larly, each node should get around the same amount state used to
compute the aggregate profiles (good memory balance). Further-
more, the changes in the partitioning function should be incremen-
tal, so as the migration of profiles do not cause a pause in process-
ing (low migration overhead).

Our system involves a smart re-partitioning to solve this prob-
lem. It periodically adjusts the assignment of profiles to nodes
such that the memory and processing balance is improved, while
still maintaining a high clustering accuracy and keeping the migra-
tion cost low. Each node creates micro-clusters and computes vec-
tors that summarize the memory and processing requirements of
the profiles stored in the micro-clusters, as well as the centroid and
radius information for the micro-clusters. These summaries take
small amount of space and are collected at a master node. This node
uses the micro-cluster summaries to come up with a new partition-
ing. For this purpose, we use a greedy algorithm that iterates over
the micro-clusters and computes the affinity of each micro-cluster
to each node. The best assignment that maximizes the affinity is
taken. The definition of the affinity considers clustering quality,
balance, as well as the migration cost.

We present a demo application that uses the proposed solutions
for telco customer segmentation. The system relies on distributed
stream processing middleware Storm [8] for processing updates
and maintaining the profile clusters in memory, and Hbase [2] for
partial fault-tolerance and for facilitating the migration.

2 Problem Definition
In this section we formalize our problem. We define our require-
ments as clustering quality, balance quality and migration quality.

Let S denote a stream of updates, where u 2 S denotes an up-
date. We use ◆(u) 2 D to denote the value of the profile id for the
update, where D is the domain of the profile ids. Let P (d) denote
the aggregate profile for profile id d 2 D. We assume that P (d) is
a multi-dimensional vector. We use f(d) to denote the frequency
of updates with profile id d 2 D.

We define a partitioning function p : D ! [0..N) that maps
each profile id to a node, where we have N nodes. When an up-
date u is received, it is forwarded to the node at index p(d), where
◆(u) = d. There, it contributes to the aggregate profile information
P (d), via the transformation:

hP (d), S(d)i �(P (d), S(d), u).

Here, � is an aggregation function and S(d) is the state main-
tained to compute it continuously for profile id d.

At time step s, the partitioning function will be updated from
ps�1 to ps, with the goal of keeping the clustering quality high, the
processing and/or memory loads balanced, and the migration cost
low. We now define each of these metrics.

Let Ci be the set of clusters on node i after applying a local clus-
tering algorithm A, that is Ci = A({P (d) : p(d) = i}). Let C be
the set of clusters that would be formed if the same clustering algo-
rithm is applied on all profiles, that is C = A({P (d) : d 2 D}).

Let us denote our clustering metric as E, which assigns an error
value to a cluster. For instance, for k-means based clustering, we
have: E(Ci,j) =

P
Pk2Ci,j

kPk � µi,jk, where Ci,j is the jth
cluster in Ci, and µi,j is the cetroid of cluster Ci,j .

Given these definitions, we define the clustering quality as:

Qc
=

P
C2C E(C)

P
i2[0..N)

P
Ci,j2Ci

E(Ci,j)
(1)

Here, it is important to use a clustering algorithm A whose pa-
rameter settings are not impacted by the number of nodes, N . For
instance, a density-based clustering algorithm (such as DB-scan [4])
will work well. For k-means based algorithms, the distribution of
k over the N nodes will be a probelem. To aleviate this, k-means
algorithms that use automatic determination of the k value can be
used, such as those that rely on the BIC metric to determine k [7].

Let Ri =
P

p(d)=i f(d) · �(|S(d)|) denote the processing cost
required to handle the profiles assighed to the ith node. Here, �
is a function that defines the relationship between the amount of
state maintained and the required processing to update the aggre-
gate profile. We define the processing balance quality as Qpb

=

1�CoV({Ri}), where CoV is the coefficient of variation (ratio of
std. deviation to mean). When the std. deviation in the balance is 0,
then the balance quality is 1. When the deviation reaches a single
node’s share of the load (i.e., the mean), then the quality reaches 0.
Let Mi =

P
p(d)=i |S(d)| denote the size of state stored on the ith

note to maintain the profiles assigned to it. We define the memory

balance quality as Qmb
= 1� CoV({Mi}).

Depending on the nature of the state maintained (S(d) for profile
d), the memory may or may not be a concern. For instance, if the
state is constant size and small, then it may fit on a single machine.
In this case we can take the balance quality as Qb

= Qpb, ignoring
the memory balance. On the other hand, when the state is linear
in the frequency (|S(d)| / f(d)), such as for an aggregation �
defined over time-based sliding windows, then the memory balance
may factor into the balance quality and thus we take Qb

= (Qpb
+

Qmb
)/2. Other combinations are possible.

Finally, we define the migration quality as follows:

Qm
= 1�

P
d2D |S(d)| · 1(p0(d) 6= p(d))

P
d2D |S(d)| (2)

Here, p0 is the previous partitioning function. For no migration,
the migration quality is 1. When the entire state needs to move,
then the migraiton quality is 0.

Finally, we denote the overall quality as Q, and define it as:

Q = (↵ ·Qc
+ (1� ↵) ·Qb

) ·Qm (3)

Here, ↵ 2 [0, 1] adjusts the relative importance of clustering qual-
ity versus load balance.

3 Solution Overview
We now describe our solution at a high level. Recall that the main
idea is to update the partitioning function periodically, by collecting
summary information at a master node.

At step s = 0, we set the partitioning function to the consis-
tent hash function HN , that is p0(d) = HN (d). For the pur-
pose of updating the partitioning function, each node creates micro-
clusters [1] over the profiles they maintain. The summaries of these
micro-clusters are then sent to a master node, which computes a
new partitioning function ps.

A micro-cluster, denoted as M ⇢ D, keeps a set of profile ids.
It is summarized as a 5-tuple: ˆM=ho, r, p,m, li. Here, o denotes

the centroid of the micro-cluster, that is ˆM.o =

P
d2M P (d)/|M |.

The radius of the micro-cluster is denoted by r. We have ˆM.r =

maxd2M kP (d)� ˆM.ok. The total processing cost for the profiles
in the micro-cluster is denoted as p. We have ˆM.p =

P
d2M f(d) ·

�(|S(d)|). The total memory cost for the state associated with the
profilies of the micro-cluster is denoted by m. We have ˆM.m =P

d2D |S(d)|. Finally, l denotes the current location of the micro-
cluster. We have ˆM.l = ps�1(d), d 2M .

The master node, upon receiving all the micro-cluster summaries,
creates a new partitioning function. For this purpose we use the
greedy procedure described in Algorithm 1. The algorithm iter-
ates over the micro-clusters and for each micro-cluster it makes
a node assignment. Alternative orders can be used for the itera-
tion, which we discuss later. For making assignments, the algo-
rithm makes use of a heuristic metric. It picks the assignment that
maximizes this metric. Let M = {Mi} be the list of all micro-
clusters, and assume that i � 1 assignments are made and we are
to make an assignment for the ith micro-cluster, Mi. In order to
do this, we first compute the affinity of this micro-cluster to each
node. Let A(Mi, j) denote the affinity of Mi to the jth node. We
set 8d 2Mi, ps(d) = argmaxj2[0..N) A(Mi, j). That is, the node
for which the micro-cluster has the highest affinity becomes the
new mapping for all the profiles of the micro-cluster.

Algorithm 1: UPDATEPARTITIONING(M, N,O)

Param : M, micro-clusters
Param : N , number of nodes
Param : O, ordering policy
p {} . The partitioning function to be constructed
M0 SORT(M, O) . Order micro-clusters based on policy
for M 2M0 do . For each micro-cluster, in order

i �1; a 0 . Best assignment and affinity
for j 2 [0..N) do . For each node

. Compute the affinity of M to the current node j
v Am(M, j) · (↵ ·Ac(M, j) + (1� ↵) ·Ac(M, j))
if v > a then hi, ai hj, vi; . Update best, if necessary

p[d] = i, 8d 2M . Create mappings for the profiles in M
return p . Return the fully constructed mapping

Affinity has three aspects to it: the clustering affinity denoted by
Ac, the balance affinity denoted by Ab, and the migration affinity

denoted by Am. Let Ml denote the set of micro-clusters assigned
to the lth node so far, i.e., Ml = {M | ps(d) = l^d 2M 2M}.

We denote the clustering affinity of micro-cluster Mi to node j
as Ac

(Mi, j). To compute Ac
(Mi, j), we look at the current as-

signments {Ml} and calculate how close the current micro-cluster
Mi is to the already assigned micro-clusters, by computing an aver-
age distance to the k closest micro-clusters for each node. We then
create a normalized metric, such that

P
j2[0..N) A

c
(Mi, j) = 1.

We denote the balance affinity, for processing, of micro-cluster
Mi to node j as Ab

(Mi, j). To compute Ab
(Mi, j), we again look

at the current assignments {Ml} and calculate how much load is
currently being handled by each node, considering the potential as-
signment of Mi to node j as well. We then create a normalized
metric, such that

P
j2[0..N) A

b
(Mi, j) = 1.

We denote the migration affinity of micro-cluster Mi to node j
as Am

(Mi, j). To compute Am
(Mi, j), we look at the current as-

signments {Ml} and calculate how much total migration has been
performed so far, considering the potential assignment of Mi to
node j as well. We then use an exponential function to scale this
value, so that when the total migrated state size is 0, then the migra-
tion affinity is 1; when the migrated state size is the total size of the
aggregate profile state, it is 0; and the rate at which the migration

affinity drops increases as the total migrations so far increases.
Given these definitions, we define:

A(Mi, j) = Am
(Mi, j)·(↵·Ac

(Mi, j)+(1�↵)·Ab
(Mi, j)) (4)

The iteration order of the micro-clusters have an impact on the
algorithm performance. We experiment with several orders (both
ascending/descending), based on micro-cluster memory size, pro-
cessing cost, and processing cost per byte of memory.

4 System Architecture
We implemented our profile clustering technique in the context of
a telco analytics platform. Figure 1 depicts the system architecture.

 


















 















Figure 1: The architecture of the aggregate profile clustering system run-
ning on the telco analytics platform.

The updates (CDRs in the telco domain) stream into the system
and are processed by a topology that runs on the Storm distributed
stream processing system. The updates are tuplized and partitioned
using the splitter operator. The splitted flows first go through the
writer operator, which persists the updates to the Hbase distributed
key value store for historical access. This parallel write feature is
not strictly needed for our aggregate profiling technique, but is part
of the analytics platform.

The updates are then sent to the profiler operators, which are re-
sponsible for updating the in-memory profiles and performing clus-
tering. The profiler interacts with the partitioner operator, which in
turn interacts with the splitter, for implementing the re-partitioning.
In particular, when re-partitioning is initiated the partitioner asks
the splitter to pause the flow. After all in-flight tuples are processed,
the micro-clusters are shipped from the profilers to the partitioner.
The partitioner executes the re-partitioning algorithm and computes
the new partitioning. Using this partitioning, it computes migration
schedules and sends these to the profilers. To minimize the cou-
pling between profilers, the actual migration of state is performed
through Hbase. Each profiler writes to Hbase the state that it no
longer has to keep. After a synchronization step, it also borrows
the state that it needs to maintain from now on. Once the state mi-
gration is completed, the partitioner sends the new partitioning to
the splitter operator, which installs it and resumes the flow.

The profilers also use the Hbase store to backup their state pe-
riodically, in order to support fault-tolerance. While the profile
maintenance is not sensitive to short term tuple loss, this backup
is needed to avoid losing long-term aggregations that are computed
over large time scales.

Analytics operators use the clusters formed by the profiler op-
erators to perform tasks such as usage forecasting and customer
segmentation. The summarizer operator is a bridge between the
analytics operators and the result visualization dashboard.

5 Demonstration
We built an application that uses the system explained in Section 4
to perform customer segmentation for tariff optimization. The sys-
tem uses CDRs as profile updates and builds aggregate customer
calling profiles.

Telco companies provide their customers with tariffs that regu-
late base fees and call charges according to call types. Correctly
defining tariffs not only benefits the customers by lowering their
bills, but also it benefits the telco companies, as they can analyze
customer orientation better and develop the necessary infrastruc-
ture and better optimize resources.

To define well targeted tariffs, telco companies need to under-
stand call patterns of their customer base. Whenever a customer
makes a call, a CDR is sent to the datacenter of the telco com-
pany. The CDR has a caller associated with it and contains infor-
mation about the call, such as; call target, call time, call duration,
etc. When CDRs of a customer are aggregated, customer call pat-
terns can be understood.

The CDRs are processed to compute customer calling profiles.
We define a number of features, based on the kind of the destination
number of the call (local, trunk, GSM, international, prs), based on
the time of the call (night time, daytime, weekday, weekend), as
well as the length of the call (short, long). For each call category,
we maintain separate aggregates of the percentage of calls falling
into that category. These form a call profile vector, which is up-
dated each time a new call is received. The clusters are maintained
over these aggregate call profiles.

Each profile has tariff information associated with it and thus the
resulting clusters from our distributed aggregate profile clustering
solution have labeled points with tariff information. Our goal is to
perform tariff optimization by detecting poorly defined tariffs and
potential new tariffs.

The main idea is that customers who have similar call patterns
should have the same tariff, if that tariff is well defined. The sys-
tem analyzes the clustering results and detects if a tariff is scattered
over many clusters where the tariff in question is a minority, or con-
centrated on a few clusters where the tariff in question is a majority.
If a tariff is scattered over many high-entropy clusters, then it could
not reach its target audience. Therefore it is a poorly defined tariff.

Using a similar line of thought, the majority of customers in a
cluster should have the same tariff, if there is a tariff that meets the
expectations of the clustered customer group. Therefore clusters
with high entropy are identified as potential new tariffs.

5.1 Dataset
For the demo to be presented, we cannot use the real CDRs due
to privacy concerns, and thus we use a CDR generator to feed the
application. The CDRs are generated according to predefined cus-
tomer profiles, which have target, time, duration and tariff features.
Each of these features take different values based on their associ-
ated value ranges and value distribution probabilities. Before the
CDR generator starts working, it builds the customer base by se-
lecting one of the predefined profiles for each customer using a
Zipf distribution. When CDRs are being generated, target, time
and duration values are determined and each customer gets a tariff
by using probabilities from its predefined customer profile.

5.2 Visual Dashboard
The demo application uses a visualization dashboard to identify
tariff quality, a sample screenshot of which is shown in Figure 2.
Each tariff is assigned to a color, and clusters are shown as shapes
in the clustering results panel. In the clustering results panel, user
of the system can analyze customer distribution with respect to the

Figure 2: A sample screenshot from the demo dashboard.

call profile features. Tariff legend with quality measures and cluster
legend with entropy measures can be found on the right side of the
visualization dashboard.

The analytics operator in our application computes the quality
value for each tariff and displays the distribution of the tariff over
the clusters. Let Cji be the percentage of jth cluster members that
use the ith tariff, and Tij be the percentage ith tariff users that are
member of the jth cluster. The quality of the ith tariff, denoted by
Q(Ti), is calculated as follows:

Q(Ti) =

X

i,j

Tij · Cji (5)

The quality of a cluster is taken as the entropy of the cluster with
respect to the tariffs of the users contained within.

6 Conclusion
In this work, we introduced the problem of aggregate profile clus-
tering in a streaming setting and developed its application to telco
customer segmentation. Many telco analytics operate on groups of
similar customer profiles, such as usage forecasting and customer
segmentation. We outlined a scalable solution to the aggregate pro-
file clustering problem that enables these analytics performed on
customer interaction streams carrying high volume data from large
number of customers. We presented a demo application that illus-
trates the use of our techniques for customer segmentation. Our
results provide useful insights on the performance of distributed
systems for streaming profile clustering.
Acknowledgement. This study was funded in part by The Scien-
tific and Technological Research Council of Turkey (TÜBİTAK)
under grants EEEAG #111E217 and #112E271.

7 References
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering

evolving data streams. In Very Large Databases Conference (VLDB), pages
81–92, 2003.

[2] HBase. http://hbase.apache.org/. retrieved March, 2013.
[3] M. J. Brusco, J. D. Cradit, and A. Tashchian. Multi-criterion clusterwise

regression for joint segmentation settings: An application to customer value.
Journal of Marketing Research, 40(2):225–234, 2003.

[4] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In ACM International

Conference on Knowledge Discovery and Data Mining (KDD), pages 226–31,
1996.

[5] İ. Gür, M. Güvercin, and H. Ferhatosmanoğlu. Scaling forecasting algorithms
using clustered modeling. In Technical Report BU-CE-1302, Bilkent University,
August, 2013.

[6] S.-Y. Hung, D. C. Yen, and H.-Y. Wang. Applying data mining to telecom churn
management. Expert Systems with Applications, 31(3):515–524, 2006.

[7] D. Pelleg and A. W. Moore. X-means: Extending k-means with efficient
estimation of the number of clusters. In International Conference on Machine

Learning (ICML), pages 727–734, 2000.
[8] Storm. http://storm-project.net/. retrieved March, 2013.

http://hbase.apache.org/
http://storm-project.net/

	Introduction
	Problem Definition
	Solution Overview
	System Architecture
	Demonstration
	Dataset
	Visual Dashboard

	Conclusion
	References

