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Abstract. This paper describes the design, implementation and deploy-
ment of LineKing (LK), a crowdsourced line wait-time monitoring ser-
vice. LK consists of a smartphone component (that provides automatic,
energy-efficient, and accurate wait-time detection), and a cloud backend
(that uses the collected data to provide accurate wait-time estimation).
LK is used on a daily basis by hundreds of users to monitor the wait-times
of a coffee shop in our university campus. The novel wait-time estimation
algorithms deployed at the cloud backend provide mean absolute errors
of less than 2-3 minutes.

Key words: Crowdsourced sensing, Smartphone applications, Wait-
time estimation

1 Introduction

Long and unpredictable line lengths at coffee shops, grocery stores, DMVs, and
banks are inconveniences of city life. A webservice that provides real-time es-
timation of line wait-times would help us make informed choices and improve
the quality of our lives. While a line wait-time estimation service may first be
regarded as a toy or luxury, it is worth recalling that webservices that we now
categorize as necessities (e.g., maps, online shopping, social networks, and mobile
internet) have also been perceived as similar initially. Moreover, understanding
waiting line has benefits beyond improving the end-user experience because this
has been a long standing problem in the operations research area.

Our method to address the line wait-time detection problem is crowdsensing
with smartphones. In the very first prototype of our service, we asked users
to manually provide line wait-times when they are waiting in line and tried to
serve other users with the data input by these. We quickly noticed that this
is an extra work for the users and the data arriving from the volunteers is too
scarce to serve good results to the queriers. In the later versions of our service,
we automated the line wait-time detection by using the localization capabilities
of the smartphones in an energy-efficient manner, which we detail in this paper.

mailto:mbulut@buffalo.edu,yavuzsel@buffalo.edu,demirbas@buffalo.edu
mailto:nilgunf@thk.edu.tr
mailto:hakan@cs.bilkent.edu.tr


2 Muhammed Fatih Bulut et al.

Line wait-time detection is, however, only one part of the problem. We found
that even when our automated line wait-time detection component is returning
dozens of readings daily, these readings are still too sparse and non-uniform to
provide accurate answers to real-time queries about line wait-times. To address
this problem we applied statistical techniques (heuristic regression, exponential
smoothing and Holt-Winters method) to the line wait-time data we collect. This
allowed us to learn patterns from the current and historical data to provide
accurate responses to queries.

Our contributions are as follows:

1. We designed, implemented, and deployed a crowdsourced line wait-time esti-
mation system called LineKing (LK). Our LK apps 1 for Android and iPhone
platforms are downloaded by more than 1000 users in our university, and are
used on a daily basis by hundreds of users to monitor the line wait-times
of a coffee shop in the student union of our university. To the best of our
knowledge, LK is the first crowdsourced line wait-time estimation service.

2. As part of LK, we implemented a fully automatic, energy-efficient, and ac-
curate wait-time detection component on Android and iOS platforms. This
component uses new domain specific optimizations to achieve better accu-
racy and performance.

3. For the wait-time estimation problem, we introduced a novel solution based
on a constrained nearest-neighbor search in a multi-dimensional space. Then,
we improved it by adapting two statistical time-series forecasting meth-
ods, namely exponential smoothing and Holt Winters, and demonstrated
the strengths and weaknesses of these solutions.

4. We collected and analyzed several months of line wait-time data, which can
be basis for other work on similar topics. To extend on our current work,
we also discuss the challenges and opportunities for scaling LK to online
monitoring of line wait-times over many venues across the world.

Outline of the rest of the paper. We discuss related work next and
describe the model and limitations of our deployment in Section 3. We present
the line wait-time detection component of LK in Section 4 and the line wait-
time estimation component in Section 5. Section 6 presents the results from our
deployment and experiments. In section 7, we discuss techniques to scale LK to
other coffee shops and franchises.

2 Related Work

2.1 Smartphone sensing

The increasing computational power and sensor capabilities of the smartphones
resulted in increasing interest on smartphone sensing [16, 9]. In TagSense [21],
authors leverage camera, compass, accelerometer and GPS sensors of the phones

1 http://ubicomp.cse.buffalo.edu/ubupdates
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to provide an image tagging system. In [2], Bao and Choudhury introduce MoVi
that employs smartphones to enable collaborative sensing using videos for rec-
ognizing socially interesting events. In [20] Miluzzo et al. utilize smartphone
sensors to infer user’s status and share on Facebook.

A significant portion of smartphone sensing focuses on location-sensing where
both localization and power-aware sensing are explored. In [4], authors examine
the human localization in a building using smartphone sensors and randomly
placed audio beacons in the building. In [22], authors identify four factors that
waste energy: static use of location sensing mechanism, absence of use of other
sensors, lack of cooperation among applications, and finally ignoring battery
level while sensing. The paper analyzes aforementioned factors and proposes
a middleware location sensing framework which adaptively a) toggles between
GPS and network based on the accuracy of the providers, b) suppresses the use
of location updates based on the context (i.e. user is stationary or moving), c)
piggybacks on other applications’ location sensing mechanism and d) changes
parameters of location updates based on the battery-level. However, that work
does not focus on region monitoring and does not take distance into account as
a factor for selecting the mode for providing localization. In LK we use distance
from the point of interest for toggling the mode for providing the localization.

2.2 Line wait-time estimation

Line wait-time estimation has been explored mostly in the context of Queue
Theory [5, 17]. Those works assume that examiners have full knowledge of the
parameters, i.e. queue discipline, arrival rate, service rate etc. However, in our
problem we only have wait-times and the associated timestamps. So queueing
theory is not easily applicable for our problem.

Line wait-time estimation is related to some problems in general time series
theory where the task is to forecast future data using the previous ones. Number
of different techniques have been proposed in the literature ranging from ad hoc
methods (i.e. moving average, exponential smoothing) to complex model-based
approaches which take trend and seasonality into accounts (i.e. Decomposition,
Holt-Winters, ARIMA) [7, 19, 12]. A major challenge is that general time se-
ries analysis depend on data that is uniformly distributed along time. However,
our application has non-uniform and initially sparse data that introduce new
challenges.

3 Model and Assumptions

We deployed LK at a popular coffee shop at the Student Union of University at
Buffalo. Floor plan of the coffee shop is shown in Figure 1. The coffee shop does
not have a drive-through. The customers who arrive at the coffee shop join the
back of a single FIFO queue. After waiting the line, the customer is served by
the staff. There are two service desks and the customer is served by either one of



4 Muhammed Fatih Bulut et al.

them. (During low traffic times one of the service desk may close temporarily and
only a single service desk is used.) Customers who are served usually leave the
coffee shop immediately. However there are some Student Union tables near the
service desks and some customers sit there after picking up their coffees. There
is a Wi-Fi Access Point (WAP) on the nearby wall of the line to serve customer’s
need for internet access. The WAP has a range of approximately 50 meters. Our
detection system utilizes BSSID of the WAP for wait-time detection.

Fig. 1. Coffee Shop Floor Plan

LK aims to estimate the total wait-time of a customer, and does not aim
to calculate neither the line length nor the service time. Moreover, our wait-
time detection component on the smartphones cannot differentiate between the
seated customers and the customers who wait in the line. Therefore, there are
two sources of false-positives in our system: 1) a customer who seats after being
served, and 2) a customer who takes a look at the coffee shop without waiting in
the line. To get a sense of how the wait-time changes over the time, we physically
observed the coffee shop continuously for one week. Our observations show that
the wait-times almost never fall below 2 minutes (i.e. min. service time) and
above 20 minutes. We use this information to eliminate false-positives. Although
some false-positives are eliminated this way, customers who sit between 2-to-20
minutes still insert false-positives. Based on our observation sitting customers
are the minority with respect to all customers, and our data-analysis techniques
manage to filter their data as noise (see Section 5). Later, in Section 7, we
explain a way of differentiating seated customers from others to further increase
the accuracy of our detection component.

The wait-time detection component on the smartphones can only detect the
total wait-time a customer spent in the coffee shop, hence, many parameters
remain unknown, such as arrival rate, service rate, service time. This prevents
us from having a complete understanding of the line’s operational model and
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introduce many challenges that need to be addressed in wait-time estimation
component.
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Fig. 2. Overall system architecture. Left: smartphone architecture for wait time de-
tection. Right: cloud architecture for wait time estimation.

4 Smartphone Design

The overall architecture of the system is shown in Figure 2. LK consists of
two main components: the client-side component on the smartphone, and the
server-side component on the cloud. In this section, we present the client-side
component on the smartphone. The server-side component is explained in the
next section.

The client-side component includes a controller and three subcomponents:
Phone-State-Receiver, Wait-Time-Detection (LocationSense+WiFiSense), and
Data-Uploader. The controller is responsible for managing and handling the
interactions between these subcomponents. We explain each subcomponent in
detail next.

Remark: In the following sections, we describe the smartphone component
designed for the Android Operating System [1]. Due to the development limita-
tions that iOS imposes, some of the features below are not available for iOS [11].
We will refer to such features in the text to distinguish those parts.

4.1 Phone state receiver

This component serves as a notification center for the application. Android pro-
vides a notification service to let apps know about various events occurring on the
device, such as Boot, Reboot, Proximity Alert, Wi-Fi Signal Strength Change
etc. iOS also has similar functionalities such as Significant Location Change ac-
tion. These notifications enable apps to take action based on relevant events.
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We exploit this notification service in order to improve the wait-time-detection
subsystem.

The Phone-State-Receiver subsystem has three different receivers which are
Boot Receiver, Wi-Fi State Receiver and Proximity Alert Receiver. In Android,
receivers work as follows: First, each receiver registers itself to listen specific
events occurring on the device. Whenever the registered action happens, the
operating system broadcasts a special object, i.e. an Intent, and delivers the
event specific information to all registered receivers. We utilize this mechanism
to monitor various relevant events for our application. For example, the Wi-Fi
State Receiver gets notified when the state of the Wi-Fi connection is changed:
So if the user turns the Wi-Fi off, this receiver fires at the Controller to stop
the Wi-Fi Tracking Service if it is running. Another example is the Proximity
Alert Receiver which notifies our app of entering and exiting the coffee shop. We
explain this alert in detail next.

How does proximity alert work?
Proximity alert is a service provided by the Android OS (Region Monitoring for
iOS is also present) that periodically checks the location of the device and fires
alerts for the entering and exiting events for a specified geo-fenced region. The
programmer can set the proximity alert by providing a location (i.e., latitude and
longitude) and a radius, which represents a circle around the location. On the
other hand, the device also has a location and its location has an accuracy. Hence,
while one circle denotes the geo-fence that the application tracks, another circle
denotes the device’s location. When these two circles intersect entered event is
fired, and when they are separated exited event is fired.

A natural way to detect wait-time is to set proximity alert for the coffee
shop and use entered and exited events to get notified. However, continuous
use of proximity alert drains the battery quickly. Figure 3 shows the battery
consumption of an Android device which registers for only one location compared
to another Android device with no proximity alert. Even if we don’t move the
device (same location), the former drained the battery in 18 hours compared to
almost 75% remaining battery level on the latter device.

Due to the costs of proximity alert (especially in Android), we do not use
proximity alert directly. As we explain in the next section, our system sets a
proximity alert only if the user is close to the targeted location. Otherwise, our
system adaptively checks if the user is making progress towards the coffee shop
by monitoring the distance.

4.2 Wait-time detection

The wait-time detection subsystem uses the device location and the BSSID of the
Wi-Fi Access Point (WAP) to detect the user’s presence at the coffee shop. Due
to the high energy cost of continuous sensing, we adopt a hint-based approach
to initiate sensing. We utilize the following two hints: First, we assume that if a
user opens the app to check the line wait-time, then she is a potential candidate
to visit the coffee shop soon. Second, we utilize the user’s coarse-grained location
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Fig. 3. The effect of using proximity alert continuously. The dashed line represents
the battery level of a device which registers for one proximity alert, and the solid line
represents a device which registers for none.

and start/stop monitoring if the user is close to the coffee shops. By using these
two hints LK achieves energy-efficient monitoring.

LK employs two alternative methods to detect the wait-time at a coffee shop:
Location-sensing and WiFi-sensing. Both methods are orthogonal and return
results with similar accuracies, which makes the two methods replaceable. If the
coffee shop does not have a WAP (or the WAP is not learned/validated yet),
then the Location-sensing can be used. If the coffee shop is inside a big mall
where the Location-sensing does not work accurately, then the WiFi-sensing is
more advantageous. In our deployment we used both methods, and we provide
results from both in the experiments section. We describe these two techniques
next.

Location-sensing Once the smartphone component has a hint that the user
may go to a coffee shop, it dispatches a new job and starts monitoring the user’s
location. First the distance between the coffee shop and user’s current location
is calculated. If the user is close enough (i.e. R < 100 meters) to the targeted
location, then the app sets a proximity alert to detect the timestamp of entering
to and leaving from the coffee shop. However, if the user is not close enough
(R >= 100 meters), then the app schedules an alarm to check the location
again on the estimated arrival time of the user. The estimated arrival time is
calculated based on the user’s current speed and her distance to the coffee shop.
Before scheduling further alerts, our app expects user to make some progress
towards the coffee shop. If the user does not make any progress towards the
targeted location n consequtive times, then the job is cancelled. If there is a
progress towards the targeted location, then the proximity alert lets our app
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know at time t1 where user enters to and at time t2 where user leaves from
the coffee shop. Having these two timestamps, wait-time is just the difference of
t2 − t1 − ε where ε is the mean error which is accounted for the accuracy of this
method (around 1.5 minutes).

Location provider selection in smartphones:
Smartphones provide various ways to obtain user’s location. GPS, cell towers,
and WAPs are the main ones. Aside from these, there are two other mechanism
to learn location: last-known location and passive location learning—a way of
getting location whenever another application requests it. The location provided
by these methods has its accuracy and timestamp on it. In Android, an applica-
tion for tracking the location is free to choose among these methods. However,
given the different sensing costs of these methods in terms of energy and time,
we use a dynamic and adaptive selection of the location providers.

Since we are interested in the user’s proximity to the coffee shop, distance is
an important parameter for our system. Hence, using the user’s distance from
the targeted location, our app dynamically selects to use cell tower, WAP or GPS
as a provider (see Figure 4). Android combines and uses cell tower and WAP
locations as the network location and differentiate it from the GPS location. In
Android, our app first looks for the last-known location and calculate the user’s
distance by taking accuracy and timestamp of the location into account. If the
Coffee Shop is very far away or the location is recent and accurate, then we
use the last-known location. Otherwise, we take the network location which in
general has a better accuracy. If it doesn’t satisfy the requirements too, then
we take a more conservative approach and learn the location from GPS which
in general has a good accuracy of 10 meters. Note that last-known location
and network location is mostly available and they are not costly in terms of
the battery. On the other hand GPS is costly and can easily drain the device’s
battery if over-used.

Wi-Fi sensing Our second method for wait-time detection is to leverage the
WAP in the coffee shop. Nowadays, most of the coffee shops have Wi-Fi to
provide their customers easy and fast access to internet. Moreover, these WAPs
generate beacons to broadcast their existence within the radius of 50-100 meters.
And each beacon associates with a unique BSSID.

Once our system has a hint that the user will potentially visit the coffee
shop, it then starts to monitor Wi-Fi beacons periodically to detect entering
to and exiting from the targeted location. With the help of scanning ability
of WAPs without connecting to them (provided on the Android platform), our
system tracks Wi-Fi beacons easily with little energy consumption. Having the
Wi-Fi scan results available, wait-time calculation is just the process of taking
difference of t2 − t1 − ε where t1 is the time we start and t2 is the time when we
stop to see Wi-Fi beacons of the WAP. Note that ε is the mean error for this
method (around 1 minutes, accounting for the scanning period).
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Fig. 4. Selecting among location providers

4.3 Data uploader

After completing the wait-time-detection, the smartphone component tries to
upload the resulting data to the cloud as an input to our wait-time estima-
tion system. Since the data is reasonably small, the uploading process is mostly
successful in real time. However, due to the status of the device or connection,
sometimes it is not possible to transmit data immediately. To handle this case, we
have a data uploader subsystem. The data uploader is responsible for transmit-
ting the pending wait-time detection data whenever the Phone-State-Receiver
notifies the Controller about the availability of a Wi-Fi or GSM data connection.

Since a failed data transfer costs some energy, the data uploader uses some
simple heuristics to increase the upload success rate. We assume that the device
is charged mostly when the user is at home or office where she has a reasonably
fast and reliable data connection, which is most of the time a Wi-Fi connec-
tion. Therefore, the data uploader is triggered when the device is connected to
a power outlet to leverage this efficient and reliable connection. Under some cir-
cumstances, even if the device is being connected to a power outlet, it may not
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have such data connection available. If so, then the data uploader periodically
(once an hour) checks for a data connection.

Data uploader stores the pending transfers inside a database that resides on
the device. The data is sent to server as a JSON object using HTTP POST.
Once the data is successfully sent, which is confirmed by a response from the
server side, then the Data uploader clears up the database in order to save some
storage on the device.

5 Wait-Time Estimation

In this section, we present the wait-time estimation component of LK. This
component resides on the server-side (hosted on AWS EC2 cloud for scalabil-
ity) and consists of four main components: Web service, Pre-processor, Model-
builder and Wait-time forecaster. The web service serves as the interface between
smartphones and the back-end. It accepts wait-times collected from the smart-
phones and provides wait-time estimations for the querying smartphones. Data
collected from web service is fed into the pre-processing module which is respon-
sible mainly for removing outliers and smoothing the data. After pre-processing,
model builder builds a model from all the collected data. Lastly, the wait-time
forecaster module uses the model and estimates the future wait-times. Below we
describe the data that we use for analysis, then we explain wait-time estimation
in details.

Data: For our analysis, we used the 8 weeks of collected data (CD) between
2012-02-27 and 2012-04-29 from 8am to 5pm 2. CD consists of the wait-time
detections that the LK app on the smartphones generated and transferred to
the back-end. This data is non-uniformly distributed along time, and is initially
sparse over the period it has been collected. The sparseness of the data gradually
decreases as the popularity of the application increases.

The raw CD contains outliers due to false-positives: some customers sit in
the coffee shop after being served, and some leave the coffee shop without being
served. Thus, CD needs smoothing and outlier removal methods to filter out
the samples that do not provide direct information of wait-times. We utilize
distance-based outlier detection method defined in [14] to enable more accurate
modeling. Also, during preprocessing, we remove wait-times that are smaller
than 2 minutes (which is less than the observed min. service time) and larger
than 20 minutes (which is larger than the observed max. wait-time). As a result
there are total of 1782 data points in our CD dataset.

Separate from CD, we also manually collected one week of Observed Data
(OD) by physically observing and noting the wait-time in the coffee shop. OD
consists of wait-time data collected with equal intervals (every 10 minutes) be-
tween 8am-5pm, and provides an accurate state of the line wait-times (without
false-positives) for that week. Of course it is tedious to collect OD, and we can-
not expect to obtain OD for all the businesses added to LK. Since we want our

2 A week is excluded due to spring break
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LK service to be scalable and bootstrap itself from the beginning, the wait-time
estimation techniques we developed do not rely on OD. We use OD only to
observe how wait-times changes along the time and to extract max. and min.
wait-times.

Wait-time estimation problem: The problem is to estimate the line
wait-time for any arriving query by using CD. Although the queries can be for
anytime (past, now, future); we expect real-time querying for the current time
(e.g., 5-10 minutes in to the future) to be most useful. Hence, the wait-time
estimation models need to access the most up-to-date information in CD. Wait-
times usually depend on i) the time of the day, ii) weekday vs. weekend, and iii)
seasonality depending on the nature of the business. For our specific coffee shop,
there is less traffic in off-school days and weekends, and slightly more traffic in
certain times of a day. An estimation method should capture all of these variables
accurately.

The theory of time-series estimation has been usually based on regular uni-
form time-series that contain enough samples. In our case, the data is neither
complete nor uniform. Therefore, a general theory of time-series is not directly
applicable on CD. However, as the popularity of the application increases and
by employing techniques for filling missing data, we can overcome this challenge
and build robust models to estimate wait-times. To achieve this, we developed
two estimation approaches. Our two estimation approaches represent a spec-
trum from a fast heuristic to a time-series model. Both approaches are designed
to handle insufficient data and adapt/improve as more data is collected.

Our first approach is a Nearest neighbor estimation (NNE) based on con-
strained nearest-neighbor search in a multi-dimensional space. This approach
is dynamic and works well with non-uniform and sparse CD. In the second ap-
proach, we improve NNE by building time-series model on CD using the previous
history of wait-times. We show that both approaches provide considerably ac-
curate estimations.

In Section 5.1 we explain our nearest neighbor estimation technique. In Sec-
tion 5.2, we present the model-based time series estimation and finally in Sec-
tion 5.3, we compare the estimation (forecasting) capabilities of the mechanisms.

Evaluation: We evaluate the approaches using their resulting Mean Abso-
lute Error (MAE). Given a set of n wait-times: y1, y2, ..., yn and their estimated
values: f1, f2, ..., fn, MAE is defined in Equation 1.

MAE =
1

n

n∑
i=1

|fi − yi| (1)

5.1 NNE: Nearest neighbor estimation

The main idea in this method is to predict the queried values using the previous
history of wait-times based on their similarity of values. To this end we iden-
tify k nearest neighbor points (k-NN) for the query, where similarity is defined
with respect to the estimation potential. The key here is to design a similarity
(neighborness) function that optimizes the estimation error for the query.
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In order to realize this method, we define every data point with 3 dimen-
sions: week, day and day-interval, [w, d, i]. Each data is associated by a vector
[wi, di, ii], where wi stands for the week of the year and is from the domain
[1,52], di stands for day of the week and from the domain [1,7], ii stands for
interval of the day and is from the domain [1,54] (there are 54 intervals of 10
minutes between 8am and 5pm). We use weighted Lij to denote the dissimilarity
measure between two vectors and define it as the weighted sum of the absolute
differences between each dimension;

Lij = α(|wi − wj |) + β(|di − dj |) + γ(|ii − ij |) (2)

Hence, the problem is deduced to find the optimal values for α, β and γ.
Below we explain our regression-based optimization method to optimize these
values.

Regression-based optimization In statistics, it is a common practice to use
regression to understand the relationship between regressand and regressors. For
our case, we want to quantify the relation between the wait-time (vi) and the
data vector ([wi, di, ii]). Therefore, we first assume that wait-time is linearly
dependent to each dimension of the data vector as in Equation 3. And then we
utilize the labeled data points (previous history of wait-times) and assign the
weights that optimize the regression function for the labeled data.

vi = αwi + βdi + γii (3)

We use linear regression to optimize these weights. Table 1 shows the nor-
malized dissimilarity weights for our 8 weeks of data. Results indicate that, for
an estimation interval, the nearest intervals and the intervals from the nearest
days have higher similarity than the intervals from previous weeks. This roughly
means that the importance of the previous week’s data decreases as the time
passes. This provides a dynamic way of selecting closest week’s data for our
method.

Week (α) Day (β) Interval (γ)

0.991 0.130 0.032

Table 1. Weights for dissimilarity measurement using regression

K-NN Estimation After finding the weights (α, β, γ), similar to the k-nearest
neighbor algorithm in machine learning [6], our aim is to find the k nearest
neighbors for the queried data point. For this purpose, we first calculate the
distance of the query to each of the labeled data points. And then, we find the
minimum distanced k = 5 data points and calculate the average of their wait-
times as the estimated value. First row of Table 2 shows the modeling error of
NNE. Note that results are in terms of seconds. Same applies to all following
results.
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Model MAE

NNE 234

Exp. Smoothing 34

Holt Winters 55

Table 2. Modeling error for the models

5.2 Model-based estimation

In this section, we explain how we apply time series theory to wait-time esti-
mation problem as an improvement to our NNE method. As we stated earlier,
time series analysis usually depends on uniform and equally spaced data. How-
ever, CD does not fully convey these features. Besides it has outliers that makes
modeling more difficult. In this section, we present solutions to overcome these
shortcomings on CD. We first present how we generate uniform, equally-spaced
time series data which we call enhanced collected data (e-CD). Second, we pro-
vide the analysis of e-CD. Finally, we fit the data to the time series forecasting
models and provide results to evaluate their performance while comparing with
our previous approach.

Missing data problem on CD In a typical data collection process, missing
data can occur for a variety of reasons including system failures, communication
failures etc. In our case, we have missing data because in some intervals either
there was no users using our app in the coffee shop or the existing users were
unable to upload detected wait-times to our server yet. Although, we expect
these behaviors to minimize as more users use our app, until then we need to
handle these missing data and provide accurate wait-time estimation.

There are variety of ways to handle missing data; imputation, partial dele-
tion, interpolation and regression are just some of the methods [18]. We adopt a
regression-based estimation for filling and constructing equally-spaced (10 min-
utes of intervals) data. Specifically, we adopt our nearest neighbor estimation
(NNE) method that we defined in the previous section for handling missing
data. Since we cover most of the details of the method in previous section, we
will not repeat the same phenomena here. Basically, we fill the missing interval
using the resulting regression model which is constructed by using previous his-
tory of wait-times up to the queried interval. For the intervals that already have
data, we simply take the average of the collected data as the representative of
that interval. In order to deal with outliers we apply a two-sided moving average
smoothing to the data. After these processes we finally constructed equally-
spaced (10 minutes), uniform time series; e-CD.

Analysis of e-CD In this section we analyze the enhanced collected data (e-
CD) in details. This would enlighten our selection of forecasting models in the
next section. Figure 5(a) and (b) illustrate some statistical diagnostics of time
series. The bell-shaped histogram plot and the wait-times being close to the
straight line in the normal probability plot (although a little bit skewed left
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for the higher values) indicate that the wait-times follow a normal distribution.
Note that time-series models are more suitable for normally distributed data
and e-CD exhibits this behavior [3].

Traditionally, time-series data considered to be composed of trend, seasonal-
ity, cyclical fluctuation and the random effect. Figure 5(c) and (d) shows trend
and seasonal components of e-CD. As can be seen from the Figure 5(c), there
is an increasing trend for the wait-time which we believe due to the approach-
ing summer. Figure 5(d) shows the seasonality component of e-CD. It clearly
exhibits seasonality and validate the selection of a model which has seasonality
component.
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Fig. 5. Statistical plots of e-CD. (a) Histogram of wait-times (b) Normal Q-Q Plot (c)
Trend component of time series (d) Seasonality component of time series

Modeling e-CD As explained in the previous section, e-CD exhibits trend and
seasonality which motivate us to use a model which takes these into accounts.
In addition, it should be as light-weight as possible and can be incrementally
updated as more data comes. This encourages us to use Holt-Winters forecasting
method which is a widely used time-series forecasting model based on exponen-
tial smoothing [10]. We experimentally select multiplicative seasonal model and
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choose data(αhw), trend(βhw) and seasonal(γhw) smoothing factors dynamically
as more data comes. We’ve also considered other forecasting methods such as
ARIMA (Autoregressive integrated moving average) and exponential smooth-
ing. However, we observed that ARIMA incurs significant computational costs,
and therefore we opt-out it and compare Holt Winters with the ad hoc expo-
nential smoothing. Second and third rows of Table 2 shows the modeling error
of Holt Winters and exponential smoothing. It is clear that the both models fits
perfectly to our e-CD in comparison to our initial NNE method.

5.3 Comparison of Models

In this section, we compare the models built in the previous two sections in terms
of their forecasting capabilities. Table 3 shows the forecasting errors of the mod-
els for the last two weeks of our experiment. It is expected that forecasting error
will be higher than the modeling error as the modeling takes all data into account
from the beginning. On the other hand, forecasting only uses the previous data
from the queried one. As shown in the Table 3 Holt Winters outperforms NNE
in a significant scale. Figure 6 shows the weekly MAE for each method. Holt
Winters and exponential smoothing outscores the NNE for all of the weeks con-
sistently. We believe this is due to the fact that wait-time changes steadily rather
than immediately over time and both Holt Winters and exponential smoothing
account this fact in its formulation by steadily changing the estimation with
new incoming data. Moreover, Holt Winters and exponential smoothing exhibits
similar errors where Holt Winter beats exponential smoothing in small margins
for most of the weeks. We believe that margin will increase as more data comes
and as the data exhibits more trend and seasonality. Figure 7 shows the collected
data (including replaced missing values) and forecasted values for the last two
days of the last week of our experiment for Holt Winters method. Forecasted
values nicely fitted to the actual values. Our current wait-time estimation model
based on Holt Winters and updated as more data accumulates.

Model MAE

NNE 227

Exp. Smoothing 156

Holt Winters 155

Table 3. Forecasting error for the last two weeks

6 Deployment

Section 5 presented analysis and experiments of the collected data for building an
accurate wait-time estimation model. In this section we present other information
from our deployment. We implemented native Android and iPhone apps for LK
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and made this available at the corresponding appstores for free. While Android
app is written in Java using Eclipse and Android SDK, iPhone app is written
in Objective-C using Xcode and iOS SDK. For the sake of scalability, we hosted
back-end at AWS EC2. A screenshot of the application is shown in Figure 8. It
shows the current wait-time and a graph showcasing the past (left) and future
(right) estimates of wait-times. We advertised LK through handing out fliers
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and putting ads on Facebook pages of various Student Clubs. As of writing this
paper, LK was downloaded by more than 1000 users in our campus. We received
lots of positive feedbacks about the accuracy of estimation from the users.

Fig. 8. A screenshot from Android app

Since the iOS platform does not provide a lot of development flexibility, we
were unable to implement Wi-Fi sensing for wait-time detection and ended-up
using only the location-sensing based solution on the iPhone platform. This was
not an issue for the Android platform and both Wi-Fi sensing and location-
sensing solutions are fully implemented on the Android. On the other hand, we
found that the iOS platform had its own advantages: it was easier to implement
a robust location-sensing on the iPhone than on the Android platform.

As we explained in Section 4, LK receives wait-time detection from two
sources of information, i.e. location and WAP. Our 8 weeks of CD show that
65% of incoming data is received from location-sensing (iPhone + Android),
and the remaining 35% is received from Wi-Fi based sensing (only Android).
Figure 9 shows the number of data points for the weeks we used for analysis,
except that data is not preprocessed and it is for all day.

7 Discussion

While we presented LK’s deployment for one coffee shop, we believe LK’s de-
ployment can be extended for other coffee-shops and businesses such as Post
Offices, Banks and DMVs. To add a new business to the LK, we only require
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Fig. 9. Incoming number of data points (for all day). Week 3 is spring break and
excluded from the wait-time analysis.

the geographical locations, i.e. latitude and longitude, of the business. After a
business is added, LK immediately starts receiving line wait-time data from the
users visiting that business. Depending on the number of LK users visiting the
business, it may take time for LK to construct a model and start providing accu-
rate wait-time estimations for the business. To speed up this process, a business
added to LK may manually provide wait times for a week, or offer promotions
and coupons for users who install the LK app and check-in frequently. Below,
we include more details on how to scale LK to a large set of locations.

7.1 Automated learning of BSSID

In our reported deployment we manually learned the BSSID of the WAP in the
coffee shop. However, in order to scale LK to other locations quickly, we can
automate this process as follows. Initially when the BSSID of the WAP in a
business is still unknown, LK relies on just the Location sensing mechanism for
wait-time detection. During this phase, LK app instances scan for the available
WAPs in that business location and upload these to the LK servers. Learning and
validating the BSSID of a business involves recurring observations of the same
BSSID by different users at different times. After the BSSID of the business is
learned, LK starts accepting line wait-time detections from that business via
WAP as well. This increases the data collected from that business and shortens
the period for constructing an accurate wait-estimation model.

7.2 Integrating LK with social networks

We plan to use social network services and APIs to quickly scale LK for line wait-
time monitoring of businesses nationwide and worldwide. For example, we will
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obtain the geographical locations of new businesses to add to LK by using the
Foursquare [8] Venue API (which does not even require a login to Foursquare).
We also plan to integrate/embed LK as an extension to the existing popular
location-based services such as Facebook, Foursquare and Google Places.

7.3 Improving wait-time detection

As we explained in previous sections, wait-time detection component of LK can-
not differentiate between seated customers and the customers waiting in line. In
our deployment, majority of the customers leave the coffee shop immediately,
therefore, false-positives do not constitute a problem. However, until enough
user base is formed, it is possible that wait-time estimation at new businesses
might suffer from these false-positives. In order to eliminate these false-positives
in wait-time detection, we will try to distinguish between seated customers and
waiting customers by employing the state-of-the-art activity recognition tech-
niques [15, 13]. These techniques use the accelerometers in the smartphones to
differentiate between different behaviors, including sitting and standing.

8 Conclusion

We described the design, implementation and deployment of LK, a crowdsourced
line wait-time monitoring service. LK consists of two main parts: smartphone and
cloud back-end components. Smartphone component provides automatic, energy
efficient and accurate wait-time detection by using domain specific optimizations
for both Android and iOS. And cloud back-end provides accurate wait-time es-
timation based on collected data from smartphones. In wait-time estimation,
we introduced a novel solution based on a constrained nearest-neighbor search
in a multi-dimensional space. We then improve it by adapting two time-series
forecasting methods namely exponential smoothing and Holt Winters. Our ex-
periments show that, we managed to reduce the mean absolute error of our
service to be less than 2-3 minutes. In our future work, we will add new busi-
nesses to LK and try to scale our wait-time estimation service to a nationwide
deployment.
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