IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11,

NOVEMBER 2006 1

Access Structures for
Angular Similarity Queries

Tan Apaydin and Hakan Ferhatosmanoglu

Abstract—Angular similarity measures have been utilized by several database applications to define semantic similarity between
various data types such as text documents, time-series, images, and scientific data. Although similarity searches based on Euclidean
distance have been extensively studied in the database community, processing of angular similarity searches has been relatively
untouched. Problems due to a mismatch in the underlying geometry as well as the high dimensionality of the data make current
techniques either inapplicable or their use results in poor performance. This brings up the need for effective indexing methods for
angular similarity queries. We first discuss how to efficiently process such queries and propose effective access structures suited to
angular similarity measures. In particular, we propose two classes of access structures, namely, Angular-sweep and Cone-shell, which
perform different types of quantization based on the angular orientation of the data objects. We also develop query processing
algorithms that utilize these structures as dense indices. The proposed techniques are shown to be scalable with respect to both
dimensionality and the size of the data. Our experimental results on real data sets from various applications show two to three orders of

magnitude of speedup over the current techniques.

Index Terms—Angular query, performance, indexing, angular similarity measures, high-dimensional data.

1 INTRODUCTION

IMILARITY measures based on angular distances have

been effectively utilized in a wide range of modern
database applications. The general approach is to first
generate a multidimensional feature vector for each data
object, then use an angular distance between representative
vectors as a measure of similarity in the semantic space. For
example, the cosine angle measure computes the difference
in direction, irrespective of vector lengths, where the
distance is given by the angle between the two vectors.
Being scale-invariant is a particularly useful property in
heterogeneous or real-time databases since preprocessing
for normalization is not required [30]. In fact, angular
measures are closely related to the Euclidean distance
metric. However, depending on the application, there are
cases where one measure is preferred over the other.

1.1 Applications
Angular measures have been used to compare a large
variety of data types. We list some examples below:
Astronomy and Astrophysics. The apparent positions
and separations of constellations and objects in the sky are
not determined by the linear distances between two objects
but by their angular separation. Their positions are related to
angular distances or angular separations from well-known
or readily identified reference positions or objects. The
standards to measure some distances are the angles between
imaginary lines coming from the objects or positions of
interest and intersecting at the eye of the observer. In order

o The authors are with the Computer Science and Engineering Department,
The Ohio State University, 395 Dreese Lab, 2015 Neil Ave., Columbus,
OH 43210. E-mail: {apaydin, hakan}@cse.ohio-state.edu.

Manuscript received 3 June 2005; revised 6 Feb. 2006; accepted 6 June 2006,
published online 19 Sept. 2006.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0224-0605.

1041-4347/06/$20.00 © 2006 IEEE

to determine an arc-angle or distance between two vectors,
the dot product and the Cartesian difference of the vectors
are used. Since they are the natural underlying distance
measure, angular measures are commonly used in querying
astronomical data [4], [24], [36], [41].

Aviation. An angular query in an Air Traffic Control
(ATC) system is to find all objects within the flight route of
the plane [13]. The route consists of several segments of
lines and the query is defined as a series of cones because of
the uncertainties as the distance from a starting point
increases. Similarly, an angular query can be defined in a
Space Transportation System to check the objects, e.g.,
satellites, within the route of a spacecraft [23].

Graphics. Data processing based on angular regions are
common in computer graphics applications. With spotlight
sources, to make an appearance determination of an object,
a cone is specified and a spot direction which provides the
center of the cone is defined. The light source to a surface
direction and the inner product with the spot direction is
computed. If the result is less than the cosine of spot angle,
the light source is not visible at that surface [39].

Images. Similarity measures for retrieval based on the
angular distance are also shown to be efficient and robust
for image processing applications [29], [38]. For example,
feature vectors are generated based on segmentation and
pixel analysis and the angle between the query vector and
each indexed representative vector is utilized for a more
accurate similarity searching. This is done by first calculat-
ing the cosine of vectors and then computing the angle
between them [3], [17].

Protein structures. For classifying protein folds and for
revealing a global view of the protein structures, structural
similarity measures based on angular distances, i.e., cosine,
are utilized to provide an objective basis. Its efficiency and

Published by the IEEE Computer Society

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11,

scale-invariance properties make the angular distance
particularly useful in this domain [2], [11], [16].

Text documents. Angular similarity has been popularly
used in information retrieval for semantic analysis of text
documents. After removing the stop words, articles,
conjunctions, etc., the number of occurrences of each
word/term is computed and stored as a feature vector for
each document [10], [27], [30], [33], [34], [35], [37], [42]. Since
the number of features may be very large, some information
retrieval techniques, such as Latent Semantic Analysis
(LSA/LSI) [1], [14], [15], apply some preprocessing to
reduce the dimensionality of the vectors. The similarity
between documents is then measured as the cosine of the
angle between these feature vectors [10], [30], [35], [42].

Time series. Correlation measures, which are angular
distances for standard vectors, are widely used in the
analysis of time series data [25], [31]. There have been recent
studies that apply a spatial autocorrelation among spatial
neighboring time series by locating them on the surface of a
multidimensional unit sphere. Then, the correlation coeffi-
cient (r) of these transformed time series is formulated in
terms of the cosine of the angle between them [43], [44].
Actually, any transformation ending up with a time series
whose mean is zero has the same effect, i.e., v of the new
two series is equal to the cosine of the angle between them.

The proposed techniques are targeted toward the
applications that use a single origin for measuring the
angular similarity. This is the case for most of the
applications presented above, including images, protein
structures, text documents, and time series analysis.
Extensions are needed for the proposed techniques to be
utilized in dynamic geographic applications, such as
aviation, where the angle needs to be dynamically
computed with respect to changing origins.

1.2 Technical Motivation

For efficient processing of queries, indexing support is vital
and angular similarity queries are no exception. An angular
similarity query corresponds to the shape of a conic in the
geometric space. On the other hand, current index
structures, including the well-known families of R-trees
[5], [21], grid files [28], and VA-Files [40], use rectangles
and/or circles as the underlying geometric shapes. Simi-
larly, partitioning-based approaches [9], [18] use an
incompatible organization of the space. On the other hand,
a popular similarity measure, cosine, is not a metric space
function (which is the building block of M-trees) since it
does not satisfy the triangle inequality and, for this reason,
M-trees [12] cannot be applied. Due to a mismatch of
geometries and high dimensionality of the feature space,
current techniques are either inapplicable or perform poorly
for applications that utilize angular distances. They have a
poor performance even when the data objects are trans-
formed into their native domain where they were originally
developed (e.g., normalizing the data to use Euclidean
distance). The need is further amplified for higher dimen-
sions, where the current techniques retrieve the majority, if
not all, of the disk pages that do not include any related
information.

NOVEMBER 2006

1.3 Our Approach

We propose access structures to enable efficient execution
of queries seeking angular similarity. We explore quantiza-
tion-based indexing, which scales well with the dimension-
ality, and propose techniques that are better suited to
angular measures than the conventional techniques. In
particular, we propose two classes of scalar quantizers and
index structures with query processing algorithms. A
quantizer is designed for each data object considering its
angular orientation. It is based on a partitioning technique
optimized for angular similarity measures which results in
significant pruning in processing of angular queries. The
first technique partitions the space into multidimensional
pyramids and quantizes the data based on the partitions in
a sweeping manner. The second technique quantizes the
partitions following a shell structure.

Among the current techniques that are comparable to the
proposed approaches for angular queries, VA-Files is the
most convenient and has the best performance, which is
discussed in Section 2.2. For this reason, the performances
of angular range and k-NN queries are analyzed and
compared with VA-Files on synthetic and real data sets
from a variety of applications mentioned earlier. Experi-
mental results establish that each proposed technique has
its unique advantages and they both achieve a significant
performance improvement over VA-Files (e.g., three orders
of magnitude speedup for angular range queries over a text
data set).

The paper is organized as follows: In the following
section, we present background information about angular
similarity and quantization-based approaches. We highlight
the problem behind the conventional techniques and briefly
introduce our approach. In Section 3, we describe our first
quantization technique and give details about the proces-
sing of angular range and angular k-NN queries. Section 4
describes our second technique and explains the query
processing. Representative experimental results are pre-
sented in Section 5. Section 6 concludes the paper with a
discussion.

2 BACKGROUND

In this section, we first define similarity queries with
angular measures, e.g., cosine, inner product, and correla-
tion coefficient, and then describe the quantization ap-
proach for high-dimensional indexing.

2.1 Angular Similarity

An angular range query is defined by (Q,), where @ is the
query point (gi,¢s,...,qq¢) in a d-dimensional space and «
denotes the angle that represents the range, and seeks all
data in the cone whose axis (OQ) is the line defined by the
origin O and the query point,), and whose apex or the
vertex is on the origin, as illustrated in Fig. 1. The angle
between the axis and all the lines on the lateral surface of
the cone is a. All the feature vectors that are equally similar
to the query vector are on an equivalence region which
corresponds to a conic surface.

If a feature vector is represented as X (z,z2,...,zq), the
cosine angle measure (a widely used similarity measure) is
defined by the following formula:

APAYDIN AND FERHATOSMANOGLU: ACCESS STRUCTURES FOR ANGULAR SIMILARITY QUERIES 3

U N S

O (Origin) N
O (Origin)

(@) (b)

Fig. 1. Angular range query. (a) Two-dimensional and (b) three-
dimensional.

d
cos(a) = (chzQz>/(||X| -1l (1)

Without loss of generality, if we assume the query point to be
normalized, then (1) can be simplified to cos(a) = H}‘T -,

., uq) is the unit normalized query. Addi-

where U(uy,ug, . .
tionally, if the feature vectors are also normalized, then the
equation becomes the inner product of the query with a feature
vector in the domain. Similarly, Pearson’s correlation coeffi-
cient [20], another popular measure, can be defined as the
inner-product of two vectors when they are standardized, i.e.,
the means of the new vectors are 0 and the standard
deviations are 1.

For simplicity, we based our initial discussions on a
three-dimensional model, which will later be extended
to higher dimensions. Let Q be a three-dimensional
query point and w = (u1, u2, u3) be the unit vector which
is the normalization of the query vector. That is, u; =
a/\/@G+d+q3 for i=1, 2, 3. The expression for an
equivalence conic surface in angular space is the

following equation:
(r1u1 + Toug + 1:3U3)2 = (r? + r% + .T?,))COSZOZ. (2)

2.2 Quantization-Based Access Structures

A large number of indexing techniques have been proposed
in the literature to improve the efficiency of similarity
queries in multidimensional data sets. It has been estab-
lished that the well-known indexing techniques and their
extensions are outperformed on average by a simple
sequential scan if the number of dimensions exceeds 10
[8], [40]. Quantization has been proposed as a more effective
alternative to the tree-based approaches. For example, the
VA-File, a dense-index based on scalar quantization, has
been shown to be superior to the traditional techniques [40].
In this technique, the data space is split into 2’ rectangular
cells, where b is the total number of bits specified by the

user or the system requirements, such as available memory.
Each dimension is allocated b; bits, which are used to create
2% splits in the corresponding dimension. As a result, each
cell has a bit representation of length b which is used to
approximate the data points that fall into the corresponding
cell. The dense index, e.g., VA-File, is simply an array of
these bit vector approximations (bit-strings) based on
quantization of the original feature vectors. There have
been extensions to VA-Files, e.g., IQ-tree [6] and A-tree [32],
which are proposed to build the VA-File in a hierarchical
way. From now on, we will interchangeably use the terms
bit vector approximation and bit-string.

The quantization-based indices can be used to approxi-
mately answer the query without accessing any real data or
to filter the data and eliminate some of the irrelevant data to
give an exact answer. As an example, exact nearest
neighbor queries can be executed as follows: In the first
phase, quantized data is scanned sequentially and lower
and upper bounds on the distance of each vector to the
query vector are computed. If a bit-string is encountered
such that its lower bound exceeds the (kth) smallest upper
bound found so far, the corresponding object can be
eliminated. In the second phase, the algorithm traverses
the real data that correspond to the candidate set in the
order of their lower bounds. If a lower bound is reached
that is greater than the (kth) actual nearest neighbor
distance seen so far, then the algorithm stops retrieving
the rest of the candidates. Other queries, such as range
queries, can be executed in a similar way where the first
step identifies the candidates using the bit-strings and the
second step computes the actual results. Two-step query
processing guarantees that no actual result is missed.

A VA-File example is given in Fig. 2b. The rectangular
partitioning-based quantization represents grid-based vec-
tor approximations. The data subspace between the arrows
shows the angular query space. The goal is to find the
feature vectors (data points) that are in this query space.
This space intersects a large number of approximations
(based on the rectangles) and, thus, the technique retrieves
many irrelevant data points. For example, the data point A
will be retrieved since its approximation is intersected with
the query space, although A itself is not in the query space
and there will be many irrelevant points like A. In higher
dimensions, the number of similar points gets higher and
they cannot be eliminated.

All of the above-mentioned techniques are specifically
developed for Euclidean or general metric spaces. Due to a
mismatch of geometries, they are either infeasible or
ineffective for our purposes. For instance, our experiments
on an adaptation of conventional VA-Files for angular
measures (by normalization) show a very significant
degradation on the performance. Similarly, Fig. 2a depicts
the partitioning structure of the Pyramid technique [9]
which obviously has more irrelevant points due to geo-
metric mismatch. We compared our techniques with VA-
Files, which achieves the best performance for current
approaches.

The only work that takes the geometry mismatch
problem into account is a declustering technique based on
a conical partitioning [19]. However, this approach works

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11,

NOVEMBER 2006

i

@

(©

Fig. 2. Different organizations. (a) Pyramidal, (b) rectangular, and (c) angular.

Fig. 3. Underlying partitions for the first technique.

only for uniform data and does not scale up with
dimensionality; hence, it is infeasible for the mentioned
applications. There is a need for access structures that scale
well with dimensionality and that are optimized for angular
similarity measures which are used in several database
applications.

3 ANGULAR SWEEP QUANTIZER (AS-Q)

We propose novel access structures based on an effective
quantization of the data objects using their angular
orientations with respect to the origin. A bit-string for each
object is generated based on their angular positions as
opposed to their values in each dimension. For two
dimensions, the underlying partitioning for our quantiza-
tion technique is illustrated in Fig. 2c, which is much better
suited for angular queries than the pyramidal or rectan-
gular structures in Figs. 2a and 2b. For the clarity of the
development, without loss of generality, we assume that the
data space is a unit hypercube, ie., [0... 14, and we only
use the positive coordinates. The formulations do not
depend on this assumption and knowing the limit values
(minimum and maximum) for each dimension is enough
for the development. In this section, we describe Angular
Sweep Quantizer (AS-Q), our first access structure for high-
dimensional angular similarity searches. We first describe
the partitioning used as a basis of the quantizer and develop
a dense index by an effective quantization of the data. We
then describe how to process range and A-NN queries.

x=1 plane

Origin

3.1

Data-Space Partitioning

The first step for the AS-Q technique, for d number of
dimensions, is to divide the data space into d major
hyperpyramids, each having the side planes of the unit
hypercube as the base area and the origin O = (0,0,...,0)
as the apex. Figs. 3a and Figs. 3b illustrate the three-
dimensional example of a major pyramid whose base is
x = 1 plane. Note that, for three dimensions, there are three
major pyramids (whose bases are x =1, y=1, and z=1
planes—or squares) that cover the entire data space,
namely, unit cube. The major pyramids are then divided
into subpyramids, as shown in Fig. 3c. The subpyramids
can be constructed either as equi-volumed or as equi-
populated as will be discussed in Section 3.2. These
subpyramids are the underlying partitions for the quantiza-
tion and a bit-string will be derived for each of them.

3.2 Angular Sweep Quantization
3.2.1 Bit Allocation

Once the partitioning is performed, the next step is to
develop a bit allocation scheme where each partition is
assigned to a bit-string. The number of bit-strings allocated
for a major pyramid is equal to the number of subpyramids
in that major pyramid and, thus, proportional to the
number of data points in the major pyramid (i.e., the higher
the number of data points, the higher the number of
assigned bit-strings). Hence, the partitions are assigned a
nonuniform number of bit-strings, which is well suited to
the distribution of the data.

The pyramids are defined by the equations of their
enclosing planes. For instance, in three dimensions, the
pyramid formed by the origin and the base plane z =1 is

APAYDIN AND FERHATOSMANOGLU: ACCESS STRUCTURES FOR ANGULAR SIMILARITY QUERIES 5

enclosed by the planes x =y, c =2,y=0,z=0,and z = 1.
We mainly name a major pyramid by its base plane, i.e.,
“x =1 major pyramid.” Representing the dimensions z, y,
and z by =z, x2, x3, respectively; a particular point
Py(x1,9,...,24) is contained in major pyramid z;,, =1,
where z,4,,. is the dimension with the greatest correspond-
ing value, i.e., V;(zq4,, > z;). For instance, in three dimen-
sions, P(0.7, 0.3, 0.2) will be in “z; = 1 major pyramid” since
0.7 (x) is greater than both 0.3 (z2) and 0.2 (z3). The bit
allocation scheme is as follows:

For d dimensions, a data set P consists of N points and
total number of bits b. Let Pop(i) give the population for
major pyramid ¢ and BS(:) is a list that will keep the bit-
strings assigned for that major pyramid in sorted order.

1. For each major pyramid 4, find Pop(i). A
For each major pyramid i, assign the next —POJI\’,(” x 2
bit-strings to BS(7).

3.2.2 Generating Bit-Strings

Major pyramids are sliced into subpyramids, as we
mentioned before. For example, in Fig. 3c, + =1 major
pyramid is sliced according to y dimension, i.e., y is the split
dimension for x = 1. Similarly, z=1 major pyramid is
sliced according to « dimension and, in this case, = is the
split dimension for z=1. The number of bit-strings
allocated to each major pyramid is determined on the basis
of this chosen split dimension. This dimension could be the
one with the greatest spread or with the greatest variance.
Alternatively, the split dimension could be chosen in a
systematic manner. For instance, for all dimensions except
the first dimension x;, the base planes of the major
pyramids can be divided according to the first dimension,
x1. And, the first dimension, z;, can be divided with respect
to any of the others, say z2. Another approach would slice
the major pyramids in a round-robin manner. For instance,
x1 = 1 according to xs, 3 = 1 to x3, 3 = 1 to x; (in a cyclic
manner). In the subsequent formulations, without loss of
generality, we assume that the major pyramids are sliced in
this manner, i.e., x; = 1 with respect to ;1 for ¢ < d, and z4
with respect to z;. The only reason for this assumption is
the simplification of implementations.

We utilize both equi-volumed and equi-populated
partitionings. In the equi-populated version, each bit-string
represents an equal number of data points, as illustrated in
Fig. 4b. Equi-volumed partitioning, as shown in Fig. 4a, is
easier to compute and store. In order to produce a bit-
string for a given data point P, the following general
algorithm is used for both equi-volumed and equi-
populated partitionings.

Algorithm: In a major pyramid, let R(P;) be the rank of the

subpyramid (approximation) for point P;, 1 < k < N.

1) For each P, find R(P;).

2) The bit-string for each P, will be the R(P;)th bit-string in
BS(i).

The equi-population method sweeps the data points in a
major pyramid in the chosen split dimension until the
required number of points are found. Then, the boundary
values (i.e., M, M,, Ms in Fig. 4b) of the split dimension are
stored as the demarkation of the equivalence regions, each

M,
[} [)
Ve d ° K o °
Vs E P
° Vs ° 4
V3
g
V, M
2
[] ® p
2
\% M 1
° Py
Origin Origin

(@) (b)

Fig. 4. An (a) equi-volume and (b) equi-populated structure.

of which corresponds to an approximation. While this
technique takes into account the data distribution for a
better performance, it also requires a large amount of
storage for higher order bits.

3.3 Processing Angular Range Queries

An angular range query, defined in Section 2.1, seeks all
data similar to a given query within a given angular
threshold «. To process such queries, we need to first
identify the candidate approximations which intersect the
conic query volume. The second step computes the actual
results among the candidates.

3.3.1 Filtering Step

For two dimensions, Fig. 5a represents four underlying
partitions (where A; and A, are in x; = 1 major pyramid, A
and A4 are in zp = 1 major pyramid) and the unit square is
the data space. The easiest way to decide whether an
approximation intersects the range query space is to look at
the boundaries of the unit square which are not intersecting
the origin. Here, these boundaries are the line segments
from point (1, 0) to (1, 1) and from (0, 1) to (1, 1). Thus,
finding the points K and K> in Fig. 5b will be sufficient to
decide whether approximations A; and A, (in Fig. 5a)
intersect the query space or not. We only need to compare
K; and Ky with M and N.

The query volumes will intersect all the infinite
boundary planes that do not intersect the origin. Some
intersections will be outside the unit hypercube. This can be
used to eliminate some of the approximations. For two
dimensions, the query in Fig. 5b intersects both infinite
boundary lines (i.e., z; = 1 and 2 = 1). However, the query
does not intersect the z» = 1 line within the boundaries, i.e.,
K3 and K, are outside the unit square. In this case, the
approximations A3 and A, are automatically eliminated. In
three dimensions, in a similar case, major pyramid z, = 1 is
totally eliminated.

However, if the query intersects a plane within the
boundaries, then our goal is to find minimum (min) and
maximum (max) values of the query on the boundary. For
instance, in Fig. 5b, K; and K>, in Fig. 5c, maz(zs) and
min(zs) will be such values.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11,

NOVEMBER 2006

T
X2 X2 WU
1 M 1 K; Ky
Ay /A, Ky
A, IN K,
Ay
(0] 1 x (0] 1 x

Fig. 5. Range query filtering approach.

3.3.2 Obtaining Min and Max Values

In order to find the ellipse-shaped intersection of the query
on the z; = 1 plane, which is the base of the major pyramid,
the equivalence surface (2) is used. For z; = 1, the closed
form of the ellipse equation is

(u1 + Touy + z3uz)’ — (1 + 22 + 23)cos’a = 0.

3)

Lagrange’s multipliers approach is applied to the above
equation. To maximize or minimize f(p) subject to the
constraint g(p) =0, the following system of equations is
solved:

Vf(p) = AVy(p)
9(p) = 0.

To compute the extreme values for z; on z; =1, take
f(z1,...,2,) = 2o and

(4)

. 71:7L) = (ul + Toug + x3uz + ... + :L'nun)Z

—(1+a3+25+...+2%)cos’a.

g(xy, ..

In order to compute the min-max values in a systematic
and fast manner, we arrange the equations for the min and
max values as a linear system, i.e.,, Az = B, where z is the
solution set of the system, and A and B are coefficient
matrices.

3.3.3 Identifying Query Results

Once we have the min-max values, we can use them to
retrieve the relevant approximations. These are the approx-
imations in the specified « range neighborhood of the
query. We earlier described two techniques for generating
approximations—one based on equi-volume regions and
the other on equi-populated regions of the major pyramid.
We explain in this section how this design enables us to use
these min-max values to effectively filter unrelated vectors.

For three dimensions, in Fig. 5¢, min(z,) and max(z-) are
the extreme values for dimension number 1 (i.e., for x; = 1
plane). In Fig. 5¢c, P;, P», and P; represent the base
rectangular planes of the corresponding subpyramids in
the z; = 1 major pyramid. We filter the approximation which
is based on P; by utilizing min(zs) and maz(z,) values.

In the general case, given the bounds (min;, maz;) for each
dimension i, the following algorithm computes the approx-
imations (whose bases are on the z; = 1 plane) we need. The
algorithm filters the nonintersecting approximations.

Algorithm: Filter Approximations
Input: The extremes (min;, max;) for z;4; on z; = 1 plane.
An empty set Sj.

1) For each approximation (a), if min(a) > min; and
mazx(a) < mazx;, then Sy = S4 U {a}. Here, min(a) and
maz(a) represent the minimum and maximum z;4
values on the base of a.

2) If min(a) < min; < maz(a) or min(a) < maz; < maz(a),
then Sy = Sy, U {a}

3) The intersected approximations for z;
in S A-

1 plane are now

The previous algorithm retrieves the approximations
intersecting with the angular range query space. However,
some of the data points in these approximations might not
be in the query space. We need to discard those data points.
At this point, we start disk accesses.

Let ai,ay...ay denote the approximations in a major
pyramid. Assume that ay, aj11, . .., @p4n—1 are the n approx-
imations from this set which are identified as intersecting by
the above algorithm. Note that they are physically con-
secutive, which means the partition of a; physically comes
between the partitions of a;—; and a;;;. We need to access all
the candidate data points, and this fact is a motivation to
sort the whole feature vectors once according to their vector
approximations at the very beginning. Since they will be
kept (in disk) in sorted order according to their approxima-
tions, I/O accesses of these points will be sequential, not
random. Considering all the major pyramids that have
candidate approximations in them, while processing a
query, there will be at most d number of seek time for a
d-dimensional data space.

The performance can be further improved by applying
the page access strategy proposed in [7]. Their strategy is
not to access each candidate block using random I/O.
Instead, they keep reading sequentially if another candidate
block is on the way. They read more pages sequentially
than needed, but, eventually, they beat the random-I/O-for-
each-block approach. The same technique is applicable for
our methods.

For the second pruning step, we need to compute the
angular distance of every candidate point to the query point
and, if a point is in the given range («), then we output that
point in the result set. The following algorithm is repeated
for each major pyramid:

APAYDIN AND FERHATOSMANOGLU: ACCESS STRUCTURES FOR ANGULAR SIMILARITY QUERIES 7

(@) (b)

Fig. 6. Lowest angular distance calculation for an approximation.

Algorithm: Identifying feature vectors in the given range for
a major pyramid
Inputs: Set of intersected approximations for major pyramid
i:ap, g1, - - -5 Grn—1. Angular range similarity
parameters Q(qi, g, .. ., gq) and a. An empty set Sp.
1) a; denotes the approximation of a vector f in
Ak, - - -, Gpn—1. For each f, if ay € {ay, ..., appn_1} and

ZLI figi _

W Z COS(OK), then SF = SF U {f}

2) The resulting feature vectors in the given angular
similarity range for x; = 1 major pyramid are now in the
set Sp.

3.4 Processing Angular k-NN Queries

We now describe how to process k-NN queries using the
AS-Q index. For filtering purposes, we will need to
compute the lowest angular distance between a given
query point and a pyramid. For a three-dimensional
visualization, Fig. 6 represents an approximation which is
based on the pyramid defined by the points O(origin), Ci,
C,, O3, and Cy. Imagining the query space as a growing
cone, at the very first time it touches the pyramid, we will
get a line from the origin and along the lateral side of the
cone, i.e,, OL in Fig. 6. The lowest angular distance from
this pyramid to the query point (Q) is the angle between the
lines defined by OQ and OL.

However, if L is not between C; and C,, then we call it
out of bounds. In this case, one of the corner points,
Ci,...,Cy, will be the point on the pyramid that makes
the lowest angular distance, i.e., the angle defined by OQ
and OC, will be less than the angle defined by OQ and OL.

For the three-dimensional case, only the third dimen-
sions of the points L, C;, and Cy will be different, i.e.,
C1 = (1,29,1), Cy = (1,29,0), and L = (1,x3,2). The only
unknown will be z and, if 0 < z < 1, then L is in the bounds
as in Fig. 6. In this case, we calculate the angular distance
between OQ and QL and give the angle as the lowest
angular distance bound for the current approximation.
Otherwise, we use the corner points for lowest bound
calculation (i.e., C1,...,C, instead of L).

3.4.1 k-NN Filtering

Having the lowest angular distances for the approxima-
tions, the next step is to use these values in filtering. For a
given query point, we first find the approximation the
query point is in. Naturally, the lowest possible angular
distance from the query point to this approximation will be
zero. We retrieve all the feature vectors in this approxima-
tion from disk and insert the %k closest of them as the
candidates in a list that we call NNlist in nondecreasing
order. Then, for the remaining approximations, we consider
the lowest angular distances from the query point without
retrieving any more feature vectors from the disk.

3.4.2 In-Memory Filtering

At this step, we prune the approximations which have
lowest angular distances greater than the kth value in
NNlist we found so far. Then, we sort the remaining
approximations according to their lowest values in non-
decreasing order. At this moment, the second filtering step
starts.

3.4.3 Filtering in Disk

We retrieve the first approximation in the sorted order and
retrieve the feature vectors (points) in this approximation
from the disk. If a retrieved point is closer than the
kth closest point in the N Nlist, then we update NNlist, i.e.,
remove the previous kth value with the new one and sort
the NNlist again. We repeat this updating step for all the
feature vectors in the current approximation. After that, if
the new kth value is less than the lowest value of the next
approximation in the sorted order, then we stop and return
our N Nlist as the result of the k-N N search. Otherwise, we
move on to this next approximation and repeat the same
process until we stop.

Algorithm: k-Nearest Neighbor for query Q. The
approximation (subpyramid) of @ is a,. AD is
abbreviation for angular distance.

1) Retrieve vectors in a, from disk, keep k closest of them in

NNlist in nondecreasing order. NNlist(7) is the
ith closest vector, distance(NNlist(i)) is AD of the
ith closest vector.

2) Find lowest angular distances from @ to the remaining
approximations as described in Fig. 6. lowest(7) is the
lowest AD of approximation i.

3) If lowest (i) > distance(NNlist(k)), prune i. Repeat for all
approximations.

4) Sort candidates according to lowest(:) values. c(i) is the
ith candidate in sorted order.

5) Retrieve the vectors in ¢(1) from the disk. If a vector has
less AD than distance(NNlist(k)), update NNlist.

6) STOP if distance(NNlist(k)) <= lowest(c(2)). Otherwise,
retrieve the vectors in ¢(2) and process them as the
previous step and repeat for the next c(¢) until we
STOP.

7) The k-nearest neighbors will be in NNlist.

.
0 (Origin)

0 (Origin)

(a) (b)

Fig. 7. Underlying partitions for CS-Q technique.

4 CoONE-SHELL QUANTIZER (CS-Q)

We now propose a second quantization-based structure,
Cone-Shell Quantizer (CS-Q), which uses cone partitions,
rather than pyramids, and is organized as shells instead of
the sweep approach followed by AS-Q. CS-Q is a variation
of AS-Q and shares many of its fundamental algorithms.
The underlying partitioning of the quantizer is shown in
Fig. 7a. The axis for each of the cone-shells is the line from
the origin to a reference point, i.e., OR. We have chosen the
reference point as R(0.5,0.5,...,0.5), which gives statisti-
cally better results. Fig. 7b represents a cross-section of the

cone-shells and an angular range query cone.
As in AS-Q, we can follow an equi-volume or an equi-

population-based structure. Here, we only present the equi-
populated one. The algorithm is as follows:

Angular Approximations based on Equal Populations, N

is the number of data points, R is the reference point, .S, is

the set of all approximations, and S,(i) is the ith
approximation.

1) For each data point P, 1 < k < N, calculate the angular
distance between P, and R.

2) Sort the data points in nondecreasing order based on
their angular distances to R.

3) Assume t is the given population for each
approximation. Assign the first ¢ number of points in
sorted order to S,(1), the second ¢ number of points to
S.(2), and so on.

Equi-volume-based structure is trivial, i.e., the only
constraint for the cone-shells (from center to the out) in
Fig. 7a is to have angles of 3,20, 30, ... between their lateral

surfaces and R.
The bit allocation scheme is as follows:
Total number of bits b, and |S,| is the total number of

approximations.

1. Generate the approximations as described in the
previous algorithm.

2. For each approximation i, assign the next % bit-
strings to S, (7).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11,

NOVEMBER 2006

shell i

@

(ROQ=8, QOK = 0.)

® O(Origin) ® O(Origin)

(ROQ=6, QUK = 0.)

(@) (b)

Fig. 8. Range query with CS-Q. (a) 6 > a and (b) 6 < a.

4.1 Query Processing

Angular range queries are handled similarly to AS-Q. The
difference lies in intersection formulas in the filtering step.
Fig. 8 shows two cases for the range query with CS-Q
technique. Q is the given query point, the angle QOK is a,
which is the given range, and R is the reference point. Let
us denote the angle ROQ as 6. The lowest angular distance
from shell ¢ to R is [; and the largest angular distance is v;.
Fig. 8a represents the case for § > o and Fig. 8b is for 0 < a.
The conditions for approximation (shell) ¢ to intersect the
query space are given as follows:

1. For (0 > «), if (u; > 60 —a) and (I; < 0+ «), then i is

an intersecting approximation.

2. For (f < a), if (04 a>1;), then 7 is an intersecting

approximation.

Next, the data points in these intersecting approxima-
tions are retrieved and checked. The remaining noninter-
secting approximations are filtered out as in Section 3.3. The
main difference is, since there are no min and max values
needed in this computation, the Lagrange multipliers are
not utilized in this design.

Angular k-NN query with CS-Q is again similar to
AS-Q. The only difference is the way to calculate the lower
and upper angular distances from the query point, ¢, to an
approximation i.

1. For (0 > v;), the lowest angular distance is (8 — w;)
and largest distance is (6 + u;).

2. For (8 < w;), the lowest angular distance is (I; — 6)
and largest distance is (0 + u;).

The remainder of the algorithm is same as in Section 3.4.

5 EXPERIMENTAL RESULTS

This section summarizes the results of our experiments on
the performance of the proposed access structures. We used
six data sets, two synthetic and four real data sets from text,
time-series, and image database applications where angular
similarity is widely used. We generated synthetic data sets
with Uniform and Gaussian distributions for dimensions 16
and 32. The real-life data sets are Satellite Imagery Data
(Landsat), Newsgroups (NG), National Science Foundation
abstract repository (NSF), and Stock.

APAYDIN AND FERHATOSMANOGLU: ACCESS STRUCTURES FOR ANGULAR SIMILARITY QUERIES

Vectors accessed for D=16

Vectors accessed for D=32

Gaussian Data, D=32

o,

PN
—x— NG P NG 2
o o~ Gauss o || & Gauss & 10
B o012 Uniform ©0.07| —— Uniform 2 | o AS-Q
3 —— NSF Bo.06 =0+ —— Total Vectors
§ 0.1 § : 8
© ®0.05 2
£ 0.08] o 10°
% So.04 §
O 0.06] g ©
> 50.03 010
"B 004 “60 02 %
= B Q10!
0.02 0.01 5
& i E-3 100
1 0.1 0.35 05 0.75 1.0 15 3.0 .01 0.1 0.25 0.5 0.75 1.0 15 3.0 0.1 0.25 0.5 0.75 1.0 15 3.0
o (degrees) o (degrees) o (degrees)
(a) (b) {©
. Uniform Data, D=32 Stock Data, D=32, sel=0.001 Stock Data, D=32, sel=0.01
10 6500;
o -o- AS-Q 5500 —o— VA-File 6000, —e— VA-File
§ —=— Total Vectors — AS-Q —— AS-Q
o T5000 T5500
o1 & ®
= %4500 5000
o
2 S4000 84500
Nl © ©
@ 10 £3500 4000
g .7 8 8
© '©3000 ‘©3500
g , 22500 23000
10 S o,
o} 342000 $£2500
“5 1500 2000
g < * * * -
107 4 5 6 7 8 haae’ 2 3 4 5 6 7 8 1500y 3 4 5 6 7 8
o (degrees) # of bits per dimension # of bits per dimension

(e)

)

(d)

Fig. 9. Performance of AS-Q for angular range query. D (dimensions) and « (range). (a) Percentage of vectors accessed for D = 16. (b) Percentage
of vectors accessed for D = 32. (c) Gaussian32, bits = 32. (d) Uniform32, bits = 32. (e) Stock32, « = 0.25. (f) Stock32, a = 1.5.

Landsat data, Satellite Image Texture, consists of
100,000 vectors representing 32-dimensional texture fea-
tures of Landsat images [26]. The NG data set is a
compilation of 20,000 Usenet postings in 20 different
categories like religion, politics, and sports. Another data
set is a collection of abstracts describing NSF awards for
basic research. We performed Latent Semantic Reduction
on these text documents, and stored the products of the
term frequency and the inverse document frequency (tf/idf)
[33] for the terms occurring in each document, after
eliminating the stop words. We applied SVD (Singular
Value Decomposition) [22] over the term vector representa-
tions, and generated 8, 12, ..., 32-dimensional representa-
tions of the text documents. The Stock data, which is very
skewed, is a time series data set which contains 16 (or 32)
days (dimensions) stock price movement of 6,500 different
companies. In addition to these six, we also produced five
different data sets each having a different distribution and
we talk about them in Section 5.4.

We present performance results of angular range and
angular k-NN queries. We compare the angular range and
k-NN search performances of the two proposed techniques
with respect to each other and to the VA-File approach. On
each of the data sets mentioned above, we perform
experiments for a variety of range queries such as 0.25,
0.50, ... , 3.0 degrees of angular ranges. For a measure of
perspective, for the 32-dimensional Uniform data set,
1.0 degree corresponds to a selectivity of 0.01 and 5 degrees
correspond to a selectivity of 0.1. This gives an insight into
the performance for nearest neighbor queries on the same
data sets, i.e., a range query of 1 degree would correspond

to a k-NN query, where k is 1 percent of the data size. For
each data set experiment, we choose 200 totally random
query points from the data set itself and present the results
as averages.

5.1 AS-Q Results

In Fig. 9, we present the results for AS-Q. Figs. 9a and
Figs. 9b show the percentage of vectors retrieved by AS-Q
technique (as « increases) for Uniform, Gaussian, NSF, and
NG data sets of dimensionality 16 and 32 and for reduced
64 bit representations of data objects. In Figs. 9c and 9d, we
show the results for the number of vectors accessed
compared to the total number of vectors (as a increases)
for 32-dimensional Gaussian and Uniform data. Finally, in
Figs. 9e and Figs. 99f, we present the number of vectors
accessed by AS-Q technique compared to the VA-File as the
number of bits per dimension increases for 32-dimensional
Stock data and for ae = 0.25 and o = 1.5. Both because of the
geometric mismatch and extreme skewness of the stock
data, the query intersects most of the grid partitions of the
VA-file, especially for a small number of bits. Since the
queries were chosen from the data set, they are also skewed.
Even a relatively small cone around the queries is likely to
intersect large rectangular partitions. The number of such
intersections reduces as more number of bits is used for
quantization.

None of the current techniques provide a direct solution
to execute angular queries. We compare our results with an
adapted version of the conventional VA-File-based ap-
proach. The rectangular regions that intersect the angular
query space is computationally hard to find. To enable an

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11,

NOVEMBER 2006

TABLE 1
k-NN Results for Uniform Data
10-NN Step 1 | Step 2 | total pruned | out of || 50-NN Step 1 | Step 2 | total pruned | out of
6 bits 22 23 45 48 6 bits 19 26 45 48
7 bits 26 67 93 96 7 bits 32 59 91 96
8 bits 67 122 189 192 8 bits 52 136 188 192
TABLE 2
k-NN Results for NG Real Data
10-NN Step 1 | Step 2 | total pruned | out of || 50-NN Step 1 | Step 2 | total pruned | out of
7 bits 74 24 98 101 7 bits 53 44 97 101
8 bits 157 42 199 202 8 bits 137 61 198 202
9 bits 251 81 332 335 9 bits 174 156 330 335

experimental comparison, we consider an approximation in
VA-File to be intersecting if its representative value is in the
angular neighborhood of («+¢€), where € is a derived
parameter that guarantees the correctness of the results. We
fix the geometric center of the regions (i.e., a rectangle in
VA-File) as the representative value of the approximations
for our experiments. An e-space is needed to ensure that we
do not miss those approximations that actually intersect but
whose center is not in the angular similarity space. This
approach works well where the cell regions describing the
approximations are small enough. After finding the inter-
secting approximations in this way, we look at the
corresponding feature vectors and return the ones that are
in the given similarity range.

For angular range queries, we observe that the AS-Q
technique outperforms the VA-File significantly. Even for
very low selectivities, it is possible to filter a reasonable
number of approximations using the VA-File approach;
however the AS-Q approach performs much better. For
instance, for the Stock data set, for an angular range query
of 1.5 degrees, the number of vectors visited for AS-Q is
1,741, while it is 4,370 for the VA-File, where both
approaches use bit-strings of 8 bits per dimension.

In other data sets, we observe a similar performance
improvement and they follow similar patterns. For instance,
in VA-File, the number of vectors visited for a range query
of 3.0 degrees for the NG data set of dimensionality 16 is
6,157, whereas, for AS-Q technique, it is just 79, which
corresponds to a speedup of 77 times. For 32 dimensions,
the speedup is 97 times. For a range query of 0.25 degrees,
which corresponds to a selectivity of roughly 0.0001, the
number of vectors visited for AS-Q is 2, while it is 6 for VA-
File. It is also important to note that the same performance
is achieved by AS-Q with a 32-bit representation of the data,
while the VA-File method would require a 256-bit repre-
sentation of the data for 100 percent recall. Additionally, in
the NSF data, for a selectivity of 0.001, the number of

approximations after filtering is 745 for VA-File and 156 for
our technique.

The results of angular k-NN search are similar to angular
range query. Table 1 presents the k-NN results for a
synthetic data set which has equi-volumed and equi-
populated approximations and also an equal number of
approximations per dimension. We used 7, 8, and 9 bits and
we present the averages for 10-NN and 50-NN queries. The
numbers in the Step 1 column represent the number of
approximations that are filtered in the first step of the
pruning algorithm. Similarly, the numbers in the Step 2
column represent the number of approximations that are
filtered in the second step. The column total filtered is the
total number of approximations that are totally filtered in
the first and second steps, i.e., the summation of the Step 1
and Step 2 columns. The last column, namely, out of, is the
actual total number of approximations in the system.

In Table 1, i.e. for 10-NN and 8 bits, 67 out of
192 approximations are filtered at the first step. If there
are 10,000 feature vectors in the data set, there will be
approximately 50 feature vectors in an approximation. This
means, 50 x 67 = 3,350 feature vectors out of 10,000 are
pruned in the first step. Similarly, 122 out of 192 approx-
imations are filtered in the second step and this means,
50 x 122 = 6,100 feature vectors out of 10,000 are pruned in
the second step. Similarly, Table 2 presents the experiment
results for k-NN similarity search approach for NG real
data set. Tables 1 and 2 reveal the effectiveness of our
approach not only for very narrow queries but also for
wider queries (i.e., 50-NN) as well.

5.2 CS-Q Results

Fig. 10 presents the results for CS-Q technique for different
data sets. Fig. 10a represents the results for an average
selectivity of 0.00025, e.g., 25 results out of 100,000 data
points. This selectivity is the average taken for all the
dimensions presented in the graph, i.e., 8,12, ..., 32. In this
figure, for eight dimensions, 1,740 vectors are accessed by
the CS-Q technique and the number of vectors retrieved

APAYDIN AND FERHATOSMANOGLU: ACCESS STRUCTURES FOR ANGULAR SIMILARITY QUERIES 11

NG Data, 0=0.25, bits=8, sel(avg)=0.00025

NG Data, bits=8

NG Data D=16, 0=0.25

2300 -©- «=1.25, sel(avg)=0.027 2100
0.55| =¥ =0.50, sel(avg)=0.0016
82200 B 0s «=0.25, sel(avg)=0.0002 82050
2 @045 32000
©2100 Gé 04 141
& - 8
& ®g35 ®1950
92000 g 03 (2]
S g0 £1900
5] o o
1900 2025 [
5 %5 0.2 M/’* 5 1850
20, *
4800 33015 1800
0.1
17005 10 15 20 25 30 35 0.055 10 15 20 25 30 35 1 7506 8 10
of dimensions # of dimensions total # of bits
(a) (b) {©
NG D=16, Stock D=32, a=0.25 Stock D=32, bits=12 NG, Stock, Landsat Data
0.105 7 07
—o— Stock32 S S S —+— NG16
< 04 —— NG16 6000 —— Total Vectors <09 Stock32
@ 3 —6— Cone-shell @ | = Landsat16
2 B5000 Bo5
o.095 Q 2
8 Sa000 Soa
£ 0.09) I 14
£ 93000 o3
3] b3 B
Lo.085 123 2
5 52000 %502
R g08 * 000 * 0.1
I .
00T %5 7 9 95 10 02 04 06 08 1 12 14 16 18 062 04 06 08 1 12 14 16 18

75 8 8.5
total # of bits

(d)

o (degrees)

o (degrees;

(e))

Fig. 10. Performance of CS-Q for angular range query. D (dimensions) and « (range). (a) Percentage of vectors accessed versus the number of
dimensions. (b) Percentage of vectors accessed versus the number of dimensions. (c) Number of vectors accessed versus bits. (d) Percentage of
vectors accessed versus bits. () Number of vectors accessed versus «. (f) Percentage of vectors accessed versus a.

increases as the dimensionality increases for NG data.
Figs. 10c, Figs. 10d, Figs. 10e, and Figs. 10f show the number
and the percentage of vectors accessed by CS-Q as the
number of bits increases and as alpha increases.

5.3 AS-Q versus CS-Q

We compare the CS-Q and VA-File results in Table 3. For
16-dimensional NG data and for 16 bits, CS-Q outperforms
the VA-File approach. For example, for alpha = 0.25, VA-
File accesses 7,856 data points, while CS-Q retrieves only
1,759. One interesting property of CS-Q is that it achieves a
better performance than VA-File with a much smaller
number of bits than VA-File requires. That's why we put

TABLE 3
of Vectors Accessed for NG16 and NG32

NG16 || CS-Q | CS-Q | VA-File || NG32 | CS-Q | CS-Q | VA-File

11bits | 16bits 16bits 11bits | 32bits 32bits
a=025 || 1769 | 1759 | 7856 =025 || 2154 | 2144 | 7373
a=0.50 || 3470 | 3460 | 10281 || a=0.50 || 4207 | 4197 | 9165
a=0.75 || 5094 | 5084 | 12069 || «=0.75 || 6119 | 6110 | 11786
a=1.00 || 6603 | 6593 | 13968 || o=1.00 || 7862 | 7852 | 13943
a=150 || 9245 | 9237 | 15793 || o=1.50 || 10752 | 10744 | 16202
a=3.00 || 14260 | 14259 | 18276 || «=3.00 || 15519 | 15513 | 18697

the 11bits column in Table 3. For o« = 0.25 in Table 3, CS-Q
accesses 1,769 points for only 11 bits, which is again a much
better performance than VA-File achieves. The results for
32-dimensional NG data are similar.

As a performance comparison between the two proposed
techniques, the CS-Q technique achieves better results than
AS-Q when we use a small and equal number of total bits for
both of them. For example, for 32-dimensional Stock data,
alpha = 0.25 and, for 1 bit per dimension, which makes in
total 32 bits per data point, the AS-Q retrieves around 1,200
data points. However, in Fig. 10e, for the same data and
angle, the CS-Q retrieves 499 points with only 12 bits. Thus,
CS-Q achieves better performance results than AS-Q with a
smaller number of bits (12 versus 32).

Table 4 presents another interesting property between
the two proposed quantization techniques. In this case,
AS-Q seems to have a better result, i.e., 1,704 for AS-Q and

TABLE 4
Number of Vectors Accessed for Stock16
Stock16 a=1.50 | a=3.00
AS-Q(32bits) 1704 1753
CS-Q(12bits) 2922 4336
CS-Q(32bits) 2920 4335
VA-File(32bits) 5816 6011

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11,

Scalabilitv Test for Different Distributions of Data

)

—— Normal
Rayleigh

—— Gamma
Exponential

—— Uniform

of vectors accessed (log scale

10'
File Size (in terms of 1K)(log scale)

10? 10°

Fig. 11. Scalability test results, o = 0.25.

2,920 for CS-Q. This is because, after some number of bits,
the CS-Q approach’s performance only increases very
slowly as we increase the total bits. For example, when
there are only a few data points per bit-string, decreasing
the volumes of underlying partitioning by increasing the
total number of bits will not continue to distribute the data
points to many bit-strings. In other words, after some
number of bits, the data points per bit-string will not change
so that the filtering will not continue to prune many points.
For example, in Table 4, increasing bits from 12 to 32 will
only decrease the number of vectors accessed from 2,922 to
2,920 for CS-Q. The two techniques both perform better
than VA-File.

In general, if there is enough memory space available,
the AS-Q technique achieves better results. The drawback of
CS-Q is, it needs to check some points that are away from
the query space if their approximations intersects the query,
i.e., point D in Fig. 8. For a higher number of bits, AS-Q can
distribute the points into different bit-strings that are
convenient for pruning and that’s why it performs better.
On the other hand, for lower number of bits (when the
resources are limited), the CS-Q performs better.

5.4 Results on Scalability

In order to investigate the scalability issue, we produced
five different 16-dimensional synthetic data, each of them in
different distributions. For each distribution, there are four
files that have 1K, 10K, 100K, and 1,000K number of data
points. Our experimental setup for the scalability tests
differs from our other setups. We take every 500th data
point as a query point, run the queries, and present the
average over these queries as the result. That means we
have 2,000 queries from a 1,000K file, and 200 queries from
a 100K file. We kept the range parameter constant, i.e.,
a =0.25. The results are depicted in Fig. 11 and they
indicate that our approach is linear to the number of data
points in a data set.

5.5 Comparison with Sequential Scan

An important property of our techniques is that we keep the
data points in sorted order in disk according to their

NOVEMBER 2006

TABLE 5
Normalized Versus Nonnormalized, alpha = 0.25
Stock32 CS-Q(32bits) | VA-File(32bits)
Nonnormalized 499 4861
Normalized 499 6415

physical partitions. We have discussed this issue for AS-Q
in Section 3.3. For the CS-Q approach, we have a better
outcome for the query processing in terms of the candidate
approximations. The data vectors are kept in the order of
their angular distances from the reference point and, since
any query space (Fig. 7b) has to intersect only consecutive
approximations, the accessed vectors will always be in
physically consecutive approximations. Thus, by keeping
these vectors in consecutive disk blocks, the second step
(disk access) of the query processing will require only one
seek time and the consecutive blocks are accessed in
sequential order.

In order to validate our discussion, we compared our
approach with sequential scan. We followed the same
experimental setup and used the same data sets as in
Section 5.4. We calculated wall clock time results as a
function of the data set size. For the Exponential data, with
10K points, the total time for sequential scan is 237 msec,
whereas our technique only takes 19.7 msec. The difference
gets higher as the number of data points increases. For
instance, for 100K points, sequential scan time is 2,294 msec
and our approach’s time is 195 msec. For 1,000K, the
comparison1 is 21,180 versus 2,070 msec. For the Uniform
data, the values are 222 versus 9.2 msec for 10K. In addition,
for 100K and 1,000K points, the results are 2,035 versus 62
and 19,397 versus 616 msec. We also made experiments for
the other distributions and the comparisons follow very
similar paths. Thus, we conclude that our technique
performs significantly better than the sequential scan in
terms of time.

5.6 Results on Normalized Data

We now summarize our experimental results on the
performance of indexing the normalized data: We set the
norm of all the vectors to unit length to be able to utilize the
Euclidean space-based indices. SDSS SkyServer [36] follows
a similar approach and develops a three-dimensional quad
tree over the normalized data. Instead of an underlying
partitioning that considers the angular nature of the data,
the normalization is used to transform the data into an
Euclidean space. Besides being limited to three dimensions
and having the geometric mismatch, our experiments also
showed that the normalization introduces additional
problems for Euclidean distance-based index structures.
We have repeated our previous experiments with normal-
ized data both for VA-files and for the proposed techniques.
In Table 5, for 32-dimensional Stock data and for 32 bits, the
CS-Q retrieves 499 points while the VA-File accesses 4,861.

1. From now on, the first number refers to the sequential scan time and
the second number refers to our approach.

APAYDIN AND FERHATOSMANOGLU: ACCESS STRUCTURES FOR ANGULAR SIMILARITY QUERIES 13

For normalized data, the CS-Q again achieves the same
number of points (499), but VA-File accesses 6,415 which is
worse than the nonnormalized case. Since the partitioning
behind the quantization of our techniques considers an
angular organization of the data, the bit-strings of data
points do not change when the data is normalized. The data
points map onto a hypersphere after normalization and this
mapping is along the line between the original data point
and the origin. On the other hand, from the perspective of
Euclidean distance-based index structures, the normal-
ization causes the data points to become closer to each
other and are harder to separate by the index. This causes
degradation in the performance of the traditional index
structures, including VA-files.

6 CONCLUSION

We studied the problem of efficient execution of similarity
queries that are based on angular measures. Although
angular measures have been popularly utilized by several
important applications, such as information retrieval and
time-series data repositories, we are not aware of any
indexing and query processing technique for efficient
execution of such queries. We first sought to overcome
the geometric mismatch between the underlying partitions
of the conventional indexing techniques and built index
structures that are better suited to angular queries. We
developed two scalar quantization methods, one is based on
pyramid partitions angularly sweeping the data space and
the other is based on cone partitions that are organized as
shells. The quantized approximations are used as a dense
index for efficient execution of similarity queries. Each
technique has its own unique strength. The CS-Q technique
achieves better performance under limited memory condi-
tions, i.e., for lower quota of bits. For a higher number of
bits, AS-Q becomes more successful in distributing the data
objects into separate partitions which enables more accurate
summaries. We compared the proposed techniques with an
adaptation of VA-files. In all cases, the proposed techniques
perform significantly better than VA-Files.

We have focused on optimizing query performance. An
efficient update routine is necessary if there are frequent
and nonstationary changes over the data and if sequential
access is desired. If we want to optimize insertions, we
could just add the new items to the end of the file, with no
changes in our algorithms/structures. Clearly, this will
introduce random I/Os. If one wants to avoid random I/Os
and guarantee sequential access to the data, one can use the
common storage approaches such as keeping empty space
in blocks, using overflow files for insertions, and logical
markers for deletions.

We chose to apply quantization as the last step of our
techniques because of its well-known scalability with higher
dimensions. However, the proposed techniques can be
applied to different classes of access structures, e.g., indices
based on data-space partitioning, tree structures, or the
Pyramid technique. For example, the proposed angular
structure can be used to map the data objects into one
dimension which is then indexed by a B+tree (as in the
Pyramid technique [9]).

The use of an effective structure and algorithms for
angular similarity searches will impact the practical perfor-
mance of several applications. We plan to extend our work

to include angular similarity joins, which are popularly
used, among others, in financial market applications.

ACKNOWLEDGMENTS

The authors thank Aravind Ramachandran for his efforts and
discussions in the early stages of this work. This research was
partially supported by US Department of Energy (DOE)
grant DE-FG02-03ER25573 and US National Science Founda-
tion (NSF) grants CNS-0403342 and 1IS-0546713.

REFERENCES

[1] RXK. Ando, “Latent Semantic Space: Iterative Scaling Improves
Precision of Inter-Document Similarity Measurement,” Proc. 23rd
ACM SIGIR Conf., pp. 216-223, 2000.

[2] M. Andrec, P. Du, and RM. Levy, “Protein Structural Motif
Recognition via NMR Residual Dipolar Couplings,” J. Am.
Chemical Soc., no. 123, pp. 1222-1229, 2001.

[3] D. Androutsos, K. Plataniotis, and A. Venetsanopoulos, “A Novel
Vector-Based Approach to Color Image Retrieval Using a Vector
Angular-Based Distance Measure,” Computer Vision and Image
Understanding, vol. 75, nos. 1/2, pp. 46-58, Aug. 1999.

[4] A. Baruffolo, “R-Trees for Astronomical Data Indexing,” ASP
Conf. Ser., Astronomical Data Analysis Software and Systems VII, pp.
375, 1999.

[5] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The R"
Tree: An Efficient and Robust Access Method for Points and
Rectangles,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp- 322-331, May 1990.

[6] S. Berchtold, C. Bohm, H. Jagadish, H. Kriegel, and J. Sander,
“Independent Quantization: An Index Compression Technique
for High-Dimensional Data Spaces,” Proc. 16th Int’l Conf. Data
Eng., pp. 577-588, 2000.

[7]1 S.Berchtold, C. Bohm, H.V. Jagadish, H.-P. Kriegel, and]. Sander,
“Independent Quantization: An Index Compression Technique
for High-Dimensional Data Spaces,” Proc. Int’l Conf. Data Eng.,
pp. 577-588, 2000.

[8] S.Berchtold, C. Bohm, D. Keim, and H. Kriegel, “A Cost Model for
Nearest Neighbor Search in High-Dimensional Data Space,” Proc.
ACM Symp. Principles of Database Systems, pp. 78-86, June 1997.

[9] S. Berchtold, C. Bohm, and H.-P. Kriegel, “The Pyramid-
Technique: Towards Breaking the Curse of Dimensionality,” Proc.
ACM SIGMOD Int'l Conf. Management of Data, pp. 142-153, June
1998.

[10] P.V. Biron and D.H. Kraft, “New Methods for Relevance
Feedback: Improving Information Retrieval Performance,” Proc.
ACM Symp. Applied Computing, pp. 482-487, 1995.

[11] I Choi, J. Kwon, and S. Kim, “Local Feature Frequency Profile: A
Method to Measure Structural Similarity in Proteins,” Proc. Nat'l
Aacademy of Sciences of the US, no. 101, pp. 3797-3802, Mar. 2004.

[12] P. Ciaccia, M. Patella, and P. Zezula, “M-Tree: An Efficient Access
Method for Similarity Search in Metric Space,” Proc. 23rd Very
Large Data Bases Conf., pp. 426-435, 1997.

[13] A. Debelack, J. Dehn, L. Muchinsky, and D. Smith, “Next
Generation Air Traffic Control Automation,” IBM Systems].,
vol. 24, no. 1, pp. 63-77, 1995.

[14] S.C. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and
R.A. Harshman, “Indexing by Latent Semantic Analysis,”]. Am.
Soc. Information Science, vol. 41, no. 6, pp. 391-407, 1990.

[15] D.Hull, “Improving Text Retrieval for the Routing Problem Using
Latent Semantic Indexing,” Proc. 17th ACM-SIGIR Conf., pp. 282-
291, 1994.

[16] M.P.T. Doom and M. Raymer, “GA-Facilitated Knowledge
Discovery and Pattern Recognition Optimization Applied to the
Biochemistry of Protein Solvation,” Proc. Genetic and Evolutionary
Computation Conf., pp. 426-437, May 2004.

[17] A. Dumitras and A.N. Venetsanopoulos, “Angular Map-Driven
Snakes with Application to Object Shape Description in Color
Images,” IEEE Trans. Image Processing, vol. 10, no. 12, pp. 1851-
1859, Dec. 2001.

[18] H. Ferhatosmanoglu, D. Agrawal, and A.E. Abbadi, “Concentric
Hyperspaces and Disk Allocation for Fast Parallel Range Search-
ing,” Proc. Int'l Conf. Data Eng., pp. 608-615, Mar. 1999.

[19]

[20]

[21]

[22]

(23]

[24]

(23]

[20]

(271

(28]

(29]

(30]

(31]

(32]

(33]
(34]
(35]

(30]

(371

(38]

(39]

[40]

[41]

(42]

(43]

(44]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 11,

H. Ferhatosmanoglu, D. Agrawal, and A.E. Abbadi, “Efficient
Processing of Conical Queries,” Proc. ACM Conf. Information and
Knowledge Management (CIKM), pp. 1-8, 2001.

W.M.G. Dummy, “Introduction to Statistics for Bioinformatics,
with Applications to Expression Microarrays,” CSB Tutorial
Sessions, 2003.

A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial
Searching,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 47-57, 1984.

F. Korn, H.V. Jagadish, and C. Faloutsos, “Efficiently Supporting
Ad Hoc Queries in Large Datasets of Time Sequences,” Proc.
ACM-SIGMOD Int’l Conf. Management of Data, pp. 289-300, 1997.
P. Kostiuk, M. Adams, D. Allinger, G. Rosch, and]. Kuchar, “An
Integrated Safety Analysis Methodology for Emerging Air
Transport Technologies,” NASA/CR-1998-207661, p. 66, Apr. 1998.
LEDAS, Leicester Database and Archive Service, http://ledas-
www.star.le.ac.uk/, 2004.

P.O.BM.B. Eisen, P.T. Spellman, and D. Botstein, “Cluster
Analysis and Display of Genome-Wide Expression Patterns,”
Proc. Nat’l Aacademy of Sciences of the US., no. 95, pp. 14863-14868,
Dec. 1998.

B.S. Manjunath, “Airphoto Dataset,”
edu/Manjunath/research.htm, 2000.
Z.D. Michael, W. Berry, and E.R. Jessup, “Matrices, Vector Spaces
and Information Retrieval,” SIAM Rev., vol. 41, no. 2, pp. 335-362,
1999.

J. Nievergelt, H. Hans, and K.C. Sevcik, “The Grid File: An
Adaptable, Symmetric Multikey File Structure,” ACM Trans.
Database Systems, vol. 9, no. 1, pp. 38-71, 1984.

D.K.PE. Trahanias and A.N. Venetsanopoulos, “Directional
Processing of Color Images: Theory and Experimental Results,”
IEEE Trans. Image Processing, vol. 5, no. 6, pp. 868-880, Oct. 1996.
G. Qian, S. Sural, Y. Gu, and S. Pramanik, “Similarity between
Euclidean and Cosine Angle Distance for Nearest Neighbor
Queries,” Proc. ACM Symp. Applied Computing, pp. 1232-1237,
2004.

A. Razdan, “Wavelet Correlation Coefficient of Strongly Corre-
lated Financial Time Series,” ArXiv:Cond-Mat, no. 2, Oct. 2003.

Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, “The
A-Tree: An Index Structure for High-Dimensional Spaces Using
Relative Approximation,” Proc. 26th Int’l Conf. Very Large Data
Bases, pp. 516-526, 2000.

G. Salton and M.J. McGill, Introduction to Modern Information
Retrieval. New York: McGraw-Hill, 1983.

A. Singhal, “Modern Information Retrieval: A Brief Overview,”
IEEE Data Eng. Bull., vol. 24, no. 4, pp. 35-43, 2001.

V. Subrahmanian, Principles of Multimedia Database Systems. San
Francisco: Morgan Kaufmann, 1999.

A.S. Szalay, J. Gray, and A.R. Thakar, “The sdss Skyserver: Public
Access to the Sloan Digital Sky Server Data,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 570-581, 2002.

C. Tang, Z. Xu, and M. Mahalingam, “pSearch: Information
Retrieval in Structured Overlays,” Proc. ACM HotNets-I, Oct. 2002.
P.E. Trahanias and A.N. Venetsanopoulos, “Vector Directional
Filters: A New Class of Multichannel Image Processing Filters,”
IEEE Trans. Image Processing, vol. 2, no. 4, pp. 528-534, Oct. 1993.
D.R. Warn, “Lighting Controls for Synthetic Images,” Computer
Graphics, vol. 17, no. 3, pp. 13-21, 1983.

R. Weber, H.-J. Schek, and S. Blott, “A Quantitative Analysis and
Performance Study for Similarity-Search Methods in High-
Dimensional Spaces,” Proc. Int’l Conf. Very Large Data Bases,
pp. 194-205, Aug. 1998.

A. Wicenec and M. Albrecht, “Methods for Structuring and
Searching Very Large Catalogs,” ASP Conf. Ser., Astronomical Data
Analysis Software and Systems VII, no. 145, p. 512, 1998.

R. Wilkinson and P. Hingston, “Using Cosine Distance in a Neural
Network for Document Retrieval,” Proc. ACM SIGIR Conf., pp.
202-210, 1991.

P. Zhang, Y. Huang, S. Shekhar, and V. Kumar, “Correlation
Analysis of Spatial Time Series Datasets: A Filter-and-Refine
Approach,” Proc. Seventh Pacific-Asia Conf. Knowledge Discovery and
Data Mining, 2003.

P. Zhang, Y. Huang, S. Shekhar, and V. Kumar, “Exploiting
Spatial Autocorrelation to Efficiently Process Correlation-Based
Similarity Queries,” Proc. Eighth Int’l Symp. Spatial and Temporal
Databases, July 2003.

http://vivaldi.ece.ucsb.

NOVEMBER 2006

Tan Apaydin received the BS degree from
the Computer Engineering Department at
Bilkent University, Turkey, in 2002. Since
2002, he has been a PhD student in the
Computer Science and Engineering Depart-
ment at The Ohio State University. He joined
the Database Research Group in the same
department in 2003. His research interests
include high-performance data management
for multidimensional and scientific applica-
tions, multimedia, and spatial databases.

Hakan Ferhatosmanoglu received the PhD
degree in 2001 from the Computer Science
Department at the University of California, Santa
Barbara. He is an assistant professor of com-
puter science and engineering at The Ohio State
University (OSU). Before joining OSU, he
worked as an intern at AT&T Research Labs.
His research interest is developing data man-
agement systems for multimedia, scientific, and
biomedical applications. He leads projects on
microarray and clinical trial databases, online compression and analysis
of multiple data streams, and high-performance databases for multi-
dimensional data repositories. Dr. Ferhatosmanoglu is a recipient of the
Early Career Principal Investigator award from the US Department of
Energy and the Early Career award (CAREER) from the US National
Science Foundation (NSF).

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

