
Compressing Bitmap Indices by Data Reorganization∗

Ali Pınar

Computational Research Division

Lawrence Berkeley National Laboratory

apinar@lbl.gov

Tao Tao

Department of Computer Science

University of Illinois at Urbana-Champaign

taotao@cs.uiuc.edu

Hakan Ferhatosmanoglu

Department of Computer Science and Engineering

The Ohio State University

hakan@cse.ohio-state.edu

Abstract

Many scientific applications generate massive vol-

umes of data through observations or computer sim-

ulations, bringing up the need for effective indexing

methods for efficient storage and retrieval of scientific

data. Unlike conventional databases, scientific data is

mostly read-only and its volume can reach to the order

of petabytes, making a compact index structure vital.

Bitmap indexing has been successfully applied to scien-

tific databases by exploiting the fact that scientific data

are enumerated or numerical. Bitmap indices can be

compressed with variants of run length encoding for a

compact index structure. However even this may not

be enough for the enormous data generated in some

applications such as high energy physics. In this paper,

we study how to reorganize bitmap tables for improved

compression rates. Our algorithms are used just as a

preprocessing step, thus there is no need to revise the

current indexing techniques and the query processing

algorithms. We introduce the tuple reordering problem,

which aims to reorganize database tuples for optimal

compression rates. We propose Gray code ordering al-

gorithm for this NP-Complete problem, which is an in-

place algorithm, and runs in linear time in the order

of the size of the database. We also discuss how the

tuple reordering problem can be reduced to the travel-

ing salesperson problem. Our experimental results on

real data sets show that the compression ratio can be

∗Supported by the Director, Office of Science, Division of
Mathematical, Information, and Computational Sciences of the
U.S. Department of Energy (DOE) under contract DE-AC03-
76SF00098, and the DOE Award No. DE-FG02-03ER25573.
However, any opinions, findings, conclusions or recommenda-
tions expressed herein are those of the authors, and do not nec-
essarily reflect the views of DOE.

improved by a factor of 2 to 10.

1 Introduction

Advances in technology have enabled the production
of massive volumes of data through observations and
simulations in many scientific applications such as biol-
ogy, high-energy physics, climate modeling, and astro-
physics. In computational high-energy physics, simula-
tions are continuously run, and events that are notable
for physicists are stored with all the details. The num-
ber of events that need to be stored in one year is in
the order of several millions [22]. In astrophysics, tech-
nological advances enabled devoting several telescopes
for observations, results of which need to be stored for
later query processing [23]. Genomic and proteomic
technologies are now capable of generating terabytes
of data in a single day’s experimentation [30]. These
new data sets and the associated queries are signifi-
cantly different from those of the traditional database
systems, most importantly due to their enormous size
and high-dimensionality (more than 500 attributes in
high-energy physics experiments). These new data sets
and the associated queries pose a new challenge for ef-
ficient storage and retrieval of data and require novel
indexing structures and algorithms.

Most of the scientific databases of practical inter-
est are read-only, i.e., large volumes of data are stored
once and never updated. Further use of the data is
typically by means of selection queries. Various types
of queries, such as partial match and range queries,
are executed on these large data sets to retrieve useful
information for scientific discovery. As an example, a
user can pose a range query to retrieve all events with

1

energy less than 15 GeV, and the number of particles
less than 13. When the data are large and read-only,
as in the case of scientific databases, indexing technolo-
gies are well-known to significantly improve the per-
formance of query and data analysis, thus developing
index structures tailored for scientific data is crucial to
effectively explore such data. Due to the scale and high
dimensionality of these databases, simple extensions of
traditional indexing strategies are inadequate: R-trees
and its variants are well-known to lose effectiveness for
high dimensions; hashing-based indices lack storage ef-
ficiency; and transformation based approaches are not
effective for partial match and range queries. Further-
more, most of the indexing approaches do not focus on
the size of the index structure itself. However, due to
the huge data volume in a typical scientific database,
the size of the indexing structure becomes as important
as other parameters and must be taken into account.

Focusing on the major characteristics of scientific
data, such as being read-only, having special access
patterns and numerical attributes, researchers have
managed to develop indexing techniques that are fea-
sible for high dimensional scientific databases. Bitmap
indexing, which has been effectively utilized in many
major commercial database systems [2, 15, 29], has also
been the most popular approach for scientific databases
[3, 16, 24, 26, 27, 29]. Several techniques have been
proposed exploiting the bitmap indexing approach for
scientific data. The general idea is to organize the
data as a two dimensional table. Events are stored
row-wise as tuples. Every attribute is partitioned to
several bins, which form the columns of the table. A
table entry is 1, if the tuple of this row is in the bin
of the column, and 0 otherwise. Thus, the index table
is a 0-1 table. This table needs to be compressed to
be effective on a large database. General purpose text
compression techniques are clearly not suitable for this
purpose since they significantly reduce the efficiency
of queries [12, 26]. Specialized bitmap compression
schemes have been proposed to overcome this prob-
lem. The two most effective schemes in the literature
are Byte-aligned Bitmap Code (BBC) [2] and Word-
Aligned Hybrid Code (WAH) [1, 12, 26, 27, 28]. Both
of these schemes, like many others [3, 29], are based on
run-length encoding, i.e., they both replace repeated
runs of 0’s or 1’s in the columns by a single instance of
the symbol and a run count. These methods not only
compress the data but also enable fast bitwise logical
operations, which translate to faster query processing.

Run-length encoding and its variants exploit uni-
form segments of a sequence, thus their performances
depend directly on the presence of such uniform seg-
ments. Their effectiveness varies for different organi-

zations of the database tuples, since ordering of tu-
ples affect uniform segments in the columns. In this
paper, we study how to reorder tuples of a database
to achieve higher compression rates. Our techniques
are used as a preprocessing step before compression,
only to improve the performance, without affecting al-
gorithms used for compression and querying. We state
this tuple reordering problem as a combinatorial op-
timization problem, and propose heuristics for effec-
tive solutions for this NP-Complete problem [17]. We
show a reduction of the tuple reordering problem to the
traveling salesperson problem, which is a well-studied
combinatorial optimization problem. However, given
the enormous sizes of the databases, we are only re-
stricted to memory and time efficient heuristics, which
takes away the applicability of most frequently used
techniques such as simulated annealing. In this paper,
we propose Gray code sorting to order the rows of a
bitmap table for larger segments of uniform 1’s. Our
algorithm is linear, in the size of the database, and an
in-place algorithm, which means it does not require any
auxiliary memory allocation. Theoretically, we prove
that our algorithm is optimal, when all cells of a bitmap
table are full. In practice, our experiments on scientific
data showed significant improvements in compression
rates. In many instances, compressed file size for the
reordered file less than half the compressed size of the
original file. We have also observed a 9.60 times reduc-
tion in compressed file size on data set HEP3, bitmap
table for which has 110 columns and 2,000,000 rows.

The paper is organized as follows. In the next sec-
tion, we present compression algorithms for bitmap ta-
bles. Section 3 discusses the tuple reordering prob-
lem. We first define the problem, and show a reduction
to traveling salesperson problem. Next, we introduce
Gray code ordering, which is tailored for the tuple re-
ordering problem. Experimental results are presented
in Section 4. Finally, we discuss future work and con-
clude with Section 5.

2 Compressing Bitmap Tables

The data that generated by scientific experiments
is composed of attributes that are numerical or enu-
merated. Compared to conventional databases, a data
record in a scientific database involves many more at-
tributes, up to order of a hundreds. And the number
of tuples is huge due to the technological advances that
make it possible to generate huge volumes of data on
a daily basis. High energy physics simulations gen-
erate millions of events to be stored in a single year.
Due to such large data volume, even simple queries
are extremely slow without an effective index struc-

Table 1. Bitmap example
Tuple Attribute 1 Attribute 2 Attribute 3

bin1 bin2 bin1 bin2 bin1 bin2
t1 1 0 1 0 0 1
t2 0 1 0 1 0 1
t3 1 0 0 1 1 0
t4 1 0 1 0 0 1
t5 1 0 1 0 1 0
t6 0 1 0 1 1 0

ture in place. However, neither the well-known multi-
dimensional indexing techniques [21, 10] nor their ex-
tensions [14, 13, 5, 7, 6] have been successful in scientific
database systems, partly due to the effects of the infa-
mous dimensionality problems [4, 25] and the massive
scale of these systems.

Most practical approaches for indexing scientific
data are based on bitmap indexing strategies [2, 29,
26, 15, 3, 24, 8, 9, 27, 16, 1, 12, 28]. For example,
Wu et al. proposed an effective bitmap indexing tech-
nique for large-scale high energy physics data [28]. This
technique uses a compression technique called word-
aligned hybrid (WAH) to compress the index structure
to conveniently small sizes without losing accessing ef-
ficiency. Exploiting the fact that each attribute is nu-
meric or enumerated, data are partitioned into several
bins, where the number of bins per each attribute could
vary. If a value falls into a bin, this bin is marked “1”,
otherwise “0”. Since a value can only fall into a single
bin, only a single “1” can exist for each row of each at-
tribute. After binning, the whole database is converted
into a huge 0-1 bitmap, where rows correspond to tu-
ples and columns correspond to bins. Table 1 shows a
binning example with three attributes, each partitioned
into two bins. The first tuple t1 falls into the first bins
in the attributes 1 and 2, and the second bin in at-
tribute 3. Note that after binning we can treat each
tuple as a binary number. For instance t1 = 101001
and t2 = 010101.

Binning method itself cannot compress the size of
the bitmap table, and instead, might even increase the
size [3]. However, it converts the original table to a
more concise format with only two different values: “0”
and “1”. Run length encoding [20] can therefore be
used over every column to compress the data when long
runs of “0” or “1” blocks become available.

Pure run length encoding is not a good strategy for
indexing because of its accessing inefficiency. Unlike
traditional run length encoding, WAH mixes run length
encoding and direct storage. For instance, if the word

length is 32, every column is partitioned to blocks of
31 bits. If a block is a mixture of both “0” and “1”,
we mark the most significant bit of encoded word “0”
to indicate this word is a literal word and copy the 31
bits to the block directly. Otherwise, if the block is
filled with all “1”, we continue to scan and count the
number of consecutive blocks which are filled in with
all “1”. To encode, the most significant bit is marked
“1” to indicate this word is a fill word, and second
significant bit is marked “1” to indicate the block is
filled with “1”s. The remaining bits are used to store
the number of blocks. We do the same thing for blocks
of all “0”s. Table 2 presents an example. The first
row is a column from the original bitmap, which starts
with a 1, continues with 20 0s, followed by 3 1s, 79 0s,
and ends with 21 1s. The second column partitions it
into 4 segments, each of which has 31 bits. Row 3 lists
the hex representation of those segments, and row 4
is its WAH encoding. The first word is a literal word
mixing 0 and 1, thus there is no change to its encoding.
The second and third word are “fill word” with all 0.
We then put them together. The encoding therefore is
80000002. The fourth word is another literal word.

3 Improving Compression Rates by Tu-

ple Reordering

Run-length encoding and its variants exploit uni-
form segments of a sequence, thus their performances
depend directly on the presence of such uniform seg-
ments. Their effectiveness can be improved by aligning
data for longer uniform segments. In this section, we
study the problem of reorganizing bitmap tuples for
more efficient run-length encoding. In the next subsec-
tion, we define the problem, which we call the tuple re-

ordering problem, and show a reduction to the traveling
salesperson problem. Then we continue with proposed
solution methods for the tuple reordering problem.

3.1 Problem Formulation

Our objective in reordering is to increase the per-
formance of run-length encoding by having longer uni-
form segments and thus fewer number of blocks. Recall
that run-length encoding, when used on bitmaps, packs
each segment of “1”s into a block and stores a pointer
to each block together with the length of the block.
Thus the storage size is determined by the number of
such blocks. Consider two consecutive tuples in the
bitmap table. If the tuples are on the same bin for an
attribute, they will be packed to the same block. If not,
a new block should start. Efficiency can be enhanced
by reordering tuples so that they fall into the same bins

Table 2. WAH compression

original bits 1×1, 20×0, 3×1, 79×0, 21×1

31-bit groups [1×1,20×0, 3×1, 7×0], [31×0],[31×0], [10×0, 21×1]

groups in hex 40000380 00000000 00000000 001FFFFF

WAH(hex) 40000380 80000002 001FFFFF

as much as possible. An example is illustrated in Fig-
ure 1. In this example, the original table has 12 blocks,
whereas the reordered table requires only 7 blocks.

Let diff(ti, tj) be the number of attributes that tu-
ple ti and tuple tj fall in different bins. Notice that
diff(πi, πi+1) gives how many new blocks start at the
ith tuple after reordering when run-length encoding is
used, where πi denotes the ith tuple in ordering π. An
example for computing the diff values is illustrated in
Figure 2. For example diff(t1, t2) = 2, since tuples t1
and t2 fall into different bins for the first two attributes.
We can now formally define the tuple reordering prob-
lem.

Definition 1 (Tuple reordering problem) Let π

be an ordering of m tuples so that πi denotes the ith

tuple in the ordering. Tuple reordering problem is

finding an ordering π that minimizes

m−1
∑

i=1

diff(πi, πi+1). (1)

In Equation 1, we sum diff values over all consecu-
tive tuples to attain the number of new runs that start
for the whole table. The first tuple requires starting
a run for each attribute. Thus the number of blocks

can be computed as A +

m−1
∑

i=1

diff(πi, πi+1), where A is

the number of attributes. Thus an ordering that mini-
mizes Equation 1 also minimizes the number of blocks
in the reordered table. For instance, Equation 1 re-
turns 2 + 2 + 2 + 1 + 2 = 9 for the initial ordering in
Figure 1, which means with the addition of the num-
ber of attributes, there will be 9 + 3 = 12 blocks in the
compressed table. Whereas for the reordered table in
the same figure, Equation 1 returns 0+1+1+1+1 = 4,
which means only 7 blocks in the compressed file.

3.1.1 Reduction to the Traveling Salesperson
Problem

Traveling salesperson problem (TSP) can be intuitively
defined as finding a shortest path that visits all cities in
a given map. In a graph theoretical formulation, cities
correspond to vertices of a graph, and a weight function
is defined on edges that connect vertices. The objective
is to find a path visiting all vertices that minimizes the
sum of weights of the edges between successive vertices.
Below, we describe a graph model to reduce the tuple
reordering problem to TSP.

In our reduction, we will have vertices to represent
tuples, since we are seeking an ordering of the tuples.
We define a weight function on edges, so that an opti-
mal solution to the TSP problem minimizes the num-
ber of runs in run-length encoding of the reorganized
bitmap. Given a bitmap B as a set of tuples, define
its graph GB = (V, E) so that each tuple ti in B is
represented by a vertex vi, and each pair of vertices vi

and vj is connected by an edge (vi, vj) in E. Define
the weight of an edge (vi, vj) as diff(ti, tj) as defined
in Section 3.1.

Theorem 1 Given a bitmap B, define graph GB =
(V, E) so that each tuple ti is represented by a vertex

vi ∈ V . All pairs of vertices vi and vj are connected

by an edge with weight diff(ti, tj). An optimal TSP

solution on GB, gives an optimal solution to the tuple

reordering problem.

Proof TSP ordering gives a traversal of vertices that

minimizes the sum of edge weights between consecu-

tive vertices. When we replace vertices with tuples, we

get an ordering of tuples that minimizes the diff values

between consecutive tuples. Minimizing the total edge

weight corresponds to minimizing Equation 1, thus the

number of runs in run-length encoding of the reorga-

nized bitmap table.

A similar problem has been studied by Pinar and
Heath in the context of increasing memory performance

t1
t2
t3
t4
t5
t6

1 0 1 0 0 1
0 1 0 1 0 1
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 0 1 0
0 1 0 1 1 0

t1
t4
t5
t3
t6
t2

1 0 1 0 0 1
1 0 1 0 0 1
1 0 1 0 1 0
1 0 0 1 1 0
0 1 0 1 1 0
0 1 0 1 0 1

(a) Original Table (b) Reordered Table

Figure 1. Example for tuple reordering

t1
t2
t3
t4
t5
t6

1 0 1 0 0 1
0 1 0 1 0 1
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 0 1 0
0 1 0 1 1 0

t1 t2 t3 t4 t5
t6 3 1 1 3 2
t5 1 3 1 1
t4 0 2 2
t3 2 2
t2 2

(a) Original Table (b) Difference values between tuples

Figure 2. Function diff on an example

3
12

2

1
3

2

2

1
1

3

3

1

2

1t t 2

t 3 t 4

t 5 t 6

Figure 3. Reduction to TSP. TSP graph for the

bitmap table in Figure 1. Dark arrowed edges indi-

cate an optimal TSP solution.

of sparse matrix-vector multiplication [17]. Conven-
tional data structures for sparse matrices require one
memory indirection (extra load operation), during
matrix-vector product operations. Pinar and Heath
described how to reduce the number of memory indi-
rections by exploiting nonzeros in consecutive positions
in a column and proposed a reordering method to re-
order rows to align nonzeros of the matrix to consecu-
tive positions in columns. Their method is based on a
graph model that reduces the problem to TSP. Tuple

reordering problem is similar, since a bitmap can be
considered as a sparse matrix, with tuples correspond-
ing to rows and bins for all attributes corresponding to
columns. We have a nonzero at row i and column j

iff ith tuple is in bin j. However, the practical aspects
of these two problems are significantly different, hence
require different solution techniques. Sparse matrices
arising in many applications define systems of linear
equations and are square. Rectangular matrices arise
especially in optimization, but even then the number
of columns and the number of rows are close, at least in
the same order. In databases however, the number of
tuples, which corresponds to rows in a sparse matrix,
is several orders of magnitude larger than the num-
ber bins, which corresponds to number of columns in
a sparse matrix. Sparse matrices are much smaller in
dimension compared to number tuples in a database.

Recently, Johnson et al. reported similar observa-
tions on the relation between tuple ordering and trav-
eling salesperson problem [11].

3.2 Heuristics for Tuple Reordering

In this section we propose techniques to reorder
database tuples for better compression rates. First
we discuss feasibility of reorganizing a database and
what is necessary for an ordering algorithm to be ef-
fective. Then we describe how to adopt Gray codes
for tuple reordering. We show that this technique is

optimal under certain conditions. Finally, we discuss
using conventional TSP heuristics for tuple reorder-
ing. Databases are seldom reordered, since even mov-
ing data to implement a specified reordering is a big
challenge due to enormous data volume. Thus we need
to be careful while designing algorithms to find such
reorderings. For an ordering algorithm to be applica-
ble to a database, it needs to be memory efficient. The
memory requirement needs to be at most linear in the
order of tuples. Preferably, the algorithm should be
in-place, i.e., it should not use any auxiliary memory.
Also, it is computationally inefficient, if not infeasible,
to apply a technique to the whole database. An ef-
fective technique then should be local, i.e., it must be
sufficient to apply our techniques to the portions of the
database to improve compression rates. This locality
provides scalability to a technique, since it can be ap-
plied to databases of arbitrary sizes.

Reordering database tuples has only local effects,
thus it is easy to localize reordering algorithms to only
portions of the database. Reordering larger portions of
the database is expected to yield better performance,
thus it is still important to limit the memory require-
ment of the ordering algorithm to order larger portions
of the database. The Gray code ordering proposed
in the subsequent section is an in-place algorithm and
thus optimal in terms of memory requirement. It can
even be applied to the whole database, since it has a
regular access pattern and requires a small number of
passes over the bitmap table. The last section discusses
adoption conventional TSP solution techniques to the
tuple reordering problem, however these techniques al-
most invariably require additional storage, which is of-
ten superlinear in the number of tuples.

3.2.1 Gray Code Ordering

A Gray code is an encoding of numbers so that
adjacent numbers have only a single digit dif-
fering by 1. For binary numbers two adjacent
numbers differ only by one digit. For instance
(000, 001, 011, 010, 110, 111, 101, 100) is a binary Gray
code. Binary Gray code is often referred to as the “re-
flected” code, because it can be generated by the re-
flection technique described below.

1. Let S = (s1, s2, . . . , sn) be a Gray code.

2. First write S forwards and then append the same
code S by writing it backwards, so that we have
(s1, s2, . . . , sn, sn, . . . , s2, s1).

3. Append 0 at the beginning of the first n numbers,
and 1 at the beginning of the last n numbers.

As an example, take the Gray code (0, 1). Write it
forwards, then add the same sequence backwards, and
we get: (0, 1, 1, 0). Then we add 0’s and 1’s to get:
(00, 01, 11, 10). We can use this new sequence as an
input to our algorithm. After the reflection step we
get (00, 01, 11, 10, 10, 11, 01, 00). We add the first dig-
its to attain: (000, 001, 011, 010, 110, 111, 101, 100). It
is worth noting that Gray codes are not unique, and
different orders on the same group of numbers might
satisfy the Gray code property. We use the term fun-

damental Gray code to refer to a Gray code generated
by the reflection technique described above with using
(0, 1) as the initial sequence. We will refer to ordering
a set of numbers with respect to the fundamental Gray
codes as Gray code ordering, which we describe next.

Definition 2 (Gray code rank) The Gray code

rank g(s) of an n-bit binary number s is the rank of

this number in an n-bit fundamental Gray code.

For instance, g(0000) = 1, since it is the first number
in the 4-bit fundamental Gray code. And g(0001) = 2,
since it follows 0000 in the fundamental Gray code.

Definition 3 (Gray code sorting) A sequence S =
(s1, s2, . . . , sm) is Gray code sorted iff

g(si) ≤ g(si+1)

for i = 1, 2, . . .m − 1, where g(si) refers to the Gray

code rank of si.

The sequence (0001, 0010, 0101, 1100, 1110, 1011) is
Gray code sorted because g(0001) = 2 < g(0010) =
4 < g(0101) = 7 < g(1100) = 9 < g(1110) = 12 <

g(1011) = 14.

This brings the question of how to efficiently order
a set of numbers to be Gray code sorted. We can re-
verse the fundamental Gray code generation process,
to sort numbers with respect to the fundamental Gray
code. As the first step, we can divide numbers as those
that start with 0 and those that start with 1. Clearly
those that start with 0 will precede others in the or-
dering. Then we can recursively order those that start
with 0. The same can be applied to the second group
of numbers that start with 1, but we need to reverse
their ordering due to the reflective property of the Gray
code. In Algorithm 1, we present the pseudo-code of
this algorithm. In this algorithm, S(A, i, j) denotes the
jth significant bit of the ith tuple in table A. Note that
the reversion does not need to be a separate step in the
algorithm, but we present it separately for clarity of the
presentation.

GC-sort (A, start, end, b)

1: i← start

2: j ← end

3: while i < j do
4: Decrement j until S(j, b) = 0
5: Increment i until S(i, b) = 1
6: if i < j then
7: Swap the ith and jth tuples on the table
8: end if
9: end while

10: if b < no of bits then
11: GC-sort (A, start, j, b + 1)
12: GC-sort (A, j + 1, end, b + 1)
13: Reverse (j + 1, end)
14: end if

Algorithm 1: An in-place Gray code sorting algo-
rithm. GC-sort (A, start, end, b) sorts numbers be-
tween indices start–end in A according to their least
significant b bits in Gray code order. S(A, i, j) denotes
the jth significant bit of the ith number in table A.

Lemma 1 Algorithm 1 orders numbers in A to be

Gray code sorted, when initially invoked with GC-sort

(A, 1, m, n), where m is the number of tuples, and n is

the number of bits.

Proof The proof is based on induction on the number

of bits. First observe that recursive calls respect the

previous orderings, since after one pass, the recursive

calls only operate on the segment of tuples that all start

with the same bit prefix.

The inductive basis is for n = 1, when it is easy to

observe the correctness of the algorithm. It is also easy

to see that numbers that start with 0 should precede

those that start with 1 for Gray code sorting. By the

inductive hypothesis, the numbers that start with 0 are

sorted correctly by the algorithm according to their last

n−1 bits, and adding 0 does not affect their Gray code

precedence. Similarly, numbers that start with 1 are

Gray code sorted recursively according to their last n−1
bits, however putting 1 at the beginning requires the re-

flected order, which we achieve by Reverse (j +1, end).

Figure 3 illustrates this algorithm. It is important to
note that Algorithm 1 is an in-place algorithm, which
is important for our application since we have to deal
with very large data sets.

Recall that since consecutive numbers differ only at
one bit, Gray code numbers have maximum bit-level
similarity between consecutive numbers. This obser-
vation can be used for ordering database tuples, since
every tuple in the database can be considered as an n-
bit binary number. By Gray code sorting, we can im-
pose similarity between consecutive numbers. And if

all distinct tuples exist, i.e., if all cells of the bitmap ta-
ble are full, Gray code sorting will produce an optimal
ordering. We formalize this claim with the following
theorem.

Theorem 2 Gray code ordering provides an optimal

solution for the tuple reordering problem, if all cells of

the bitmap table are full.

Proof The algorithm orders identical tuples consecu-

tively. Thus at most one bit differs between two con-

secutive tuples, which implies optimality.

By the result of Theorem 2, Algorithm 1 gives an
optimal solution when all cells are full, however in prac-
tice this will rarely happen, and the solution may not
be optimal. Gray code ordering is more effective when
most of the cells are full, which means it is more effec-
tive with increasing number of rows, and thus larger
databases. Its performance also depends on the num-
ber of attributes, and the number of bins per attribute.
Increasing these two terms increases the number of cells
in the bitmap table, making the table more sparse.
Nevertheless, even when the bitmap table has a lot of
empty cells, Gray code ordering imposes bit-level simi-
larity between consecutive tuples very effectively as ev-
idenced by the experimental results. We have recently
been aware of the work by Richards, which discusses
similar ideas [19].

3.2.2 Conventional TSP heuristics

TSP is a very well-studied problem and has been a
testbed to demonstrate the effectiveness of optimiza-
tion methods such as simulated annealing and genetic
algorithms. A survey of the literature on TSP solution
methods can be found in [18]. However our target ap-
plication is database reorganization where the number
of tuples (vertices of the TSP graph) may be easily in
the order of millions, and the enormous sizes of these
problems require memory- and time-efficient heuristics.

TSP heuristics can be used to construct an order-
ing or improve a given ordering. However, explicit
construction of the TSP graph is not feasible for re-

ordering database tuples. The TSP graph has

(

n

2

)

potential edges. We can drop edges whose weights
are zero, but even then, the number of edges will be
O(n2) for a bitmap table. Infeasibility of constructing
the TSP graph restricts us to simple greedy strategies
where edge weights can be computed on the air during
the course of the algorithm. In our experiments, we
used a 2-switch technique, which repeatedly seeks for
a pair of vertices that decrease the solution value when
they switch positions. To further improve efficiency,

6
t 1 1 1 0

t 0 0 1 0
1

4
t 0 0 0 1

2
t 1 1 0 0

3
t

t 1 1 0 0
2

6
t 1 1 1 0

5
t 1 0 1 1

t 0 0 1 0
1

4
t 0 0 0 1

3
t 0 1 0 1

t 1 0 1 1

SwapDecrement j
Incremant i

 0 1 0 1 0 1 0 1Reverse(4,6) GC−sort(A,4,6,2)

t 0 0 1 0
1

 0 1 0 1

GC−sort(A,1,3,2)

j

i

5

t 0 0 1 0

t 0 0 1 0
1

 0 1 0 1

6
t 1 1 1 0

5
t 1 0 1 1

4
t 0 0 0 1

3
t

2
t 1 1 0 0

6
t 1 1 1 0

5
t 1 0 1 1

4
t 0 0 0 1

3
t

2
t 1 1 0 0

t

1

4
t 0 0 0 1

2
t 1 1 0 0

6
t 1 1 1 0

5
t 1 0 1 1

3
t

t 0 0 1 0
1

 0 1 0 1

2
t 1 1 0 0

4
t 0 0 0 1

6
t 1 1 1 0

5
t 1 0 1 1

3

Figure 4. Illustration of Algorithm 1.

we restricted the search for pairs to only those within
a specified distance. It will be worthwhile to observe
performances of other TSP heuristics from the litera-
ture, but it should be noted that one can use only a
limited selection due to the very large sizes of the prob-
lems, and more importantly Gray code is already very
effective and an in-place algorithm.

4 Experimental Results

In this section we discuss our empirical work to vali-
date our proposed methods. We applied our reordering
techniques to several data sets from various applica-
tions to observe the decrease in the sizes of the bitmap
tables. As we will present in detail, we have observed
significant improvements, which should directly trans-
late into improvements in query processing times. Re-
member that scientific databases, which are the main
motivation for our research, are mostly read-only, thus
reorganization needs to be done only once, for faster
processing times in all future queries. Nevertheless, we
also present the running times and scalability of our
methods to prove the feasibility of application of our
methods on very large databases.

It is also worth noting that our methods are used

as a preprocessing step before actual compression al-
gorithms, to align 1’s in the bitmap table into consec-
utive positions. Thus, any compression algorithm can
be employed to compress our reorganized data. In our
experiments we used WAH compression algorithm [28].

We present the effectiveness of our methods based on
the improvement factor, which we compute as the ratio
of the compressed bitmap table size of the original data
to the compressed bitmap table size of the reordered
data, i.e,

improvement factor =
compressed size of original

compressed size of reordered

Thus, an improvement factor of 5 means, compressed
reordered data takes 5 times less space than the com-
pressed original.

Table 3 reveals the effectiveness of our Gray code
reordering algorithm on 7 data sets from various ap-
plications. In this table, the first three columns give
the name of the problem, number of tuples, and num-
ber of columns in the bitmap table, respectively. The
next two columns present the sizes of the compressed
bitmap tables for the original and reordered data, re-
spectively. The last column presents the improvement
factor. Out of the 7 data sets, the first three data
sets (HEP1, (HEP2, and HEP3) are from real high energy

Table 3. Improvement in compression of real data sets

Bitmap table Compressed size (bytes) Improvement

Name #columns #rows Original Reordered factor

HEP1 122 2, 173, 762 3, 149, 590 587, 773 5.36

HEP2 907 2, 173, 762 11, 482, 527 7, 008, 601 1.64

HEP3 110 2, 000, 000 2, 349, 302 244, 761 9.60

histogram 64 112, 361 209, 066 54, 605 3.83

stock 360 6, 500 156, 980 22, 904 6.85

irvector160 160 19, 997 14, 952 2, 971 5.03

irvector320 320 19, 997 17, 135 11, 064 1.55

physics applications. The fourth data set, histogram,
comes from an image database with 112,361 images.
Images are collected from a commercial CD-ROM and
64-dimensional color histograms are computed as fea-
ture vectors. The fifth data set, stock, is a time-
series data which contains 360 days stock price move-
ments of 6500 companies, i.e., 6500 data points with
dimensionality 360. The data set histogram is par-
tially correlated, whereas the stock data set is highly
correlated. The last two data sets are composed of
document feature vectors from 20 newsgroups based
on TF/IDF (Term Frequency-Inverse Document Fre-
quency) followed by reduction based on SVD (Singular
Value Decomposition).

As seen in Table 3, compression rates are magnified
when the tuples are reordered with respect to Gray
code ordering in all problem instances from all appli-
cations. The compressed index size for data stock is
7 times less than the original after reordering. The
improvement factors are 5.36, 1.64, and 9.60 for high
energy physics data sets HEP1, HEP2, and HEP3 respec-
tively. Comparing the results for these three data sets,
we see that, as expected, improvements are more sig-
nificant, when the number of columns is smaller. Fewer
number of columns means closer to the optimal situa-
tion and therefore leaves more room for improvement
for a reordering algorithm, since more tuples are likely
to fall into the same bins, and thus it is possible to
order tuples so that consecutive tuples fall into same
bins in a lot of attributes. A similar trend can be ob-
served in information retrieval data sets irvector160

and irvector320, where the improvement factors are
5.03 and 1.55 respectively. Nevertheless, improvements
are significant even for larger numbers of columns. It
should also be noted that the Gray code ordering tech-

nique can be applied to arbitrary data sizes, since it is
an in-place algorithm. This means the effectiveness of
our techniques will only get better, as we apply these
techniques to larger data sets.

As already discussed, our proposed techniques are
preprocessing steps for conventional compression algo-
rithms and associated query running techniques, and
thus these query running techniques can be used as is,
together with our algorithms. For this reason, we are
not presenting any results on query run times, since it
has been already reported that query run times are lin-
early dependent on the compressed bitmap table sizes.
We expect our improved compression rates to translate
directly into improved query run times. Notice that the
effects of our improved compression rates will be even
more dramatic under limited resources, which is typi-
cal in large-scale systems. Compacted index structures
will grant better locality for algorithms, providing a
second source of improvement.

In the second set of experiments, we have tested the
performance of Gray code ordering for varying numbers
of columns. We fixed the number of rows at 1,000,000
and tested the performance of our algorithm by varying
the number of bins per attribute to change the number
of columns to be 50, 100, 150, 200, 250, and 300. The
results of our experiments are presented in Figure 5. In
this figure original corresponds to the size of the com-
pressed bitmap tables for the original data, whereas
reordered corresponds to the size for compressing re-
ordered data. As observed in this figure, compressed
data sizes grow with increasing number of columns. Re-
ordering significantly decreases compressed index size
in all cases. The improvement factor is 2.52, 2.08, 1.64,
1.92, 1.68 and 1.68, when the number of columns is 50,
100, 150, 200, 250, and 300, respectively. Fewer num-

Figure 5. Performance for varying numbers of
columns

0.5

1

1.5

2

2.5

3

3.5

6000 8000 10000 12000 14000 16000 18000

tim
e(

s)

rows

Figure 6. Algorithm scalability on the number
of rows

ber of columns leaves more room for improvement for
reordering due to increased likelihood of tuples in the
same bins, which is nicely exploited by our Gray code
ordering algorithm.

In the next set of experiments, we tested the run
time performance of our algorithm. We run exper-
iments on a Linux machine with 2.4GHz CPU and
1GByte memory. We used the irvector32 informa-
tion retrieval data, which has 19,997 tuples and 32 at-
tributes, as our base data set, and randomly selected
tuples, and attributes for our scalability studies. The
results presented in Figures 6–8 are the averages of five
runs on different problems of the same size. That is the
run time of the algorithm for 1,000 rows is reported as
the average run time for 5 randomly selected row sets
of size 1,000.

Figure 6 studies the effect of number of rows in the

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25 30

tim
e(

s)

attributes

Figure 7. Algorithm scalability on the number
of attributes

run time. For these runs, we used 30 attributes all
of which are partitioned into 10 bins. The number of
objects vary from 5000 to 19000. In Figure 6, the x-
axis is the number of rows, and the y-axis is the run
time in seconds, and the results clearly show the linear
relation between the number of rows, and the runtime.
Similarly, Figures 7 and 8, observe the effect of numbers
of attributes and bins per attribute on the run time.
In Figure 7, we fix the number of objects as 19, 000,
the number of bins per attribute as 40. In Figure 8, we
fix the number of objects as 19, 000 and the number of
attributes as 30. All results confirm the linear relation
between the runtime of our algorithm and the bitmap
table size.

In the final set of experiments, we applied the 2-
switch heuristic described in Section 3.2.2 on the TSP
graphs for tuple reordering. As expected the runtimes
were orders of magnitude slower compared to Gray
code ordering. For instance, Gray code ordering on
HEP1, which has 122 columns and 2,173,762 rows took
only 43.4 seconds, whereas the 2-switch heuristic on
the TSP graph took over 1,600 seconds. We have ob-
served some improvement in the compression (around
only 1%), but the huge gap in run time was daunting.
We have observed similar results in the other data sets.

5 Conclusions and Future Work

We studied the problem of improving bitmap index
compression rates by reorganizing data layout. Our al-
gorithms reorder database tuples so that consecutive
tuples are likely to fall into same bins to boost the
performance of run-length encoding based compression
schemes. We defined the tuple reordering problem,
which aims to find an ordering of tuples that maximizes

0

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80 90

tim
e(

s)

bins

Figure 8. Algorithm scalability on bins per at-
tribute

the similarity (measured by being in the same bin),
between consecutive tuples. We proposed Gray code
ordering technique for the tuple reordering problem,
which exploits the idea of Gray codes. Our algorithm
runs in linear time in the size of the database, and does
not require any extra storage. This provides the appli-
cability of our algorithm to very large data segments,
even to the whole database. We also presented a reduc-
tion of the tuple reordering problem to the well-known,
well-studied traveling salesperson problem(TSP). How-
ever, enormous sizes of the problems hinder applica-
bility of frequently used TSP techniques for the tu-
ple reordering problem. Our experiments showed that
bitmap compression rates can be magnified by reorder-
ing database tuples. In many instances, compressed
file size for the reordered file is less than half the com-
pressed size of the original file. We have also observed
a 9.60 times reduction in compressed index size on data
set HEP3, which has 110 columns and 2,000,000 rows.

This paper shows the incontestable advantages of
data reorganization for elevating bitmap index com-
pression and introduces an important problem, which
we call the tuple reordering problem. While our
techniques are very effective in decreasing compressed
bitmap indices, they are only our first steps in this di-
rection, and leaves much for further research. The per-
formance of Gray code sorting algorithm is affected by
the order, in which we process the columns, and thus
finding a good ordering of columns will be another in-
teresting research project. Also, the literature in TSP
is extremely rich, a more detailed study on adopting
TSP techniques for the tuple reordering problem is
worth investigating. Although enormous problem sizes
hinder most of the techniques, a thorough study into
TSP literature might be able to produce techniques,

which avoid explicit construction of the TSP graph and
might be applied to smaller segments of the data. Fi-
nally, existing compression algorithms are tuned for un-
ordered data, whereas our algorithms provide long uni-
form segments in the data. We expect significant ad-
ditional improvements in compression rates by tuning
existing compression algorithms to reorganized data.
In general, an interesting avenue will be better inte-
gration of ordering and compression algorithms, where
ordering algorithms are tuned for the compression al-
gorithm to be used, and the compression algorithms
are tuned for the reordered data.

Acknowledgments

We are grateful John Wu from Lawrence Berkeley Na-
tional Laboratory for his provision of some of the data
sets, and insightful discussions.

References

[1] S. Amer-Yahia and T. Johnson. Optimizing
queries on compressed bitmaps. In VLDB, pages
329–338, 2000.

[2] G. Antoshenkov. Byte-aligned bitmap compres-
sion. Technical Report, Oracle Corp., 1994. U.S.
Patent number 5,363,098.

[3] A.Shoshani, L.M.Bernardo, H.Nordberg,
D.Rotem, and A.Sim. Multidimensinal in-
dexing and query coordination for tertiary
storage management. In SSDBM, pages 214–225,
1999.

[4] S. Berchtold, C. Bohm, D. Keim, and H. Kriegel.
A cost model for nearest neighbor search in high-
dimensional data space. In Proc. ACM Symp. on

Principles of Database Systems, pages 78–86, Tus-
con, Arizona, June 1997.

[5] S. Berchtold, D. Keim, and H. Kriegel. The X-tree:
An index structure for high-dimensional data. In
Proceedings of the Int. Conf. on Very Large Data

Bases, pages 28–39, Bombay, India, 1996.

[6] C. Bohm, S. Berchtold, and D. A. Keim. Search-
ing in high-dimensional spaces: Index structures
for improving the performance of multimedia
databases. ACM Computing Surveys, 33:322–373,
2001.

[7] K. Chakrabarti and S. Mehrotra. The hybrid tree:
An index structure for high dimensional feature
spaces. In Proc. Int. Conf. Data Engineering,
pages 440–447, Sydney, Australia, 1999.

[8] C.-Y Chan and Y. E. Ioannidis. Bitmap index
design and evaluation. In SIGMOD, pages 355–
366, 1998.

[9] C.-Y Chan and Y. E. Ioannidis. An efficient
bitmap encoding scheme for selection queries. In
SIGMOD, pages 215–226, 1999.

[10] V. Gaede and O. Gunther. Multidimensional ac-
cess methods. ACM Computing Surveys, 30:170–
231, 1998.

[11] David S. Johnson, Shankar Krishnan, Jatin
Chhugani, Subodh Kumar, and Suresh Venkata-
subramanian. Compressing large boolean matri-
ces using reordering techniques. In Proceedings of

the Int. Conf. on Very Large Data Bases, pages
13–23, 2004.

[12] T. Johnson. Performance measurement of com-
pressed bitmap indices. In VLDB, pages 278–289,
1999.

[13] K. Lin, H. V. Jagadish, and C. Faloutsos. The
TV-tree: An index structure for high-dimensional
data. VLDB Journal, 3:517–542, 1995.

[14] D. B. Lomet and B. Salzberg. The hb-tree: A
multi-attribute indexing method with good guar-
anteed performance. ACM Transactions on

Database Systems, 15(4):625–658, December 1990.

[15] P. O’Neil. Model 204 architecture and perfor-
mance. In 2nd International Workshop in High

Performance Transaction Systems, pages 40–59,
Asilomar, CA, September 1987.

[16] Ekow J. Otoo, Arie Shoshani, and Seung won
Hwang. Clustering high dimensional massive sci-
entific dataset. In SSDBM, pages 147–157, Fair-
fax, Virginia, July 2001.

[17] A. Pınar and M. Heath. Improving performance
of sparse matrix-vector multiplication. In Proc. of

Supercomputing 99, 1999.

[18] G. Reinelt. The traveling salesman: computa-

tional solutions for TSP applications. Springer-
Verlag, Lecture Notes in Computer Science, Vol:
840, 1994.

[19] D. Richards. Data compression and gray-code
sorting. Information Processing Letters, 22:201–
205, 1986.

[20] D. Salomon. Data Compression 2nd edition.
Springer Verlag, New York, 2000.

[21] H. Samet. The Design and Analysis of Spatial

Structures. Addison Wesley Publishing Company,
Inc., Massachusetts, 1989.

[22] SciDAC. Scientific data management center.
http://sdm.lbl.gov/sdmcenter/, 2002.

[23] SNAP. Supernova acceleration probe.
http://snap.lbl.gov/, 2004.

[24] K. Stockinger. Bitmap indices for speeding up
high-dimensional data analysis. In DEXA, 2002.

[25] R. Weber, H.-J. Schek, and S. Blott. A quantita-
tive analysis and performance study for similarity-
search methods in high-dimensional spaces. In
Proceedings of the Int. Conf. on Very Large Data

Bases, pages 194–205, New York City, New York,
August 1998.

[26] K. Wu, E. J. Otoo, and A. Shoshani. A perfor-
mance comparison of bitmap indexes. In Proceed-

ings of the 2001 ACM CIKM International Con-

ference on Information and Knowledge Manage-

ment, pages 559–561, Atlanta, Georgia, November
2001.

[27] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani.
Compressing bitmap indexes for faster search op-
erations. In SSDBM, pages 99–108, Edinburgh,
Scotland, UK, July 2002.

[28] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani.
An efficient compression scheme for bitmap in-
dices. Technical Report 49626, LBNL, April 2004.

[29] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani.
On the performance of bitmap indices for high
cardinality attributes. Technical Report 54673,
LBNL, March 2004.

[30] M. J. Zaki and J. T. L. Wang. Special issue on
bioinformatics and biological data management.
Information Systems, 28:241–367, 2003.

