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ABSTRACT

Motivation: Identification and comparison of similar three-
dimensional (3D) protein structures has become an even greater
challenge in the face of the rapidly growing structure databases.
Here, we introduce Vorometric, a new method that provides efficient
search and alignment of a query protein against a database of protein
structures. Voronoi contacts of the protein residues are enriched with
the secondary structure information and a metric substitution matrix
is developed to allow efficient indexing. The contact hits obtained
from a distance-based indexing method are extended to obtain high-
scoring segment pairs, which are then used to generate structural
alignments.
Results: Vorometric is the first to address both search and alignment
problems in the protein structure databases. The experimental results
show that Vorometric is simultaneously effective in retrieving similar
protein structures, producing high-quality structure alignments, and
identifying cross-fold similarities. Vorometric outperforms current
structure retrieval methods in search accuracy, while requiring com-
parable running times. Furthermore, the structural superpositions
produced are shown to have better quality and coverage, when
compared with those of the popular structure alignment tools.
Availability: Vorometric is available as a web service at http://bio.
cse.ohio-state.edu/Vorometric
Contact: sacan@cse.ohio-state.edu

1 INTRODUCTION
A tremendous amount of sequence and structure data is being
produced with the motivation of deriving biological insights
through analysis of similarities, differences and interactions among
biological macromolecules. Whereas the sequence comparison
methods are generally sufficient for comparing proteins that share
a high level of similarity, structure comparison becomes essential
in discerning more distant evolutionary relationships. Moreover, the
spatial organization of the protein residues provides stronger clues
into the biochemical function of the proteins than can be derived
from the sequence information alone.

Pairwise structure alignment is the basic step for comparing
protein structures. Finding the optimal alignment has been proven to
be NP-hard (Lathrop, 1994), and several heuristic approaches have
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been developed in DALI (Holm and Sander, 1993), CE (Shindyalov
and Bourne, 1998) and MAMMOTH (Ortiz et al., 2002). The rapidly
increasing size of the protein databases, however, has rendered
exhaustive pairwise structure alignment infeasible.

To overcome the difficulties presented by the database size,
several strategies that aim to quickly identify relevant protein
structures have recently been proposed. These strategies can best be
summarized in terms of the choice of protein structure representation
and the indexing method utilized for fast searching. ProGreSS
(Bhattacharya et al., 2004) maps windows of protein backbone to
a feature vector space using the curvature and torsion angles and
the amino acid type information, and performs spatial indexing
in this feature space. Protdex2 (Aung and Tan, 2004) represents
the protein as a set of feature vectors of the contact regions
among secondary structure elements (SSE) and uses an inverted-
file index for searching. Yakusa (Carpentier et al., 2005) describes
the protein structure as a sequence of its backbone dihedral α

angles and uses a method analogous to BLAST for searching
blocks of this sequence. 3D-BLAST (Tung et al., 2007) clusters
the κ and α angles to reduce the description to an alphabet and
constructs a BLOSUM-like substitution matrix for this backbone
angle alphabet, so that BLAST algorithm can be used without any
modifications.

Currently available protein structure search methods provide
database filtering, but defer a detailed structural alignment to further
analysis by external alignment methods. More importantly, they
focus on finding proteins that share similar overall topology or
secondary structure composition, and are not sensitive to detect
residue-level non-local interactions. Such non-local interactions
are especially important in detecting functionally or evolutionarily
significant similarities among proteins that span multiple structural
folds (Brown et al., 2006; Friedberg and Godzik, 2005).

In this study, Vorometric is proposed as an integrated approach
to both search and alignment tasks. We collect residue interactions
from the protein structures using Voronoi tesselation and build a
database of these residue environments. For a query protein, similar
residue environments are retrieved from the database and extended
to obtain high-scoring segment pairs (HSPs), which are then used
for structural superposition. We have developed a sensitive metric
substitution matrix for accurate comparison of both amino acid and
secondary structure information of related residue environments.
Whereas an exhaustive search of similar residue environments in the
database is prohibitive, our metric matrix has made distance-based
indexing possible so that similar environments can be retrieved very
efficiently. To the best of our knowledge, Vorometric is the first study
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employing distance-based indexing to protein structure data. The
main benefits of our approach can be summarized as follows:

• The correspondences obtained from search and extension of
residue environments endorse integrated and accurate structural
superpositions, so that further structural alignment by external
programs is no longer necessary.

• Unlike other protein structure search methods that at best
capture the inter-SSE contacts, Vorometric provides contact
sensitivity at the residue level.

• The hit and extend methodology inherently detects local,
flexible structure alignments, a feature not commonly available
in pairwise structure alignment methods.

We demonstrate the advantages and limitations of Vorometric
using both quantitative performance evaluation on large-scale
datasets and on several detailed case studies. The experimental
results show that Vorometric outperforms other structure search
tools, and at the same time, yields high-quality structural alignments
that are comparable to or better than those produced by other
structure alignment tools.

2 METHODS
Vorometric exploits the fact that related protein structures share similar
residue–residue interactions, in identification and alignment of related
proteins. The residue interactions are captured using Voronoi tesselation and
represented as a sequential string of residues. We incorporate both the amino
acid type and secondary structure information into this representation. The
residue contacts from all the proteins are then compiled in a database and
metric indexing is used for fast similarity search in this database. For a
query protein, the contacts that are similar to those formed by its residues
are searched in the database, and hits are extended for structural alignment.
In the next few sections, we describe each of these steps in detail.

2.1 Representing the residue environments
Voronoi tesselation has been proposed as an effective method for extracting
multi-body contacts from protein structures (Krishnamoorthy and Tropsha,
2003), and successfully utilized in packing analysis (Richards, 1974),
protein folding (Gan et al., 2001), structure alignment and structural motif
mining (Sacan et al., 2007). Ilyin et al. (2004) observed that structurally
related proteins share common Voronoi contacts and used this observation
to systematically match compatible tetrahedrons by shape, volume and
backbone topology in order to obtain candidate seeds for structure alignment.
Roach et al. (2005) and Birzele et al. (2007) use a different representation of
the Voronoi contacts to obtain a sequential representation which allows direct
use of dynamic programming. Roach et al. (2005) measure the compatibility
of the contacts through discretization of the Voronoi edge lengths, whereas
Birzele et al. (2007) use another level of dynamic programming to compare
the residue contacts.

We acknowledge that a sequential representation of the residue
environments is very effective for their comparison, and utilize a similar
representation in this study. We use the location of Cα atoms to represent the
amino acids of a protein structure as a set of points in 3D space. The region
of space around each point closer to the enclosed point than any other point
defines a Voronoi polyhedron (Fig. 1). Delaunay tessellation is obtained by
connecting the points that share a Voronoi boundary. For each residue, we
define the set of all of its Delaunay neighbors, ordered by their sequence
number along the backbone, as its environment (also denoted as contact
string). This definition of contacts encodes much of the geometric proximity
information and provides an abstract description of the underlying geometry.

Fig. 1. Delaunay tessellation (dashed lines) of a set of points in 2D and
3D. The Voronoi diagram is shown for only 2D (solid lines). The 2D curve
represents a projection of the 3D backbone segment from β2-microglobulin
domain (3hla). The residue names are shown next to the Cα atoms.

The length of the contact strings, generated from a large structure dataset,
has an average of 11.6 and a maximum of 23 residues.

We encode the amino acid type and the secondary structure assignment
of the residues in each contact string. For instance, the contact string for the
second, Histidine residue in Figure 1 (3D) is: RCH∗CPCACECKC , where the
secondary structure state is given in subscript notation, and the central residue
is marked with an asterisk ‘∗’. We use DSSP (Kabsch and Sander, 1983) to
obtain the secondary structure assignment for each residue and consider only
the three primary states: α-helix (H), β-sheet (E), and turns (C).

2.2 Comparison of the contact strings
An SSE-enriched distance matrix (described below) is used to compare
individual elements of two contact strings (e.g. comparing a helix forming
Arginine, RH , with a β-sheet forming asparagine, NE ). The optimal alignment
that minimizes the edit distance between two SSE-enriched strings with
respect to the distance matrix can be obtained using the classical dynamic
programming method by Needleman and Wunsch (1970). Since the contact
strings are relatively short, global alignment with linear gap penalty provides
sufficient accuracy in comparing contact strings.

Note that, even though most of the related proteins share similar Voronoi
contacts, slight differences in the backbone configurations, such as caused
by the inherent noise in the crystallography experiment, or insertion and
deletion of backbone segments, may induce significantly different Voronoi
contacts. In order to increase the robustness of the comparison measure, we
consider the contacts and the central residues separately when aligning two
contact strings. The piecewise definition of the distance function is especially
useful in recovering from the differences in Voronoi contacts of the residues
flanking highly conserved structural cores. Furthermore, it ensures that the
central residues, whose compatibility is being measured in the first place, are
aligned together. Based on these considerations, the distance between two
contact strings E and F is defined as follows:

D(E,F)=d(E−,F−)+η d(E0,F0)+d(E+,F+) (1)

where d is the edit distance between two SSE-enriched sequences and η is
a parameter used to adjust the importance of the similarity of the central
residues (0) compared with that of the contact residues preceding (−) and
following (+) the central residues. A small value of η can stress the similarity
of contacts better, whereas a large value would work better in recovering
from differences in the contacts due to structural divergence. A very large
value of η would disregard the similarity of the contacts, and would not be
informative in identifying similar structures, generating many false positives
that share the same central residue type. We determine a single value of
η that is optimized for structure retrieval and alignment performance as
described in Section 2.7. Note that the edit distance between the central
residues is simply a lookup in the distance matrix and does not require
dynamic programming.

2.3 Metric SSE-enriched distance matrix
Sellers (1974) has proved that if a metric distance matrix is used in the
global alignment, then the resulting edit distance also forms a metric.
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There has been a number of efforts to construct metric amino acid distance
matrices (Zintzaras, 1999). On the other hand, a metric matrix that captures
both the amino acid and SSE information is not available. Using an identity
matrix is an obvious solution; however, the identity matrix is not sensitive
to detect similarities between different types of amino acids.

We construct a 60× 60 SSE-enriched distance matrix (M) using a
weighted combination of a metric amino acid distance matrix (N) that we
have previously derived from four-body Delaunay contact profiles of amino
acids (Sacan and Toroslu, 2007) and a metric SSE exchange matrix (K)
derived from an SSE similarity matrix (Wallqvist et al., 2000) using the
inter-row distance method (Zintzaras, 1999). The elements of M are defined
as follows:

M(〈a,s〉,〈b,t〉)=w1N(a,b)+w2K(s,t) (2)

where a and b are types of amino acids, s and t are the SSE states and
w1,w2 are positive weighing parameters to adjust the contributions of amino
acid types and SSE states. In general, one would expect a smaller w1 and
a larger w2 for proteins that are remote homologous, because the remote
homologs usually maintain a well-conserved secondary structure despite
their low sequence similarity. An analysis of the dependence of the w1 and
w2 parameters on the sequence and structure similarity levels can be found
in the Supplementary Material.

A distance matrix (or function) f is metric if the following properties are
satisfied for any three elements x, y and z:

(1) Positivity: f (x,y)≥0

(2) Identity: f (x,y)=0 iff x=y

(3) Symmetry: f (x,y)= f (y,x)

(4) Triangle Inequality: f (x,z)≤ f (x,y)+f (y,z)

Now, we show that M, which is a weighted combination of the metric
matrices N and K is also metric.

(1) The weights and matrices in Equation (2) are all positive, which makes
M to be positive.

(2) If M(〈a,s〉,〈b,t〉)=0, then N(a,b)=0 and K(s,t)=0 from
Equation (2). Moreover, a=b, s= t because N and K satisfy identity.
Then, it follows that 〈a,s〉=〈b,t〉. The reverse condition is also true
using the same premises.

(3) w1N(a,b)+w2K(s,t) = w1N(b,a)+w2K(t,s) because both N and K
are symmetric, therefore M is also symmetric.

(4) M(〈a,s〉,〈b,t〉)+M(〈b,t〉,〈c,u〉)
= w1(N(a,b)+N(b,c))+w2(K(s,t)+K(t,u))
≥ w1N(a,c)+w2K(s,u) = M(〈a,s〉,〈c,u〉), therefore M also satisfies
triangle inequality.

Note that, the distance function D defined for the contact strings is similar
to M, in that it is also composed of a weighted combination of functions
that are metric. According to the properties shown above, both M and D are
metric.

2.4 Indexing and searching contact strings
Having a metric distance function D to compare contact strings allows
us to utilize distance-based indexing for efficient retrieval. The main idea
in distance-based indexing is to organize and partition the data into a
hierarchical structure based on distances to representative elements of
the partitions at each level. A partition whose representative entry is too
dissimilar to a query can then be pruned using the triangle inequality, without
having to examine the rest of the entries in that partition. This allows an
efficient and focused search over the data for entries similar to the query.
[Please refer to Taskin and Ozsoyoglu (2004) for a survey of distance-based
indexing methods.] While any metric indexing method can be used to index
and search the contact strings, we have implemented the Slim-tree method
(Traina et al., 2000) which achieves sufficient time and memory performance
for the large datasets used in this study.

Fig. 2. Extension of the hits from a database protein A. The seeds being
extended are marked with ‘o’, and those that are pruned are marked with
‘x’. The gray area represents the cells that are explored by the dynamic
programming and the black cells form the alignment paths of the HSPs.

We extract the contact strings from all of the protein structures in a dataset,
and index them with respect to the distance function D. For a given query
protein structure, we extract its contact strings, and search for similar entries
in the database that are within the range δ from the query contact strings.
The parameter δ provides a threshold on the similarity of the contact strings
being searched. A loose threshold would capture the contact strings of all
protein structures that are similar to the query but may also result in many
false positive hits. Whereas, a tight threshold would seek only the proteins
that share highly conserved structural cores with the query.

2.5 Generating HSPs
The pseudocode for generating HSPs from the contact string hits is
outlined in Algorithm 1. The hits obtained for the individual residues
of the query protein are first grouped based on which database proteins
they belong to. These hits (also called seeds) correspond to a pair of
residues, one from the query and one from the database protein, and are
represented by the individual cells of the dynamic programming table,
as illustrated in Figure 2. Please note that the substitution score of each
residue pair is defined by the similarity of their contact strings, so the
hit extension phase is, in fact, a 2nd level of dynamic programming.

Algorithm 1 Generate HSPs from contact string hits
Input: the contact string hits from the database
Output: HSPs: high scoring segment pairs
HSPs←[];
foreach protein A that has contact string hits do

H← sort hits to A by their distance to query strings;
foreach hit h∈H do

if h is already explored in dynamic programming table then
continue;

hsp← ExtendHit (h);
if hsp can be merged into a previous hsp′ ∈HSPs then

hsp′← MergeHSP(hsp′,hsp);
else if Score(hsp) ≥γ then

add hsp to HSPs;

The extension heuristic employed for each seed is similar to that of BLAST
sequence search tool (Altschul et al., 1997) in that we also construct gapped
local alignments in both forward and backward directions and only consider
the cells in the dynamic programming table whose score falls not more
than a fraction of the best score yet found. However, we introduce several
notable enhancements over the basic method that increase the efficiency
while maintaining the same level of sensitivity.
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The hits to a database protein A are sorted based on their distances to the
query contact strings, such that the more similar hits, which are more likely to
be part of the final HSPs, are explored first. Naturally, we would expect many
seeds on the alignment path of an HSP; extending each of these seeds would
be redundant because they would find the same HSP path. We therefore skip
the seeds whose residue pairings have already been explored by the extension
of the previous seeds (Fig. 2). This heuristic effectively eliminates about
42% of the seeds from consideration (based on randomized searches on the
ASTRAL-25 database). Furthermore, to overcome the problem of generating
many short HSPs, we merge a new HSP if its alignment path intersects with
that of a previously generated HSP and if the merging produces a higher
score than the individual HSP scores. This strategy results in merging 7% of
the HSPs, which otherwise would have been generated as separate, shorter
alignment segments.

2.6 Structure superposition
The residue correspondences defined by the HSP alignments are used to
obtain a structural superposition of the query and the related database
proteins. Finding the optimal transformation that minimizes the root mean
squared deviation (RMSD) between two structural alignments can be
computed very fast: linear in the size of the proteins (Kabsch, 1978).
Following the iterative optimization procedure commonly employed by the
structure alignment tools, we derive a new set of correspondences from the
superposition by finding the local alignment that minimizes the total distance
of the aligned residues, and then repeat the iteration. A single iteration
improves the structural alignment by readjusting the underlying residue
correspondences to better reflect the spatial proximity of the residues in the
structural superposition. The procedure is repeated until the transformation
matrix no longer changes. Because the initial correspondences defined by the
HSP alignments already optimize the structural compatibility of the aligned
residues, the algorithm converges fast; in only a few iterations.

2.7 Parameter optimization
Parameters used in Vorometric are optimized on an independent training set
using the Nelder–Mead simplex method (Lagarias et al., 1998). The objective
function used for the optimization was the geometric mean of the precision
and recall values of the results returned by Vorometric and the TM-score
(Zhang and Skolnick, 2004) of the structural alignments between the queries
and the resulting proteins. The geometric mean penalizes imbalance in the
individual quality values more than the arithmetic mean, and is considered
a better metric for combining different quality measures.

The training set used for optimization was taken from the representative
ASTRAL v1.73 database with 25% sequence identity (Chandonia et al.,
2004). We removed all the families that were used as queries in the evaluation
of the Vorometric reported below, and kept remaining families that had at
least 10 domains. From 13 such families, we randomly selected 10 members
and assigned one of them to be the query and compiled the rest into a dataset.
The training data are available from the supplementary web site.

3 EXPERIMENTAL RESULTS
Since Vorometric is proposed as a protein structure database search
tool that at the same time produces high-quality structure alignments,
we compare its performance with that of both pairwise structure
alignment and database search tools. In the next few sections, we first
demonstrate that the structural alignments produced by Vorometric
are in fact comparable to or better than those of other pairwise
structural alignment tools. We then show on large-scale experiments,
that the structures in the database that are similar to a query protein
are retrieved correctly, using the SCOP classifications (Murzin et al.,
1995) as the gold standard.

Table 1. Comparison of alignment quality on 10 difficult pairs

Method RMSD (Å) %N (query) Quality (TM)

CE 3.17 83.4 0.60
SSAP 4.37 88.1 0.59
DaliLite 2.82 80.0 0.61
Voroligna 2.28 51.7 0.56
Vorometric 3.02 84.8 0.65

aVorolign reports alignments for multiple substitution matrices; here we use the SM-
THREADER matrix (Dosztanyi and Torda, 2001), which gives the best results. The
best values in each column are shown in bold.

The experiments are performed on a Pentium 2.6 GHz personal
computer with 2 GB of main memory. For each protein structure used
in this study, the contact strings are extracted only once, requiring
an average of 21 s per protein. In each experiment described below,
a new database index is built for the contact strings of the protein
structures used in the experiment. The insertion of a single protein
structure into the database index takes 22 ms on the average.

3.1 Quality of the structural alignments
In order to demonstrate the quality of the structural alignments
generated by Vorometric, we used the 10 difficult pairs of protein
structures that have previously been used to evaluate structural
alignment methods (Fischer et al., 1996). A difficult pair is defined
as a structurally similar pair that has a low sequence similarity
and that had proven difficult to align with the available methods.
For each pair, we use one of the proteins as query to search
against the database composed solely of the other protein, and
report the top-scoring HSP alignment. We compare the structural
alignments produced by Vorometric with those by other popular
structural alignment tools (Table 1). Note that this small and specific
set of proteins is used only to demonstrate the alignment quality
of Vorometric for very difficult cases. A larger and more general
evaluation of the alignment quality can be found in the next section.

The comparison is made using the RMSD between the super-
imposed structures, the percentage of the query protein aligned
(%N), and the TM-score (Zhang and Skolnick, 2004). The RMSD
of a superposition is defined as:

RMSD=
√∑

i di

N

where di is the Euclidean distance between the i-th corresponding
residues of the aligned proteins and N is the length of alignment.
Note that a tradeoff exists between the coverage of the alignment
(%N) and the RMSD error. It is generally possible to produce short
structural alignments with very low RMSD error (e.g. aligning
only a single residue from each protein would trivially achieve
zero error). And naturally, a higher RMSD error is incurred for
longer alignments. In response to the difficulty of interpreting both
RMSD and %N simultaneously, TM-score attempts to summarize
the quality of the alignment in a single scoring function and has been
shown to agree with the results of human expert visual assessments.
TM-score is defined as:

TM-score= 1

Ltarget

N∑
i

1

1+( di
d0(Ltarget )

)2
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Fig. 3. Structural alignment produced by Vorometric for 1ten (dark) and
3hhrb (light). Aligned regions are shown thicker.

where Ltarget is the length of the query protein, di is same as above,
and d0(Ltarget) is a normalizing factor so that the average TM-score
is not dependent on the size of the protein. TM-score ranges from 0
to 1, with 1 being a perfect superposition.

For the 10 difficult pairs, CE and DaliLite give comparable
coverage and RMSD values, whereas SSAP produces slightly longer
alignments with significantly worse RMSD values. For instance, the
alignment produced by SSAP for the 1ede–1crl pair had the worst
RMSD (9.25 Å) among all the alignments. 1ede and 1crl belong
to the α/β Hydrolases superfamily and are relatively large proteins
(310 and 534 residues, respectively), having eight β-strands wrapped
around by 11 α-helices. SSAP relies on aligning residues that share
similar inter-residue distances; the high number of contacts formed
by the residues at the core of these proteins makes their alignment
difficult by SSAP.

Vorometric produces better alignments than any other method
as measured by the TM-score. The coverage of the alignments by
Vorometric are as long as those of SSAP’s, while Vorometric at the
same time achieves the best average RMSD, when compared with
CE and SSAP.

Vorolign (Birzele et al., 2007), which is a pairwise alignment
method also based on Voronoi contacts, generates the shortest
alignments (about 30% smaller than Vorometric) and consequently,
achieves better RMSD. However, the average alignment quality
evaluated by TM-score is poorer than the other methods.
Furthermore, Vorolign fails to generate an alignment for the 1ten–
3hhrb pair. Both 1ten and 3hhrb are in the Fibronectin type III family;
1ten is composed of only one domain of the immunoglobulin-like
β-sandwich fold, whereas 3hhrb contains two such domains, one of
which aligns well with 1ten (Fig. 3). We attribute Vorolign’s failure
to its sensitivity to differences in residue contacts introduced by the
additional domain in 3hhrb.

3.2 Database search for similar proteins
Large-scale comparison of different structure alignment or search
methods is in itself a serious undertaking which is neither
straightforward, nor completely fair, because each such method
uses different databases and accuracy measures [see Kolodny et al.
(2005) for a comprehensive evaluation]. Furthermore, some methods
are made available only as a web service, which makes large-
scale experimentation with newly crafted datasets impossible, if not
prohibitive. For these reasons, we use the same dataset used by Aung
and Tan (2004) and Tung et al. (2007), and compare our results with
those reported by them.

Fig. 4. Average precision–recall curves for 108 queries on the database of
34 055 proteins.

Table 2. Average precision and running times on the database of 34 055
proteins

Avg. precision (%) Time per query Superposition

Vorometric-TM 82.9 51 s yes
Vorometric-raw 79.7 44 s no
CE 80.9 14 h yes
MAMMOTH 80.8 1.6 h yes
3D-BLAST 76.2 14 s no
PSI-BLAST 61.8 8 s no

Average precision is calculated as the mean of precision values for different recall levels.
The time results for Vorometric are based on returning top 100 hits, performed on a
Pentium 2.6 GHz personal computer. Vorometric-raw does not include the time spent
for optimization of structural superposition, whereas Vorometric-TM does. The times
for CE, MAMMOTH, 3D-BLAST and PSI-BLAST are approximate values interpolated
from Tung et al. (2007) using the running times of CE as basis of comparison. The best
values in each column are shown in bold.

The dataset consists of 34 055 proteins which cover about 90%
of the ASTRAL database. From medium-size families, 108 queries
are selected and have <40% sequence homology to each other.
The precision of the results for different recall levels is shown in
Figure 4 and summarized in Table 2. Even when the hits returned by
Vorometric are ranked according to their raw HSP alignment scores
(Vorometric-raw), the accuracy is better than other search methods
and is comparable to that of detailed pairwise structure alignment
methods CE and MAMMOTH, which indicates that the contact
string representation and comparison used by Vorometric accurately
captures the structural compatibility of the residues. When the
results are ranked by their superposition TM-scores, Vorometric-
TM achieves higher accuracy than any other method; giving slightly
worse accuracy than MAMMOTH only above the 95% recall level.

Please note that CE (Shindyalov and Bourne, 1998) and
MAMMOTH (Ortiz et al., 2002) are pairwise structure alignment
methods, and for each query, they exhaustively scan the entire
database. On the other hand, 3D-BLAST, ProtDex2 and TopScan
(Martin, 2000) are structure search methods which are proposed
as fast filters for similar structures, and do not produce structural
superpositions. PSI-BLAST (Altschul et al., 1997) is a sequence
profile search method, which interestingly performs better and faster
than ProtDex2 and TopScan. Vorometric achieves the best precision

2876



Search and alignment of protein structures

Table 3. Classification of ASTRAL v1.65-v1.67 difference set

Family Superfam Fold TM %N RMSD

Vorometric-TM 90.7 94.9 97.6 0.74 87.2 2.43
Vorometric-raw 85.9 91.2 97.0 — — —
Vorolign 86.4 92.4 97.7 0.74 76.3 1.9
CE 84.6 91.9 94.1 0.77 78.2 1.95
SSEA 60.8 68.9 75.6 — — —
BLAST 48.9 52.5 52.8 — — —

Vorolign and CE scan only the top 250 proteins returned by SSEA. The classification
accuracy and the structural alignment metrics are based on top-hit assignments and
alignments. The best values in each column are shown in bold.

while running in a comparable time scale as the other database
search methods, and additionally produces detailed structural
superpositions for the returned hits.

3.3 Protein classification
Another task that is closely related to the structure similarity
search is to identify the structural or functional class of a protein
via comparison with already annotated set of protein structures.
In order to evaluate the classification performance, we used
the dataset previously used by Birzele et al. (2007), where the
difference set between SCOP v1.67 and v1.65 are queried against
the ASTRAL-25 v1.65 containing 4358 proteins. The classification
performance is measured as the percentage of the 979 query proteins
correctly classified when compared with their actual classifications
in SCOP v1.67.

Although more elaborate voting schemes are possible for this
task, the most commonly employed strategy is to assume that the
query has the same class as the top-1 hit returned from a database
search. In order to provide a fair comparison, we also use the top-1
hit for assignment. Vorometric-TM achieves the best classification
accuracy in family and superfamily levels (Table 3), and only slightly
worse accuracy than Vorolign at the fold level.

Note that the average structural divergence between the queries
and their top hits are less for this dataset than that of the 10 difficult
pairs discussed above, which results in less pronounced differences
in the alignment qualities. The average sequence identity of the 10
difficult pairs is 10%, whereas that between the queries used in this
classification study and their best matches is 20%. While this may
suggest that Vorometric performs better than Vorolign and CE when
the level of homology is lower, we did not observe a consistent
correlation between the comparative alignment quality between
these methods and the level of homology of the proteins being
aligned. Nevertheless, Vorometric-TM produces longer alignments,
while maintaining similar TM-score alignment quality.

Vorometric-raw, which uses the raw HSP alignment scores
and does not generate structural superimpositions has similar
classification accuracy as Vorolign and CE. SSEA (Fontana et al.,
2005) uses alignment of secondary structure elements to search the
database, whereas BLAST is based on local alignment of primary
sequences. The classification by these two database search methods
are significantly worse than other methods. Please note that due
to time constraints, Birzele et al. (2007) use SSEA to prefilter the
database and use only the top 250 proteins to perform detailed
pairwise structure alignment by Vorolign and CE. On the contrary,
the integrated approach we employ in Vorometric relieves the

dependence on prefiltering the database with a coarse-level retrieval
method.

A number of the misclassifications by Vorometric were due to low
quality of the query entries. One of the extreme cases is 1oau:I; 85%
of whose residues were not located in the X-ray experiment. A more
subtle example is the 1r1g:A short-chain of scorpion neurotoxin,
whose few missing residues cause the structural alignment with
1aho:A domain, a long-chain scorpion toxin of the same superfamily
(TM-score 0.62, 28% sequence identity), better than that with the
correct family member 1jlz:A (TM-score 0.28, 48% identity).

A large fraction of the other misclassifications was due to the
cross-fold similarities, especially in highly conserved domains such,
as the immunoglobulin-like β-sandwich, zinc-finger and OB-fold.
It must also be noted that the SCOP classifications are based not
only on structural similarity, but also on functional and sequence
similarity considerations, and even on the dimerization state of the
proteins (e.g. the distinction between c.3.1.1 and c.3.1.5 families).
As such, even though Vorometric places the structurally most similar
protein as the top hit, it can be evaluated as a misclassification. For
instance, 1urf:A of the a.2.6.1 family is structurally aligned better
with 1lrz:A1 of the a.2.7.4 family, instead of 1cxz:B of the a.2.6.1
family. In most such cases, the correct family member were among
the top few hits, and a simple analysis of the sequence homology was
able to identify it correctly, indicating that a more elaborate strategy
considering the top-k hits can be developed for highly accurate and
fully automated classification of proteins.

3.4 Cross-fold similarities
We remark that there is no obvious or unambiguous way of clustering
the proteins into discrete groups, and a significant number of
overlaps will inevitably exist between proteins that are treated as
unrelated based on hierarchical classification schemes (Kolodny
et al., 2006). While the ability to replicate these classifications
demonstrate the performance of the structure search and alignment
methods and is useful in functional annotation, we believe that the
ability to identify the cross-fold similarities is also as important in
identifying more distant evolutionary and functional relationships
that may help to understand the biochemical mechanisms of the
particular biological function. While a systematic and exhaustive
analysis of such cases is beyond the scope of this study, here we
present a few examples to demonstrate that Vorometric is able to
identify such relationships. The examples are also available on the
Supplementary web site.

When Vorometric is used to query the first Ferrodoxin domain
of the small subunit of FDH (1h0h:B,d.58.1.5), the second
high scoring hit is the immunoglobulin-binding domain of
protein L (1hz6:A,d.15.7.1) (Fig. 5a). The similarity between
these two proteins has previously been used to put forth a
mechanism of structural drift during evolution (Krishna and
Grishin, 2005). Other significant cross-fold similarities were found
between Beta-D-xylosidase (d1uhva1,b.71.1.2) and Chondroitin
ABC lyase I (d1hn0a3,b.24.1.1), and between sucrose phosphorylase
(d1r7aa1, b.71.1.1) and acidic mitochondrial matrix protein p32
(1p32:A,d.25.1.1).

We have also observed that many of the toxins share a significant
structural similarity with proteins whose normal function is
critical for the organism. The similarity between the assassin
bug toxin AD01 (1lmr:A,g.3.6.3) and human insulin-like growth
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Fig. 5. Examples of cross-fold similarities.

factor-binding protein-5 (1h59:B,g.3.9.1) shown in Figure 5b;
between the Chinese scorpion neurotoxin (1r1g:A,g.3.7.2) and
human transcription initiation factor TAF(II)18 (1bh9:A,a.22.1.3)
and between short-chain scorpion Cobatoxin 1 (1pjva:A,g.3.7.2)
and human methylation-dependent transcriptional repressor
MBD1/PCM1 (1owt:A,d.230.3.1) are only some of such instances.
We believe that a detailed analysis of these similarities may provide
insight into the biochemical mechanism of the toxins, and that of
the respective proteins they mimic.

Perhaps the most striking similarity we have discovered is that
between the ribosomal protein S28e (1ne3:A,b.40.4.5) and the
translation initiation factor IF2/eIF5b (1d1n:A,b.43.3.1). The SCOP
classification of these proteins differ at the fold level; similarly, the
CATH classification (Orengo et al., 1997) differ at the topology level
(with CATH classifications 2.40.50.140 and 2.40.30.10 for 1ne3:A
and 1d1n:A, respectively). While there is a significant body of work
comparing IF2 with the translation elongation factors EF-tu and EF-
G, it has not been compared with S28. It has been established that the
initiation and elongation factors bind aminoacyl-tRNA, carry it to
the ribosome, and detach from the ribosome after a conformational
change caused by GTP hydrolysis, leaving the aminoacyl-tRNA
attached at the A-site (Andersen et al., 2003; Meunier et al., 2000).
On the other hand, the function of the ribosomal protein S28 is
not characterized, although it has been conjectured to bind RNA,
based on the analogy of its surface to the OB-fold proteins (Wu
et al., 2003). The Vorometric for S28e finds IF2 as a significant hit;
their structure alignment (Fig. 5c–e) shows a conserved [RK]EGD
motif which provides a negatively charged site on both proteins. A
comparison of their surface electrostatic potentials reveals a large,
positively charged, arginine-rich face on both proteins. The structure
and surface similarities suggest that the ribosomal protein S28 may
be responsible for taking over the aminoacyl-tRNA from the IF2
as it is being detached from the ribosome, and support the codon–
anticodon binding as the peptidyl-tRNA is translocated from A-site
to the P-site.

4 DISCUSSION
The pairwise structural alignment methods hitherto proposed rely
on coarse-level filtering methods to scan the database of protein
structures for candidates that are worthy of alignment. We have
introduced Vorometric, a fast protein structure database search
and alignment tool that uses the same sensitive representation
of residue interactions for both identifying similar proteins and
generating high-quality structural alignments. The heuristic that
structurally similar proteins share similar residue interactions is

exploited through a metric comparison of these interactions which
has allowed efficient distance-based indexing and retrieval of related
proteins.

The additional accuracy achieved by Vorometric does not incur
significant time and memory requirements. The whole index
structure for the large dataset of 34 055 proteins is constructed
incrementally in 12 min, requiring less than 600 MB, and is kept
in the main memory for fast access. Note that the index structure
allows efficient insertions and deletions, which means that one
does not need to rebuild the whole database index structure for the
addition of a new protein or the removal of an obsolete protein. The
querying speed achieved by the distance-based indexing method
is complemented by the hit-extension strategy, which allows fast
exploration of the search space by effectively pruning redundant
or unpromising hits. The search of a query protein against a large
database takes less than a minute, including detailed superposition
of the retrieved proteins.

Evaluation of Vorometric on large-scale datasets shows that it
provides the accuracy of pairwise structural alignment tools and
the speed of database search tools. Vorometric performs better
than other methods on the database search and classification tasks
and produces longer, high-quality structure alignments, relieving
the dependence on separate structural alignment tools. Finally,
Vorometric successfully identifies cross-fold similarities between
proteins so that distant evolutionary and functional relationships can
be discerned.

The representation of residue environments used in Vorometric
for indexing and alignment provides fast and effective structure
retrieval and alignment but does come with its own drawbacks.
Specifically, homologous proteins whose sequences are circularly
permuted (Jung and Lee, 2001) or inverted (Ausiello et al., 2007)
and non-topological structural motifs (Alesker et al., 1996) are not
captured by Vorometric. This is a common problem of most structure
search or alignment methods and is mainly due to the limitation of
the dynamic programming used for seed extension or alignment.
In Vorometric, additionally, the linear representation of the residues
in contact strings limits the method to a sequence-order-dependent
comparison of different environments. We are currently exploring
different ways of overcoming this limitation; extracting multiple
representations for a single environment, including both forward
and reverse sequence order, provides promising results for handling
inverted sequences but still fails to handle topology-independent
similarities.

Note that Vorometric is a specific implementation of a more
general and extensible framework. Particularly, different subs-
titution matrices or distance functions can be developed and used,
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provided that they satisfy the metric properties or that they allow
other efficient indexing strategies. The substitution matrix by Sacan
and Toroslu (2007) was the matrix of choice in this study due to its
accuracy in alignment tasks, and its structure search and alignment
performance in our preliminary studies (data not shown); the
algorithm would easily accommodate other metric matrices. The
extension phase of Vorometric can also incorporate other candidate
evaluation methods (such as structural compatibility) to further
filter the seed contact strings. Finally, even though we have used a
single set of optimized parameters in Vorometric, it is possible to
obtain and use different parameter sets for various homology levels
or for different secondary structure or topological classifications.

Funding: US National Science Foundation (Grants IIS-0546713
and DBI-0750891); and Turkish Scientific and Research Council
(TUBITAK) (Grant 107E173).

Conflict of Interest: none declared.

REFERENCES
Alesker,V. et al. (1996) Detection of non-topological motifs in protein structures. Protein

Eng., 9, 1103–1119.
Altschul,S. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res., 25, 3389–3402.
Andersen,G.R. et al. (2003) Elongation factors in protein biosynthesis. Trends Biochem.

Sci., 28, 434–441.
Aung,Z. and Tan,K. (2004) Rapid 3D protein structure database searching using

information retrieval techniques. Bioinformatics, 20, 1045–1052.
Ausiello,G. et al. (2007) Local comparison of protein structures highlights cases

of convergent evolution in analogous functional sites. BMC Bioinformatics, 8
(Suppl. 1), S24.

Bhattacharya,A. et al. (2004) Progress: simultaneous searching of protein databases by
sequence and structure. Pac. Symp. Biocomput., 9, 264–275.

Birzele,F. et al. (2007) Vorolign: fast structural alignment using Voronoi contacts.
Bioinformatics, 23, e205–e211.

Brown,S. et al. (2006) A gold standard set of mechanistically diverse enzyme
superfamilies. Genome Biol., 7, R8.

Carpentier,M. et al. (2005) Yakusa: a fast structural database scanning method. Proteins,
61, 137–151.

Chandonia,J. et al. (2004) The ASTRAL compendium in 2004. Nucleic Acids Res., 32,
189–192.

Dosztanyi,Z. and Torda,A. (2001) Amino acid similarity matrices based on force fields.
Bioinformatics, 17, 686–699.

Fischer,D. et al. (1996) Assessing the performance of fold recognition methods by
means of a comprehensive benchmark. Pac. Symp. Biocomput., World Scientific
Publishing, Hawaii, pp. 300–318.

Fontana,P. et al. (2005) The SSEA server for protein secondary structure alignment.
Bioinformatics, 21, 393–395.

Friedberg,I. and Godzik,A. (2005) Connecting the protein structure universe by using
sparse recurring fragments. Structure, 13, 1213–1224.

Gan,H. et al. (2001) Lattice protein folding with two and four-body statistical potentials.
Proteins, 43, 161–174.

Holm,L. and Sander,C. (1993) Protein structure comparison by alignment of distance
matrices. J. Mol. Biol., 233, 123–138.

Ilyin,V.A. et al. (2004) Structural alignment of proteins by a novel TOPOFIT method,
as a superimposition of common volumes at a topomax point. Protein Sci., 13,
1865–1874.

Jung,J. and Lee,B. (2001) Circularly permuted proteins in the protein structure database.
Protein Sci., 10, 1881–1886.

Kabsch,W. (1978) A discussion of the solution for the best rotation to relate two sets of
vectors. Acta Crystallogr., A34, 827–828.

Kabsch,W. and Sander,C. (1983) Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers, 22,
2577–2637.

Kolodny,R. et al. (2005) Comprehensive evaluation of protein structure alignment
methods: scoring by geometric measures. J. Mol. Biol., 346, 1173–1188.

Kolodny,R. et al. (2006) Protein structure comparison: implications for the nature of
fold space, and structure and function prediction. Curr. Opin. Struct. Biol., 16,
393–398.

Krishna,S.S. and Grishin,N.V. (2005) Structural drift: a possible path to protein fold
change. Bioinformatics, 21, 1308–1310.

Krishnamoorthy,B. and Tropsha,A. (2003) Development of a four-body statistical
pseudo-potential to discriminate native from non-native protein conformations.
Bioinformatics, 18, 1540–1548.

Lagarias,J.C. et al. (1998) Convergence properties of the nelder-mead simplex method
in low dimensions. SIAM J. Optim., 9, 112–147.

Lathrop,R. (1994) The protein threading problem with sequence amino acid interaction
preferences is NP-complete. Protein Eng., 7, 1059–1068.

Martin,A. (2000) The ups and downs of protein topology: rapid comparison of protein
structure. Protein Eng., 13, 829–837.

Meunier,S. et al. (2000) Structure of the fMet-tRNAfMet-binding domain of
B.stearothermophilus initiation factor IF2. EMBO J., 19, 1918–1926.

Murzin,A.G. et al. (1995) SCOP: a structural classification of proteins database for the
investigation of sequences and structures. J. Mol. Biol., 247, 536–540.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J. Mol Biol., 48, 443.

Orengo,C. et al. (1997) CATH: a hierarchic classification of protein domain structures.
Structure, 5, 1093–1108.

Ortiz,A. et al. (2002) Mammoth (matching molecular models obtained from theory):
an automated method for model comparison. Protein Sci., 11, 2606–2621.

Richards,F. (1974) The interpretation of protein structures: total volume, group volume
distributions and packing density. J. Mol. Biol., 82, 1–14.

Roach,J. et al. (2005) Structure alignment via Delaunay tetrahedralization. Proteins,
60, 66–81.

Sacan,A. and Toroslu,I.H. (2007) Amino acid substitution matrices based on 4-body
Delaunay contact profiles. In IEEE Trans. of the 7th International Symposium on
Bioinformatics and Bioengineering (IEEE-BIBE2007). Boston, MA, USA, pp. 796–
802.

Sacan,A. et al. (2007) LFM-pro: a tool for detecting significant local structural sites in
proteins. Bioinformatics, 23, 709–716.

Sellers,P. (1974) On the theory and computation of evolutionary distances. J. Appl.
Math., 26, 787–793.

Shindyalov,I. and Bourne,P. (1998) Protein structure alignment by incremental
combinatorial extension (CE) of the optimal path. Protein Eng, 11, 739–747.

Taskin,M. and Ozsoyoglu,Z.M. (2004) Improvements in distance-based indexing. In
IEEE Proceedings of the 16th International Conference on Science and Statistic.
Database Management. Washington, DC, USA, pp. 161–170.

Traina,J.C. et al. (2000) Slim-trees: High performance metric trees minimizing overlap
between nodes. In Proceedings of the 7th International Conference on Extending
Database Technology. Springer, Konstanz, Germany, pp. 51–65.

Tung,C.-H. et al. (2007) Kappa-alpha plot derived structural alphabet and BLOSUM-
like substitution matrix for rapid search of protein structure database. Genome Biol.,
8, R31.1–R31.16.

Wallqvist,A. et al. (2000) Iterative sequence/secondary structure search for protein
homologs. Bioinformatics, 16, 988–1002.

Wu,B. et al. (2003) Solution structure of ribosomal protein S28E from
Methanobacterium thermoautotrophicum. Protein Sci., 12, 2831–2837.

Zhang,Y. and Skolnick,J. (2004) Scoring function for automated assessment of protein
structure template quality. Proteins, 57, 702–710.

Zintzaras,E. (1999) A comparison of amino acid distance measures using procrustes
analysis. Comput. Biol. Med., 29, 283–288.

2879


