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Abstract. Incomplete databases, that is, databases that are missing
data, are present in many research domains. It is important to derive
techniques to access these databases efficiently. We first show that known
indexing techniques for multi-dimensional data search break down in
terms of performance when indexed attributes contain missing data. This
paper utilizes two popularly employed indexing techniques, bitmaps and
quantization, to correctly and efficiently answer queries in the presence
of missing data. Query execution and interval evaluation are formalized
for the indexing structures based on whether missing data is considered
to be a query match or not. The performance of Bitmap indexes and
quantization based indexes is evaluated and compared over a variety of
analysis parameters for real and synthetic data sets. Insights into the
conditions for which to use each technique are provided.

1 Introduction

Real world applications using databases with missing data are common. Databases
with missing data occur in a wide range of research and industry domains. Some
examples of these are:

1. A census database that allow null values for some attributes
2. A survey database where answers to one question cause other questions to

be skipped
3. A medical database that relates human body analyte (a substance that can

be measured in the blood or urine) measurements to a number of diseases,
or patient risk factors to a specific disease

The goal of this paper is to provide techniques that access databases efficiently
in the presence of missing data.

There are a variety of reasons why databases may be missing data. The data
may not be available at the time the record was populated or it was not recorded
because of equipment malfunction or adverse conditions. Data may have been
unintentionally omitted or the data is not relevant to the record at hand. The
allowance for and use of missing data may be intentionally designed into the
database. In some cases, the missingness of data is random, i.e. the missingness
of some value does not depend on the value of another variable. In that case, the
missingness is ignorable and the way of dealing with it is to “complete” the value
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using regression or other statistical model and treat the data as if it was never
missing. However, if the data are missing as a function of some other variable, a
complete treatment of missing data would have to include a model that accounts
for missing data. Consider the example of the analyte-disease database where
diseases are the records and analyte ranges are the attributes. This database
would contain values for analyte ranges if they are relevant for a specific disease,
or null values if the analyte readings are not important in the diagnosis of that
disease. We may query such a database with a patient’s analyte readings to get
a list of potential diagnoses. We do not want to discount diseases that do not
have a value for an analyte included in the query, because the act of taking
an analyte’s measurement has no bearing on if a patient has a disease that is
not relevant to that particular analyte. So in this case, missing data should be
interpreted as a query match for that attribute. Alternatively, the intent of a
query may not be to return records that could match query criteria, but to only
return records that definitely match query criteria. In this case any missing data
for a record that occurs in an attribute specified by the query search key means
that the record does not match the query. An example of this could be a survey
results query where the query asks for a count of respondents that answered
question 5 with answer “A” and question 8 with answer “C”.

This paper deals with data where missingness is not ignorable, in other words
whether a data value is missing or not is important and we want to be able
to distinguish between the real values and the absence of such values. In order
to achieve this, we could assign a specific value for missing fields that is not in
the domain of that particular attribute. For example, if the domain of an at-
tribute is the positive integers, a value of -1 may be used to denote missing data.
Then the transformed, complete multi-dimensional database could be indexed
using traditional hierarchical multi-dimensional indexing techniques. However,
this solution for indexing databases with missing data experiences significant
performance issues when applied to hierarchical indexing techniques. To illus-
trate this point, we performed a set of experiments on two-dimensional data
sets that are identical except that they vary with respect to their percentage of
missing data. We built an R-tree index on the different datasets and executed
2-dimensional queries with a global selectivity of 25%. Figure 1 shows the effect
on query execution time as missing data probability varies.

The graph shows time performance of a query using an R-tree built on the
different data sets, normalized to the time to perform the query on a complete
data set. This graph shows that even for a data set and index that is only two
dimensions, we get far worse performance when the database contains missing
data. Even when there is only 10% missing data for each attribute, the time
performance is 23 times worse than if the data set were complete.

Multi-dimensional indexing techniques work best when records are mapped to
non-overlapping hypercubes. When missing data are mapped to a single value,
the overlaps associated with the index structure increase.

One technique to deal with this issue is to somehow randomize the values
assigned to missing data so pruning potential results when traversing the index



886 G. Canahuate, M. Gibas, and H. Ferhatosmanoglu

Fig. 1. Normalized Query Execution Time versus Percent Missing Data, Query Selec-
tivity = 25%, 2-D Data Set

structure is not compromised. However, it becomes necessary to transform the
initial query involving k attributes into 2k subqueries. This is because there are
2k possible combinations of missing and non-missing values among the k at-
tributes in the search key. Therefore there are 2k subspaces where query match-
ing data can reside, and all of them must be searched. This fact causes query
execution performance to become exponentially worse with respect to query di-
mensionality. Lastly, as described in [15] all hierarchical multi-dimensional index
structures break down after a certain number of dimensions indexed.

Space partitioning multi-dimensional indexing techniques would also suffer
from the same weaknesses in the presence of missing data. Records with missing
data values would get mapped to lesser-dimensioned spaces, and the full ben-
efit of data space partitioning would not be realized. Again, partitioning the
data space beyond a certain number of dimensions has limitations as discussed
in [15].

Data repositories need techniques for indexing multi-dimensional data that
work well in the presence of missing data. Further benefit is derived if the tech-
niques also work for databases with higher dimensionality than can be achieved
effectively using hierarchical or data partitioning indexes. The objective of this
paper is to facilitate efficient access to and define query execution for databases
with missing data in a way that even works well when the database dimension-
ality is high. The techniques introduced are evaluated in terms of performance
against a number of parameters including database dimensionality, missing data
frequency, query selectivity, and query semantics (whether missing data indicates
a query match or not).

Contributions of this paper include the following:

1. Efficiently indexing databases with missing data using variations of bitmaps
and VA-Files.

2. Demonstrating that missing data not only causes semantic problems but also
degradation in the performance of queries.

3. Formalization of query processing operations for the proposed techniques in
the presence of missing data.
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4. Insights into the environments appropriate for each technique. Although
bitmaps and quantization (VA-Files) have been extensively studied, and their
applications are similar, we know of no work that compares and contrasts
them.

5. Empirical study and evaluation of results over several analysis parameters.

The rest of this paper is organized as follows: Section 2 discusses related work,
Section 3 defines the problem addressed in this paper, Section 4 describes the
proposed solutions and Section 5 presents the experimental results. Finally, we
conclude in Section 6 and provide directions for future work.

2 Related Work

Missing Data. Although databases commonly deal with or contain missing
data, relatively little work has been performed for this topic. Formal definitions
for imperfect databases, of which databases with missing data is a subset, and
database operations are provided in [21]. Two techniques for indexing databases
with missing data are introduced and evaluated in [12]. This is the only paper
we are aware of that focuses on indexing missing data. These are the bitstring
augmented method and the multiple one-dimensional one-attribute indexes tech-
nique, called MOSAIC.

For the bitstring-augmented index, the average of the non-missing values is
used as a mapping function for the missing values. The goal is to avoid skew-
ing the data by assigning missing values to several distinct values. However, by
applying this method it becomes necessary to transform the initial query involv-
ing k attributes into 2k subqueries, making the technique infeasible for large k.
MOSAIC is a set of B+-Trees where missing data is mapped to a distinguished
value. Similarly to the previous method, it becomes necessary to transform the
initial query involving k attributes into 2k subqueries, one for each attribute.

What makes MOSAIC perform better than the Bitstring-Augmented index
for point queries is that it uses independent indices for each dimension. However,
by using several B+-Trees the query has to be decomposed and intersection and
union operations need to be performed to obtain the final result. Queries that
could gain a greater performance benefit by utilizing multiple-dimension indexes
would not achieve it using this technique. Therefore, this method may not be
useful for multiple-dimension range queries, or other queries where the number
of matches associated with a single dimension is high.

Our work differs from [12] in that we introduce and evaluate techniques that
do not suffer the same weaknesses as their techniques. In our approach the query
need not be transformed into exponential number of queries and no extra ex-
pensive computation, such as set operations, needs to be performed in order to
obtain the final result set. Moreover, even though VA-File is not a hierarchi-
cal index it benefits from pruning multiple dimensions in one pass through the
structure. In addition, our solution using bitmaps and VA-Files is also scalable
with respect to the data dimensionality.
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Bitmaps. The topic of bitmap indexes was introduced in [10]. Several bitmap en-
coding schemes have been developed, such as equality [10], range [5],
interval [5], and workload and attribute distribution oriented [9]. Several com-
mercial database management systems use bitmaps [11, 3, 7]. Numerous perfor-
mance evaluations and improvements have been performed over bitmaps
[4, 17, 13, 8, 18, 19, 5, 20]. While the fast bitwise operations afforded by bitmaps
are perhaps their biggest advantage, a limitation of bitmaps is the index size.
Several compression techniques have been proposed [2, 16, 1, 13] to reduce the
bitmap index size. Some of the most popular compression techniques such as
Byte-Aligned Bitmap Code (BBC) [2] and Word Aligned Hybrid (WAH) code
[16], use a hybrid between the run-length encoding and the literal scheme to
compress the bitmap.

VA-Files. The motivation for VA-files is introduced in [15]. This paper showed
theoretical limitations for the classes of data and space partitioning indexing
techniques with respect to dimensionality. Since reading all database pages be-
comes unavoidable when the number of indexed dimensions is high, the authors
suggest reading a much smaller approximate version, or vector approximation
(VA), of each record in the database. An initial read approximately answers
queries, and actual database pages are read to determine the exact query an-
swer. VA-files are more thoroughly described in [14].

To the best of our knowledge this is the first paper that compares and con-
trasts bitmaps and VA-files and discusses them together and the first paper in
which these techniques are used to index incomplete databases.

3 Problem Definition

Let D be a database with a schema of the form (A1, A2, . . . , Ad). D is said to be
incomplete if tuples in it are allowed to have missing attribute values. Without
loss of generality, assume the domain of the attribute values is the integers from
1 to Ci, where Ci is the cardinality of attribute Ai. We assume that data retrieval
is based on a k-dimensional search key, where k is less than or equal to d.

In range queries, a lower- and upper-bound is specified for each attribute in
the search key. Each interval in the query is represented as v1 ≤ Ai ≤ v2, where
v1 and v2 are between 1 and Ci. The query is said to be a point query if all
lower bounds are equal to the corresponding upper bound for each attribute in
the search key.

Given a range query Q with a k-dimensional search key, we have two ways
to compute the results for Q. When missing data is considered to be a query
match, a tuple t in the database is said to be an answer for Q if every attribute
of t which appears in the search key that is not a missing value falls in the
corresponding range defined in the query or is a missing value. When missing
is not a match, a tuple t in the database is said to be an answer for Q if every
attribute of t which appears in the search key is not missing and falls in the
corresponding range defined in the query.



Indexing Incomplete Databases 889

The performance of a query can be characterized by the time it takes to
perform the query and the accuracy of the result. For this work we only consider
techniques that provide accurate query results. The time it takes to perform a
query when an index is used is made up of the time to read the index (if the
index does not already reside in memory), the time to execute the query over the
index, and the time to read the database pages indicated by the index. The goal
of this work is to propose indexing techniques that exhibit better performance
than existing techniques and sequential scan when the database attributes that
are specified in a search key have missing data.

When measuring query performance we consider two metrics: index size and
query execution time. Index size is simply measured as the size of the requisite
index files on disk. It is indicative of the time required to initially load the index
structures. Although this metric is not as critical for static read-only databases
with ample disk-space available, it becomes important as database updates be-
come more frequent or available disk space becomes limited. Query execution
time is measured in milliseconds for a query set. Given that the indexes are in
memory, this measurement indicates the time required to process a set of queries
and arrive at a set of pointers to records in the database that could match the
query criteria.

4 Proposed Solutions

Our proposed solutions are to apply the techniques of bitmap indexes and vector-
approximation (VA) files modified appropriately to account for missing data and
to execute the query according to the query’s semantics. The reason is that
we want to independently index each dimension and execute queries efficiently
without needing to perform expensive operations to obtain the final result. Bit
operations for bitmaps provide fast computation and VA-Files provide pruning
in multiple dimensions at the same time using cheap comparisons.

4.1 Bitmap Indexes

We base one solution for the efficient access of incomplete databases on bitmap
indexes. In the bitmap index context, records are represented by a bit string.
Each attribute Ai would be represented by at most Ci bits of the string where
Ci is the cardinality of Ai, i.e. the number of distinct non-null values among
all records for attribute Ai. A bitmap is a column wise representation of each
position of the bit string. Each bitmap would have n bits where n is the number
of records in the dataset. Given a dataset D = (A1, A2, . . ., Ad) for each Ai

attribute we build a certain number of bitmaps depending on Ci. To handle
missing data using bitmaps, we map missing values to a distinct value, i.e. 0.
By doing this we are increasing the number of bitmaps for each attribute with
missing data by 1. While mapping missing data to a distinct value fails for
multi-dimensional indexes, it is acceptable for bitmaps because the attributes
are indexed independently and we are not creating an exponential number of
subspaces that must be searched to answer a query.
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Let’s denote the bitvectors or bitmap vectors for attribute Ai by Bi,j where
0 ≤ j ≤ Ci if Ai has missing values and 1 ≤ j ≤ Ci otherwise. Bi,0 represents
the bitvector for missing values.

Let’s denote by Bi,j [x] where 1 ≤ x ≤ n the bit value for record x in the
bitmap for attribute Ai and value j.

Using bitmap indices, queries are executed by performing bit operations over
the relevant bitmaps. OR, XOR, AND and NOT are commonly used.

An important aspect of a bitmap index is the type of encoding of the records.
We explore two alternatives: equality and range encoding.

4.2 Bitmap Equality Encoding (BEE)

Using equality encoded bitmaps, bit Bi,j [x] is 1 if record x has value j for at-
tribute Ai and 0 otherwise. Using this encoding, if Bi,j [x] = 1 then Bi,k[x] = 0
for all k �= j. If attribute Ai has missing values, we add the bitmap Bi,0 that
behaves in the same manner explained above.

Adding an extra bitmap for each attribute with missing data is not a major
burden with few records or few dimensions, but when we consider 1,000,000
records with 100 dimensions we are effectively adding 100,000,000 bits to our
index which correspond to approximately 12 MB in size.

An intuitive solution that could be used to encode missing data without adding
an extra bitmap would be to use different encodings depending on whether miss-
ing data is a match or not. In this alternative, when missing is a match we make
Bi,j [x] = 1 for all j if record x has missing data in attribute Ai; and when miss-
ing is not a match, we make Bi,j [x] = 0 for all j if record x has missing data in
attribute Ai.

However, there are some problems with this approach. We will need to perform
more bitmap operations when we use the NOT operator. The reason is that when
we negate a bitmap when missing data is considered to be a query match, the
resulting bitmap would have 0’s for the missing records. In order to recover the
records with missing data we will need to AND together two bit columns. We
then need to OR that result with the original negated bitmap to arrive at a
correct final result. When missing data does not imply a query match, we would
need to OR together two bit columns to ensure we are eliminating the records
with missing values and then AND this result with the negated bitmap to get
correct results. Using this approach, it would also be impossible to distinguish
between missing values and a real value when the cardinality of the attribute is
1. In addition, by making all bits 1 for the attribute when missing is a match we
interrupt the runs of 0s and compression decreases dramatically for the attribute
bitmaps.

Empirically, we realized that after compression using WAH, the addition of an
extra bitmap to handle missing data did not introduce much overhead. For the
same example of 1,000,000 records with 100 dimensions, and assuming 10,000
records with missing data, each bitmap for missing values would have approx-
imately a compression ratio of 0.47 and overall the compression ratio for the
dataset would also improve.
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Table 1. Equality encoded with missing data

Record Value B1,0 B1,1 B1,2 B1,3 B1,4 B1,5

1 5 0 0 0 0 0 1
2 2 0 0 1 0 0 0
3 3 0 0 0 1 0 0
4 missing 1 0 0 0 0 0
5 4 0 0 0 0 1 0
6 5 0 0 0 0 0 1
7 1 0 1 0 0 0 0
8 3 0 0 0 1 0 0
9 missing 1 0 0 0 0 0
10 2 0 0 1 0 0 0

Table 2. Bitmap indices

Bitmap
Vector Value

B1,0 0001000010
B1,1 0000001000
B1,2 0100000001
B1,3 0010000100
B1,4 0000100000
B1,5 1000010000

v1 ≤ Ai ≤ v2 =

(a) Missing Data is a Match (b) Missing Data is not a Match

Fig. 2. Interval Evaluation for Bitmap Equality Encoding

Query Execution With equality encoded bitmaps a point query is executed
by ANDing together the bit vectors corresponding to the values specified in the
search key. Bitmap Equality Encoded are optimal for point queries [5]. However,
with missing data when missing data means a query match we need to use two
bitmaps instead of one to answer the query, i.e. the bitmap corresponding to the
value queried and the one for missing values.

Range queries are executed by first ORing together all bit vectors specified
by each range in the search key and then ANDing the answers together. If the
query range for an attribute queried includes more than half of the cardinality
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then we execute the query by taking the complement of the ORed bitmaps that
are not included in the range query.

With our approach we execute the query differently depending on whether
missing data is a query match or not. Figure 2(a) shows how a query interval
for one attribute is evaluated when missing data implies a query match. Figure
2(b) shows the same evaluation when missing data is not a match. The query
execution time is a function of the number of bitvectors used to answer the query.
The number of bitvectors used in the worst case to evaluate a single interval in
the query is equal to min(ASi, 1 − ASi) ∗ Ci + 1 where ASi is the attribute
selectivity of attribute Ai for this query.

4.3 Bitmap Range Encoding (BRE)

For range encoded bitmaps, bit Bi,j [x] is 1 if record x has a value that is less than
or equal to j for attribute Ai and 0 otherwise. Using this encoding if Bi,j [x] = 1
then Bi,k[x] = 1 for all k > j. In this case the last bitmap Bi,Ci

for each attribute
Ai is all 1s. Thus, we drop this bitmap and only keep Ci −1 bitmaps to represent
each attribute. If attribute Ai has missing values we add the bitmap Bi,0 which
has Bi,0[x] = 1 if record x has a missing value for attribute Ai. Also in this case
Bi,j [x] = 1 for all j. We are treating missing data as the next smallest possible
value outside the lower bound of the domain, in our case, the value 0. In total
the set of bitmaps required to represent attribute Ai with missing values is Ci.

We also tried another kind of encoding in which instead of making missing
data the smallest value we consider the extra bitmap to be a flag indicating
whether the data is missing. In this alternative, if record x has a missing value
for attribute Ai, Bi,0[x] = 1 and Bi,j [x] = 0 for all j > 0. However, by making
Bi,Ci

[x] = 0 when x has a missing value for attribute Ai, we can no longer drop
it. This will effectively increase the number of bitmaps for attribute Ai to Ci +1,
and will not provide any advantage to the query evaluation logic.

Query Execution. With range encoded bitmaps the bitmaps used and the
operations performed to execute a query depend on the range being queried. We
identify three scenarios, depending on whether the range includes the minimum

v1 ≤ Ai ≤ v2 =

(a) Missing Data is a Match (b) Missing Data is not a Match

Fig. 3. Interval Evaluation for Bitmap Range Encoding
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Table 3. Sample data using Range encoding

Record Value B1,0 B1,1 B1,2 B1,3 B1,4 B1,5

1 5 0 0 0 0 0 1
2 2 0 0 1 1 1 1
3 3 0 0 0 1 1 1
4 missing 1 1 1 1 1 1
5 4 0 0 0 0 1 1
6 5 0 0 0 0 0 1
7 1 0 1 1 1 1 1
8 3 0 0 0 1 1 1
9 missing 1 1 1 1 1 1
10 2 0 0 1 1 1 1

Table 4. Range Encoded Bitmap indices

Bitmap
Vector Value

B1,0 0001000010
B1,1 0001001010
B1,2 0101001011
B1,3 0111001111
B1,4 0111101111

value, or includes the maximum value, or is within the domain and includes
neither the minimum or maximum.

Figures 3(a) and 3(b) show how the interval is evaluated for a single query
attribute when missing data implies a match or does not imply a match respec-
tively.

The first three conditions in Figures 3(a) and 3(b) refer to point queries. The
other three refer to range queries.

In the presence of missing data, range encoded bitmaps are more efficient for
range queries than equality encoded bitmaps in all but extreme cases.

In the case where missing data is a query match, we will need to access
between 1 and 3 bitvectors per query dimension. In databases without missing
data, we would need to access between 1 and 2 bitvectors per query dimension.
We introduce some overhead to deal with the missing data case.

In the case where missing data is not a match, we need to access between 1 and
2 bitvectors per query dimension. This is also true for databases without missing
data, but there are two conditions, specifically the conditions where the query
range includes the minimum domain value, that require 1 extra bitvector access.
This is due to the fact that missing values are encoded as 1’s in all bitmaps and
a XOR operation is required to eliminate missing data from the result set.



894 G. Canahuate, M. Gibas, and H. Ferhatosmanoglu

4.4 Bitmap Compression

One of the biggest disadvantages of bitmap indices is the amount of space they
require. Several compression techniques have been developed in order to reduce
bitmap size and at the same time maintain the advantage of fast operations
[2, 16, 1, 13].

The two most popular compression techniques are the Byte-aligned Bitmap
Code (BBC) [2] and the Word-Aligned Hybrid (WAH) code [16]. BBC stores the
compressed data in Bytes while WAH stores it in words. WAH is simpler because
it only has two types of words: literal words and fill words. In our implementation
it is the most significant bit that indicates the type of word we are dealing with.
Let w denote the number of bits in a word, the lower (w-1) bits of a literal word
contain the bit values from the bitmap. If the word is a fill, then the second most
significant bit is the fill bit, and the remaining (w-2) bits store the fill length.
WAH imposes the word-alignment requirement on the fills. This requirement is
key to ensure that logical operations only access words.

We chose WAH over BBC because the bit operations over the compressed
WAH bitmap file are faster than BBC (2-20 times) [16]. However, we do sacrifice
space since BBC gives better compression ratio.

Logical operations are performed over the compressed bitmaps resulting in
another compressed bitmap.

4.5 VA-Files

For traditional VA-files, data values are approximated by one of 2b strings of
length b bits. A lookup table provides value ranges for each of the 2bpossible
representations. For each attribute Ai in the database we use bi bits to represent
2bi bins that enclose the entire attribute domain. In general bi � lg Ci when
the cardinality is high. We made bi = �lg(Ci + 1)�. For our purposes, we use
2b − 1 possible representations for data values and we use a string of b 0’s to
represent missing data values. A VA-file lookup table relates attribute values to
the appropriate bin number. For VA-files we make a modification to the query
based on the query semantics. For a range query where missing data is not a
query match, we look for matches over the range of bins returned by the lookup
table. In the case where missing data means a query match, we also include those
records in the all 0’s bin as a query match.

Tables 5 and 6 show a simple example of a VA-file using our missing data
modification. If we perform a query “return all records where value is 4 or 5”,

Table 5. Database and VA-File representations

Record Data VA-File
Number Value Representation

1 6 11
2 1 01
3 3 10
4 missing 00



Indexing Incomplete Databases 895

Table 6. VA-file representations and data ranges

VA-File
Representation Range

00 missing
01 1-2
10 3-4
11 5-6

Table 7. Synthetic and Census Datasets Distribution

Synthetic Dataset Census Dataset
% of Missing Data Total % of Missing Data Total

Card 10 20 30 40 50 Columns Card 0 ≤10 ≤50 ≤90 >90 Columns
2 10 10 10 10 10 50 <10 11 0 2 2 0 15
5 10 10 10 10 10 50 10-50 7 2 3 5 4 21

10 20 20 20 20 20 100 51-100 2 0 1 2 2 7
20 20 20 20 20 20 100 >100 0 0 1 2 2 5
50 20 20 20 20 20 100 Total 20 2 7 11 8 48

100 10 10 10 10 10 50
Total 90 90 90 90 90 450

our VA-file technique will return the records in bins 00, 10, 11 as approximate
answers in the case where missing data is a match. A filtering step would verify
that record 1 does not answer the query. In the case where missing data is not
a match, only the records in bins 10 and 11 would be returned in the first step.

Query translation is simple. When missing data implies a match, a range
query in the form v1 ≤ Ai ≤ v2 is converted to (V A(v1) ≤ V A(Ai) ≤ V A(v2))∨
(V A(Ai) = 0b), where V A(x) is a function that converts values to their repre-
sentative VA-file bit representation and b is the number of bits used to define an
attribute.

These techniques are easy to apply and require little or no modification of
the queries or query processing. As shown using empirical experiments, they are
also scalable in terms of the number of data dimensions.

5 Experiments and Results

5.1 Experimental Framework

We performed experiments using both synthetic and real datasets. By using the
synthetic data set we could control analysis parameters individually and gain
insights into the behavior of the indexing techniques. We applied the techniques
to a real data set to verify the effectiveness of the techniques on real scenarios.

For the synthetic data, we generated a uniformly distributed random dataset
set with 450 attributes and 100,000 records. For the set of attributes we varied the
cardinality and percent of missing data. Cardinality varied among 2, 5, 10, 20, 50,
and 100 values and percent of missing data among 10, 20, 30, 40, and 50 percent.
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The real data is census data with 48 attributes and 463,733 records. The
attribute cardinalities widely vary from 2 to 165 (average of 37) and percent
of missing data varies from 0% to 98.5% (average of 41%). Table 7 details the
distribution for the synthetic and the real dataset.

We implemented query executors for both bitmaps and VA-Files in Java.
We ran 100 queries for each type of experiment. Queries were executed in both
scenarios when missing data is a query match and when missing data is not a
query match. Since the graphs look very similar in both scenarios we present
only results for queries executed where missing data is a match.

Given that we used the same precision (100%) for our implementations we
compared bitmap indices and VA-Files in terms of:

– Index Size. Index Size is an important factor in any indexing technique.
We are interested in indices that can fit into memory to ensure fast query
execution without the overhead introduced when reading from disk.

– Query Execution Time. Query Execution Time is the time required to
produce a query result set.

5.2 Index Size

In this section we evaluate how the attribute cardinality and the percentage of
missing data affects index size.

Attribute Cardinality. For cardinality less than 10 there is not much room
for compression and the index size is equal for both types of bitmap encod-
ing and is not sensitive to the percent of missing data. For equality encoded
bitmaps, as the attribute cardinality increases the compression ratio improves
considerably, however, at the same time, bitmaps index size increases linearly
with cardinality. For VA-Files the index grows very slowly with cardinality given
our current quantization strategy. Index sizes are presented for attributes with
10% missing data in Figure 4(a). As can be seen, BRE does not benefit from
WAH compression.

With real data, compression rate is highly variable with respect to attribute
cardinality. Since real data can be far from uniform, an attribute that has low
cardinality but frequently has one value can acheive high compression ratios.
With our set of real data, those attributes which have cardinalities of between
1 and 10 and are not missing any data have a compression ratio between 0.002
and 1.03 using equality encoding and between 0.001 and 0.82 using bitmap range
encoding. The wide range is attributable to the bit density (ratio of 1’s) in the bit
columns. As the bit density approaches 1 or 0, the compression ratio improves.
Therefore, if one particular value is frequent, then the bit density for that value’s
column is close to 1 yielding good compression ratio for that column and the bit
density for all other bit columns is close to 0, which results in good compression
ratio for them.

Percent of Missing Data. For equality encoded bitmaps, as the percent of
missing data increases the compression ratio decreases making the index smaller.
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(a) (b)

Fig. 4. Index Size Versus (a) Cardinality and (b) Percent of Missing Data

Range encoding does not get significant compression using WAH code. VA-File
is not sensitive to the presence of missing data and its size is independent of it.
In any case the index size for VA-Files is much smaller than bitmaps. Index sizes
are presented for cardinality 50 in Figure 4(b).

Good compression is also obtained on the real dataset when an attribute
has a high occurrence of missing data. The missing data bit column has a bit
density close to 1 and all other columns are close to 0. This leads to very good
compression ratios for equality encoded bitmaps (between 0.01 and 0.09 for each
of the 8 attributes in our real data set which have more than 90% missing data)
and decent compresison ratios for range encoded bitmaps (between 0.11 and
0.44). Overall, this real data set had an equality encoded bitmap compression
ratio of 0.17 and a range encoded bitmap compression ratio of 0.70.

5.3 Query Execution Time

To measure the effect of the various parameters over the query execution time
of the 100 queries we needed to have control over the global query selectivity,
i.e. the number of records that match the given query. The following formula
relates Global Selectivity (GS), Attribute Selectivity (AS = (v2 − v1 + 1)/Ci)
and Percent of Missing Data (Pmi

) of all the attributes involved in the queries:

GS =
k∏

i=1

((1 − Pmi
)ASi + Pmi

),

where k is the number of dimensions involved in the query. In order to simplify
this formula we assume equal attribute selectivity on all the attributes in the
query. By doing this, individual attribute selectivities are easy to compute but we
lose some precision on the global query selectivity. To measure query execution
time we fixed the global query selectivity to 1 percent. Plugging in different
values for the parameters into GS = [(1 − Pm)AS + Pm]k we compute the
attribute selectivity for each attribute in the query. Note that the granularity
of attribute selectivity is limited by Ci. In general, our estimate was very close
to 1 percent but sometimes the actual global query selectivity went up to 3
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(a) (b) (c)

Fig. 5. Query Execution Time Versus (a) Cardinality, (b) Percent of Missing Data,
and (c) Query Dimensionality

percent. Note that when we make the global selectivity constant and increase
the percent of missing data, the attribute selectivity decreases. We tested the
effect of attribute selectivity, percent of missing data, and query dimensionality
against query execution time.

Attribute Cardinality. Figure 5(a) shows the query execution time of 100
queries over attributes with 10 percent missing data and various cardinalities.
Also in this case the execution time for BRE and VA-Files remains somewhat
constant with BRE being faster than VA-Files. For BEE, the execution time is
linear since the number of bitmaps used to answer the queries depends on the
cardinality of the attribute and its selectivity.

Percent of Missing Data. Figure 5(b) shows the results of these experiments
for attributes with cardinality 10. For equality encoded bitmaps, the execution
time decreases when the percent of missing data increases. This is because when
we make the global selectivity constant and increase the percent of missing data,
the attribute selectivity decreases and the number of bitmaps used in the query
execution depends on the attribute selectivity for this kind of encoding. For
range encoded bitmaps, the execution time remains somewhat constant. The
small variations are due to the possibility of using between 1 and 3 bitmaps per
dimension over the query execution. It turns out that as the percent of missing
data increases the number of bitmaps used per dimension gets closer to 3. For
VA-Files, the execution time is also somewhat constant. The variations are due
to the actual global selectivity for cardinality 10 and 8 dimensions in the query.
For cardinality 10 and 50 % missing data the global selectivity is 0.84%, for 30
and 40 is 1.28%, but for 20 is 1.7%. In general, BRE executes range queries faster
than the other two. The only case in which BEE performs better than BRE is at
50% missing when the attribute selectivity is 10% and the range query becomes
a point query.

Query Dimensionality. Figure 5(c) shows the query execution of 100 queries
over attributes with cardinality 10 and 30 percent of missing data. For all indices
the execution is linear in the number of query dimensions. BRE grows very slowly
since we are only using between 1 and 3 bitmaps per query dimension. BEE grows
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much faster since as we increase the number of dimensions with this percent of
missing data the attribute selectivity get closer to 50 %. For smaller percents of
missing data and same cardinality the attribute selectivity is greater than 50 %,
around 70 % so effectively we only access the 30 % of the bitmaps and therefore
the execution time does not increase linearly. For VA-Files the execution time
also increases with the query dimensionality.

Results on Real Data. Experiments using this real data set yielded several
conclusions. For this data set, the bitmap solutions were significantly faster than
the VA-File solution (3 to 10 times faster). This was because the skewness of this
particular data set allowed for very good compression of the bitmaps and while
the VA-file implementation had to operate over about 500,000 vector approxima-
tions of the records, the bitmap implementations performed bit operations over
substantially fewer words. The average compression ratio for the equality encod-
ing bitmaps was 0.17 (with 23 attributes compressing to less than 0.1 times their
original size). The average compression ratio for the range encoding bitmaps was
0.7 (with 18 attributes compressing to less than 0.5 times their original size and
only 3 attributes not compressing at all).

Also of note is that whereas the presence of missing data can introduce a
degradation of a couple of orders of magnitude in hierachical multiple-dimension
indexes as shown in the motivating example, there is not a large degradation
asociated with the presence of missing data using these techniques. Performance
can be as high as two times slower with our techniques, and this is attributable
to extra bit operations required to handle the missing data.

In our experiments with real data, the range encoded bitmaps performed
faster than the equality encoded bitmaps. In these experiments we used range
queries over 20% of the queried attribute possible values and would expect this
result since range encoded bitmaps are tailored for range queries.

6 Conclusions

The techniques presented in this paper are easy to apply and allow the effective
indexing of missing data. As opposed to traditional hierarchical indexing struc-
tures and previously proposed missing data indexing techniques, these techniques
exhibit linear performance for query execution time with respect to database and
query dimensionality. This is done by essentially indexing attributes indepen-
dently. Our solutions take advantage of this independence by handling missing
data for each attribute, and still maintain the linear performance associated with
respect to dimensionality that bitmaps and VA-files have been known for.

These techniques exhibit a tradeoff between execution time and indexing
space. The bit operations used to evaluate queries for bitmaps are fast, but
the space required to represent an exact bitmap can be much higher than a
corresponding exact VA-file.

The range encoded bitmaps typically offer the best time performance but, at
least using the techniques we used, can not be compressed as much as equality
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encoded bitmaps. They typically perform faster because there is a limit on the
number of bit operations that must be performed to evaluate a query for each
dimension.

Equality encoded bitmaps perform a maximum of C/2+1 bit operations per
query dimension and can perform faster than range encoded bitmaps for point
queries or range queries with small ranges. Equality encoded bitmaps can be
compressed much more than range encoded bitmaps.

VA-files offer the least size to represent the same information offered by
bitmaps, but the operations performed are not bit operations, they usually do
not operate as fast as the range encoded bitmaps.

There are several areas in which the techniques proposed here could be im-
proved. The biggest weakness of the range encoded bitmaps is the inability to
compress them. We would like to explore techniques such as BBC compression
and row reordering in order to achieve more compression of these bitmaps. The
same modifications made to the basic VA-file to account for missing data could
also be applied to the VA-plus file, a technique to quantize skewed data sets
described in [6].
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