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Abstract. Data streams are common in many recent applications, e.g.
stock quotes, e-commerce data, system logs, network traffic management,
etc. Compared with traditional databases, streaming databases pose new
challenges for query processing due to the streaming nature of data which
constantly changes over time. Index structures have been effectively em-
ployed in traditional databases to improve the query performance. Index
building time is not of particular interest in static databases because it
can easily be amortized with the performance gains in the query time.
However, because of the dynamic nature, index building time in stream-
ing databases should be negligibly small in order to be successfully used
in continuous query processing. In this paper, we propose efficient in-
dex structures and algorithms for various models of k nearest neighbor
(k-NN) queries on multiple data streams. We find scalar quantization as
a natural choice for data streams and propose index structures, called
VA-Stream and VA+-Stream, which are built by dynamically quantizing
the incoming dimensions. VA+-Stream (and VA-Stream) can be used
both as a dynamic summary of the database and as an index struc-
ture to facilitate efficient similarity query processing. The proposed tech-
niques are update-efficient and dynamic adaptations of VA-file (vector-
approximation file) and VA+-file, and are shown to achieve the same
structures as their static versions. They can be generalized to handle
aged queries, which are often used in trend-related analysis. A perfor-
mance evaluation on VA-Stream and VA+-Stream shows that the index
building time is negligibly small while query time is significantly im-
proved.

1 Introduction

Data streaming has recently attracted the attentions of several researchers [1, 7,
2, 14, 4, ?,8]. Many emerging applications involve periodically querying a database
of multiple data streams. Such kind of applications include online stock analysis,
air traffic control, network traffic management, intrusion detection, earthquake
prediction, etc. In many of these applications, data streams from various sources
arrive at a central system. The central system should be able to discover some
useful patterns based on the specifications provided by the user. Due to the



streaming nature of the involved data, a query is continuously evaluated to find
the most similar pattern whenever new data are coming. Immediate responses
are desirable since these applications are usually time-critical and important de-
cisions need to be made upon the query results. The dimensionality of the data
sets in these applications is dynamically changing over time when new dimen-
sions are periodically appended.

There are many types of scenarios occurring in data stream applications.
These scenarios can have either streaming or static queries, and the database
either is fixed or consists of data streams. In prior related work [7, 9, 8], only the
scenario with streaming queries and fixed time series database is discussed. How-
ever, in many important applications, the database itself is formed by streaming
data too. For example, in stock market analysis, a database is usually formed by
incrementally storing multiple data streams of stock prices. The users are often
concerned with finding the nearest neighbors of a specific stock or all pairs of
similar stocks. In this scenario, the streaming database is usually sized by a pre-
defined window on the most recent dimensions, e.g. the last 30 days, or the last
24 hours, etc. The user-specified stock can be either taken from the streaming
database or a fixed stock pattern. In order to be able to respond to the volatility
of the stock market, the user requests need to be analyzed continuously whenever
new stock prices arrive. In this paper, the scenarios with streaming database in-
stead of fixed database will be studied in order to address these emerging needs.
The queries are either fixed or streaming. Several techniques will be proposed
respectively to increase the overall query response time for each scenario.

Data stream applications may involve predefined queries as well as ad hoc
and online queries. Prior information on the predefined queries can be used to
improve the performance. However, for efficient support of ad hoc and online
queries it is necessary to build highly dynamic index structures on the data
streams. Hence, we are motivated to propose techniques for both cases, i.e.,
predefined and online queries, in this paper. Since the dimensionality is changing
for stream data, it will be beneficial to dynamically index such data to enable the
support for efficient query processing. Although index structures in the literature
are designed to handle inserting and deleting of new data objects, we are not
aware of any mechanisms that handle dynamic dimensionality.

R-tree based index structures have shown to be useful in indexing multi-
dimensional data sets [13, 3], but they are not suitable for indexing data streams
since they are designed for the cases where the dimensionality is fixed. Based on
this observation, we are motivated to come up with an index structure which
can accommodate the changing dimensionality of data objects. Since scalar (one-
dimensional) quantization is performed on each dimension independently, the
access structure based on such an idea seems to be a better choice for han-
dling dynamic dimensionality. In this paper, we propose effective scalar quan-
tization based indexing techniques for efficient similarity searching on multiple
data streams. The proposed technique can be used both as an index and as a
summary for the database, which can produce accurate answers to queries in an
incremental way.



Our contributions are as follows: we first study the model for processing
data streams, formulate several important data streaming scenarios. Both sliding
window and infinite window cases are considered for the completeness. We then
present an index structure to support efficient similarity search for multiple data
streams. The proposed technique is dynamic, update-efficient, and scalable for
high dimensions, which are crucial properties for an index to be useful for stream
data. To the best of our knowledge, there has been no techniques for indexing
data with dynamic dimensionality such as streams. Our method can also be
generalized to support the aged query in trend-related analysis of streaming
database. In the context of aged query, the users are more interested in the
current data than in the past data, and bigger weights will be assigned to more
recent dimensions of the data.

This paper consists of five sections. Section 2 describes a stream processing
model and then gives a detailed formulation of three different but equally signif-
icant data streaming scenarios. In Section 3, a brief review of scalar quantization
techniques VA-file and VA+-file will be given. We then motivate the need for an
adapted version of VA-file and VA+-file, which is specifically used to tackle the
problem imposed by dynamic streaming data. At last, the proposed techniques,
called VA-Stream and VA+-Stream, are presented in this section. In Section 4,
an extensive performance evaluation of proposed techniques is given which shows
that significant improvements are achieved by the proposed technique. Finally,
Section 5 concludes the paper with a discussion.

2 Streams and Queries

In this section, we start with introducing a general stream processing model,
and then discuss several important scenarios in streaming database followed by
precise definitions of their related queries.

2.1 Stream Processing Model

Figure 1 shows our general architecture for processing continuous queries over
streaming database.

The Real Time Stream Manager is responsible for updating the synopsis in
real time and archiving the stream data. Whenever there are new data stream-
ing in, the synopsis is changed correspondingly. When a query arrives at Query
Processor, the processor will first look at the synopsis in main memory and elim-
inate as many disqualified candidates as possible from the whole pool of data
streams. The details regarding how the elimination procedure works will be dis-
cussed in Section 3. After the elimination process, the possible candidates have
been narrowed down to a much smaller set. This set can be used to obtain ap-
proximate answers to the queries. For exact answers to the queries, the processor
can read each candidate from the archived data in the secondary storage. The
key element in our processing model is Real Time Stream Manager. It should
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Fig. 1. Stream Processing Model

be able to generate a synopsis which can be used to prune the data efficiently,
so that the secondary storage access time will be greatly minimized if accurate
answers are desired. Moreover, Real Time Stream Manager should be able to
sketch the incoming data streams in a prompt way. The proposed indexing tech-
niques in this paper will be shown to be capable of processing the incoming data
streams and generate the synopsis in an efficient way. Hence it can support the
implementation of Real Time Stream Manager.

We also look at continuous or streaming queries with either a sliding window
or an infinite window. For queries with a fixed-size sliding window, the size of
the synopsis stays the same, and the accuracy of this synopsis does not suffer
from the evolving dimensionality. However, for queries with an infinite window,
though it can be solved in a way similar to those with fixed-size window, the
accuracy will get sacrificed if the size of synopsis stays the same. Hence, another
approach for queries with an infinite window would be based on an reasonable
assumption that the data streams are aging. That’s actually what happens in real
world, where people put more emphasis on more recent activities. A discussion
of aged queries can be found in Section 3.4.

2.2 Queries

We define streaming database as a collection of multiple data streams, each of
which arrives sequentially and describes an underlying signal. For example, the
data feeds from a sensor network form a streaming database. The dimensionality
of each data stream is always increasing in this case. Hence, theoretically the
amount of data stored, if stored at all, in a streaming database tends to be
infinite. This leaves us with a challenge of trying to get accurate query results
from a huge database with time constraints. Moreover, in most cases users would
expect fast response time for queries. This makes it necessary to develop an
effective index structure for streaming database with very efficient update cost,
so that query results can be obtained in a tolerable amount of time. In this paper,



we are considering several important scenarios occurring in streaming database.
See Table 1 for notations and Table 2 for a classification of these scenarios.

Notation Meaning
x,y streaming data objects in database

x[i, j] slices of x between time position i and j
x[., i] slices of x up to time position i

q query object
len(q) the number of dimensions in the query, i.e. the length of q

dis(x, y) the distance function between x and y
D the streaming database
b the total number of available bits

bi the number of bits assigned to dimension i
σ2

i the variance of the data
gi the weight of dimension i in an aged query

Table 1. Frequently used notations.

The first scenario occurs when streaming queries are issued to a streaming
database. For example, we have a streaming database containing stock quotes
of companies, which is updated daily or even hourly to include the new quotes.
In this case a query may be posed to find the most similar company to a given
company in terms of the stock price in last 2 months. We formally define this
scenario as QUERY 1, which is shown below.

QUERY 1: Given a streaming database D, let q be the streaming query
object at time position t, the nearest neighbor of q for the last T time period
would be r if dis(q[t− T, t], r[t− T, t]) ≤ dis(q[t− T, t], s[t− T, t]), ∀s in D.

The second scenario is similar to the first scenario, except in a more general
sense. In the first scenario, we are only interested in the past data sets which are
collected over a certain amount of time period. However, in the second scenario,
we are interested in all of the data sets collected up to now. For example, we
want to find the company most similar to a given one after considering all the
history records of their stock prices. This scenario often occurs when a long-term
plan or strategy is concerned, and it is formulated as QUERY 2.

QUERY 2: Given a streaming database D, let q be the streaming query at
time position t, the nearest neighbor query of q would be r if dis(q[., t], r[., t]) ≤
dis(q[., t], s[., t]),
∀s in D.

In the above two scenarios, the streaming query objects usually come from the
streaming database. The third scenario occurs when queries are predefined over
streaming databases. For example, we have a history bull pattern for stocks, and
a regular check against the streaming database would find us those companies
whose stock price fluctuations match this pattern most. This is an interesting
scenario, and we formally define it as QUERY 3.



QUERY 3: Given a streaming database D, let q be the predefined query
object at time position t with a fixed length len(q), the nearest neighbor of q
would be r if dis(q, r[t− len(q), t]) ≤ dis(q, s[t− len(q), t]), ∀s in D.

QUERY 1 and QUERY 3 are sized by a sliding window, and QUERY 2 has an
infinite window. Their definitions can be easily generalized for k nearest neighbor
queries. All these discussed queries are usually characteristics of their continuity,
which means the same query will be asked continuously against the database
over a period of time and will be evaluated over and over again during that time
period. For example, Traderbot [1, ?], a web-site which performs various queries
on streaming stock price series, offers a variety of queries similar to the models
discussed here.

Query Type Query Database
QUERY 1 Streaming data objects Streaming database with a sliding window
QUERY 2 Streaming data objects Streaming database with an infinite window
QUERY 3 Predefined data objects Streaming database with a sliding window

Table 2. Summary of Queries in Streaming Database.

To answer the above continuous queries occurring in streaming database, the
most straightforward method is to do a sequential scan on all data objects with
all available dimensions at the moment when the queries are issued. However, the
streaming databases are usually not only large but also high-dimensional, hence
this method cannot deliver a satisfying performance in terms of overall query
response time. Hence, efficient index structures are needed to accommodate the
uniqueness of streaming databases, which have (1) high dimensionality (2) dy-
namically growing/changing dimensions (3) large amount of data. R-tree based
index structures can be used to improve the efficiency of similarity searching in
multi-dimensional databases, however it is well known that the performance of
R-tree degrades as the number of dimensions increases. Moreover, the update
operations of R-tree pose another problem for data streams, since the dimension-
ality is frequently changing in streaming database. Whenever a new dimension
comes, it completely destroys the basis used to construct the R-tree, i.e. the
spatial containment relationship between levels of the tree structure. Hence, R-
tree based structures cannot be used to index streaming database. In this paper,
we propose scalar quantization based indexing technique as a natural choice
for handling dimensionality changes. Since the scalar quantization is performed
independently on each dimension, when a new dimension is added it can be
quantized separately without making major changes to the overall structure.
Quantization of data can also serve as the summary to answer queries approxi-
mately. Depending on the time and space constraints, scalar quantization-based
summary of data can be effectively used as an approximation as well as an index
for the actual data.



The efficient scalar quantization-based solutions to QUERY 1 and QUERY
2 will be discussed in Section 3.3. For QUERY 3, it can be treated as a special
case of QUERY 1 with queries fixed , hence no separate discussions will be made
on it.

3 Scalar Quantization Technique

Scalar quantization technique is a way to quantize each dimension independently
so that a summary of the database is efficiently captured. It also serves as an
index structure for efficient point, range, and k nearest neighbor queries. By
observing that there is no cross-interference among dimensions when applying
scalar quantization techniques to the traditional databases, we are motivated to
apply it to support the similarity search in streaming databases.

3.1 Indexing Based on Vector Approximation

We will first briefly review one scalar quantization technique used in traditional
database, Vector-Approximation file (VA-file) [21], to introduce some back-
ground knowledge.

Since conventional partitioning index methods, e.g. R-trees, grid files and
their variants, suffer from dimensional curse, VA-file was proposed as an ap-
proach to overcome the curse and supports efficient similarity search in high-
dimensional spaces. The VA-file is actually a filter-based approach of synopsis
files. Here is a sketch of how it works. It divides the data space into 2b rectan-
gular cells where b is the total number of bits specified by the user [21]. Each
dimension is allocated a number of bits, which are used to divide it into equally
populated intervals on that dimension. Each cell has a bit representation of
length b which approximates the data points that fall into this cell. The VA-file
itself is simply an array of these bit vector approximations based on the quanti-
zation of the original feature vectors. Figure 2 shows an example of one VA-file
for a two-dimensional space when b = 3.

Nearest neighbor searching in a VA-file has two major phases [21]. In the first
phase, the set of all vector approximations is scanned sequentially and lower and
upper bounds on the distance of each vector to the query vector are computed.
The real distance can not be smaller than the distance between the query vector
and the closest point on the corresponding cell. Therefore, the real distance can
be lower-bounded by this smallest possible distance. Similarly, the distance of
the furthest point in the cell with the query point determines the upper bound of
the real distance. In this phase, if an approximation is encountered such that its
lower bound exceeds the smallest upper bound found so far, the corresponding
objects can be eliminated since at least one better candidate exists. At the
end of the first phase, the vectors with the smallest bounds are found to be
the candidates for the nearest neighbor of the query. In the second phase, the
algorithm traverses the real feature vectors that correspond to the candidate set
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Fig. 2. A two-dimensional example for VA-file



remaining after filtering. The real feature vectors of the candidates are visited
until it is guaranteed that the actual nearest neighbor is found. The feature
vectors are visited in the order of their lower bounds and then exact distances to
the query point are computed. One of the advantages of traversing the feature
vectors in the order of their lower bounds to the query is that the algorithm can
stop at a certain point and does not check the rest of the candidates. If a lower
bound is reached that is greater than the k-th actual nearest neighbor distance
seen so far, then the algorithm stops retrieving the rest of the candidates. It is
important to note that the accesses in the second phase are usually secondary
storage accesses. It is crucial to decrease the number of vectors visited in the
second phase to reduce the number of random I/O that must be incurred during
the nearest neighbor search.

3.2 Vector Approximation Based Indexing for Non-Uniform Data
Sets

In the VA-file approach, although there is always an option of non-uniform bit
allocation among dimensions, no specific algorithm for that option was proposed
in [21]. Moreover, in [21] each dimension i is divided into 2bi cells of either equal
size, or equal population, which are the two simplest partitionings that only suits
a uniformly distributed data set. Some problems might occur for VA-files if the
data set is not uniformly distributed, especially when it is highly correlated or
clustered. VA+-file [6] is proposed to target non-uniform data sets, and can lead
to more efficient searching.

A scalar quantizer [10] is a VA-file together with representative values as-
signed to each cell. The target is to achieve the least reproduction error, i.e., the
least average Euclidean distance between data points and their representatives.
The partitioning performed by the VA-file approach can be viewed as a scalar
quantization, except that the approach does not care about the representative
values for the cells. It is shown in [6] that a scalar quantization designed by
directly aiming for the least possible reproduction error would result in much
tighter lower and upper bounds for the distances between the query point and
the data points. Since tighter lower bounds mean less number of vectors visited
in the second phase of the VA-file algorithm, and tighter upper bounds mean
better filtering of data in the first phase, VA+-file uses the reproduction error as
its minimization objective in order to increase its pruning ability. An approach
for designing a scalar quantizer follows these steps:

1. The total available bits specified by the quota is allocated among the dimen-
sions non-uniformly, based on one bit allocation algorithm, shown below as
ALGORITHM 1.

2. An optimal scalar quantizer is then designed for each dimension indepen-
dently, with the allocated number of bits. The Lloyd’s algorithm [17, 16],
shown below as ALGORITHM 2, is used here to quantize each dimension
optimally. No assumption about data uniformity is needed for this algorithm
and data statistics is used instead.



Before the first step, if the user prefers, the data could be first transformed
into a more suitable domain, for example Karhunen Loeve Transform (KLT)
[15] domain, so that the data can be successfully decorrelated. The goal in VA+-
file is to approximate a given data set with a minimum number of bits but
maximum accuracy. Therefore, it is crucial in VA+-file to analyze the dimensions
and allocate the bits to dimensions, rather than using the simple uniform bit
allocation, so that the resulting accuracy obtained from the approximation can
be maximized. Non-uniform bit allocation is an effective way to increase the
accuracy of the approximations for any data set.

Let the variance of dimension i be σ2
i , and the number of bits allocated to di-

mension i be bi. Assume the quota is b bits, i.e, b =
∑

i bi always holds. In quan-
tization theory, a well-known rule is: if for any two dimensions i and j, ∃ k ≥
0, st. σ2

i ≥ 4kσ2
j , then bi ≥ bj + k [10] and it is shown to be a good heuristic for

allocating bits based on the significance of each dimension [6]. The significance
of each dimension is decided by its variance.

ALGORITHM 1 Bit Allocation Algorithm for VA+-file:

1. Begin with di = σ2
i , bi = 0 for all i, and k = 0.

2. Let j = argmaxidi. Then increment bj and dj ← dj/4.
3. Increment k. If k < b, go to 2, else stop.

Once the number of bits assigned to a given dimension is known, an actual
scalar quantizer is designed based on ALGORITHM 2, shown as follows. This
algorithm will produce a set of partition points or intervals along each dimen-
sion. This algorithm is actually a special case of a popular clustering algorithm,
the so-called K-means algorithm in the clustering literature [18].

ALGORITHM 2 Lloyd’s Algorithm:

Denote by tn the value of the nth data point along the dimension cur-
rently considered for quantization. Start with a given set of intervals
[ci, ci+1) for i = 1, . . . ,K, where K = 2bd , c1 = minn tn and cK+1 =
ε + maxn tn. Set ∆ = ∞, and fix γ > 0. Denote by ri the representative
value for the ith interval [ci, ci+1). bd is the number of bits allocated to
the current dimension, ε and γ are small positive integers.
1. For i = 1, . . . , K, compute the new representative value ri as the

center of mass of all data points in the interval [ci, ci+1), i.e.,

ri =
1
Ni

∑

tn∈[ci,ci+1)

tn ,

where Ni is the total number of data points in the interval [ci, ci+1).
2. Compute the new intervals by ci = ri−1+ri

2 for i = 2, . . . , K.



3. Compute the total representation error as

∆′ =
K∑

i=1

∑

tn∈[ci,ci+1)

(tn − ri)2 .

If ∆−∆′
∆ < γ, then STOP. Otherwise set ∆ = ∆′, and go to step 1.

ALGORITHM 2 always converges, but suitable choice of initialization value
for the intervals should be carefully made in order to avoid being stuck in local
optima. Equally-populated intervals will be a good choice.

3.3 VA-Stream Technique for Indexing Streaming Database

As we have noticed, both VA-file and VA+-file are targeted towards traditional
databases, in which the dimensionality of data objects is fixed. In order to handle
dynamic streaming databases, the approaches should be customized for stream-
ing databases. We call the customized approaches as VA-Stream and VA+-
Stream in this paper. Just as VA-file or VA+-file can be viewed as a way to
generate the synopsis or summarization of traditional databases, VA-Stream or
VA+-Stream is also a way to generate dynamic synopsis or summarization for
streaming databases with dynamic updates. Since VA-Stream and VA+-Stream
are capable of taking a snapshot of any moment of the dynamic streaming
databases, a preliminary analysis can be made on the current snapshot so that
the data set can be preprocessed and a better performance for efficient similar-
ity searching can be achieved. The proposed approach is an incremental way to
update the VA-file or VA+-file to reflect the changes in the databases, and it can
eliminate the need to rebuild the whole index structure from scratch. Hence it
enables faster query response time.

With the use of scalar quantization technique, if the data is indexed with a
sliding window on recent dimensions, the previously quantized first dimension
will be replaced by the quantized new dimension. This is the case for QUERY 1.
It is a plain idea but it might get complicated with a need for bits reallocation
and optimal quantization. The complexity of bit reallocation algorithm for dif-
ferent query types will depend on whether it is based on VA-file or VA+-file. As
we all know, the bit allocation strategy in regular VA-file approach is quite sim-
ple, with the same number of bits equally assigned to each dimension. Hence, for
an initial vector approximation file and the dynamic incoming streams, the steps
to restructure a new vector approximation file based on the previous one will
be relatively simpler too. The algorithm used to build a new VA-file in order to
capture the up-to-date snapshot of the streaming databases is called VA-Stream,
and shown as ALGORITHM 3a.

ALGORITHM 3a VA-Stream:



1. Assume the window size for the database is k. Begin with the ini-
tial data set of k dimensions, build the original VA-file for this k-
dimensional data set, where the total number of available bits b is
equally assigned to each dimension. Hence, bi = b b

k c+ 1, ∀i in
[1,mod(b, k)]; and bi = b b

k c, ∀i in
(mod(b, k), k]. When new dimension data is coming, let it be j and
j = k + 1.

2. Let bj = b(j−k) and b(j−k) = 0. Compute the vector approximation
for jth dimension, and replace the data for (j − k)th dimension in
the VA-file with the newly computed approximation.

3. If there is still new dimension coming, increment j and go to 2, else
wait.

The above algorithm can be used to handle QUERY 1, since it has a fixed-
size sliding window for the data sets. It uses VA-file as the index structure.
The idea is simple by always keeping the same number of dimensions in VA-file
with the new dimension replacing the oldest dimension. However, the power of
VA-Stream is limited since it is only suitable for uniform data sets. Hence, a
more general scheme is needed in order to handle non-uniform data sets. For
this purpose, VA+-file can be used as the basis index structure. Therefore, the
following ALGORITHM 3b is proposed. Its bit reallocation algorithm is more
complicated than the one in VA-Stream due to the following facts: (1) VA+-file
allocates different number of bits to different dimensions in order to deal with
the non-uniformity of the data set, and (2) VA+-file quantizes each dimension
independently with its assigned bits in order to achieve the least reproduction
error.

For non-uniform data sets, when a new dimension comes, we first evaluate its
significance. Thereafter, a bit reallocation scheme should be applied in order to
justify the significance of each dimension. The number of bits allocated to each
dimension should be decided by its variance. The same quantization principle
applies here : if σ2

i ≥ 4kσ2
j , then bi ≥ bj + k [10].

The following ALGORITHM 3b illustrates the steps to build an up-to-date
VA+-file for streaming databases, and we call it VA+-Stream. This algorithm
assigns those extra bits contributed by the oldest dimension based on compar-
ing the variance of new dimension with all other remaining dimensions. When
no extra bit is left, this algorithm will continue to check if the new dimension
deserves more bits. The detailed algorithm is shown below.

ALGORITHM 3b VA+-Stream:

1. Assume the window size for the database is k. Begin with the ini-
tial data set of k dimensions, build the original VA+-file for this
k-dimensional data set, where the total number of available bits b
is unevenly assigned to k dimensions based on the data distribu-



tion. When new dimension data is coming, let the new dimension be
j = k + 1 and let bj = 0 initially.

2. Let t = j − k be the oldest dimension which we need to take out
from VA+-file. Now we have bt bits available for reallocation. Let
σ
′
i

2
= σ2

i

4bi
,∀i in [t, j], and it represents the current significance of

dimension i after being assigned bi bits. Let s = maxn=j
n=t+1(σ

′
n

2
),

then bs = bs + 1, σ
′
s

2
= σ

′
s

2

4 , and bt = bt − 1. Repeat this procedure,
until bt = 0.

3. When bt = 0, if σ
′
j

2
> 4minn=j−1

n=t+1 σ
′
n

2
, more bits need to be extracted

from other dimensions for use by dimension j. Let bj = bj + 1, and

bs = bs − 1, where s = min−1n=j−1
n=t+1σ

′
n

2
(min−1 returns the index

of the minimum). Also σ
′
j

2
= σ

′
j

2

4 , and σ
′
s

2
= 4σ

′
s

2
. Repeat this

procedure, until σ
′
j

2 ≤ 4minn=j−1
n=t+1 σ

′
n

2
. When σ

′
j

2 ≤ 4minn=j−1
n=t+1 σ

′
n

2
,

go to step 4 directly.
4. If bj > 0, quantize the jth dimension based on the number of bits

assigned to it, bj , using ALGORITHM 2.
5. Check if there are any other dimensions whose bits assignments have

been changed during the step 2 and step 3. Re-quantize each of those
affected dimensions independently using ALGORITHM 2.

6. If there is still new dimension coming, increment j and go back to
step 2, else wait.

ALGORITHM 3c is a different way to implement the idea of VA+-Stream.
It starts with a different perspective by comparing the variance of the oldest
dimension with the newest dimension. It is based on the observation that if the
variance of the newest dimension is larger than the oldest dimension, it will at
least deserve the same number of bits from the oldest dimension. The detailed
algorithm is shown below.

ALGORITHM 3c VA+-Stream:

1. Assume the window size for the database is k. Begin with the ini-
tial data set of k dimensions, build the original VA+-file for this
k-dimensional data set, where the total number of available bits b
is unevenly assigned to k dimensions based on the data distribu-
tion. When new dimension data is coming, let the new dimension be
j = k + 1 and let bj = 0 initially.

2. Let t = j − k be the oldest dimension which we need to take out
from VA+-file. Now we have bt bits available for allocation. Let σ

′
i

2
=

σ2
i

4bi
, ∀i in [t, j], and it represents the current significance of dimension

i.



3. If σ
′
j

2
> σ

′
t

2
and bt > 0, then bj = bj + 1, σ

′
j

2
= σ

′
j

2

4 , bt = bt − 1

and σ
′
t

2
= 4σ

′
t

2
. Repeat until either bt = 0 or σ

′
j

2
< σ

′
t

2
. Go to step 4.

4. If σ
′
j

2
> σ

′
t

2
and bt = 0, then more bits need to be extracted from

other dimensions for use by dimension j.
case 1: σ

′
j

2
> 4minn=j−1

n=t+1 σ
′
n

2

Let bj = bj + 1, and bs = bs − 1 where s = min−1n=j−1
n=t+1σ

′
n

2
.

Also σ
′
j

2
= σ

′
j

2

4 , and σ
′
s

2
= 4σ

′
s

2
. Go back to step 4.

case 2: σ
′
j

2
< 4minn=j−1

n=t+1 σ
′
n

2

Go to step 5.

If σ
′
j

2
< σ

′
t

2
and bt > 0, then let s = maxn=j

n=t+1(σ
′
n

2
), and bs = bs+1,

σ
′
s

2
= σ

′
s

2

4 , bt = bt− 1, σ
′
t

2
= 4σ

′
t

2
. Repeat until bt = 0. Go to step 5.

If σ
′
j

2
< σ

′
t

2
and bt = 0, then go to step 5.

5. If bj > 0, quantize the jth dimension based on the number of bits
assigned to it, bj , using ALGORITHM 2.

6. Check if there are any other dimensions whose bits assignments have
been changed during the step 3 and step 4. Re-quantize each of those
affected dimensions independently using ALGORITHM 2.

7. If there is still new dimension coming, increment j and go to step 2,
else wait.

Lemma 1 For any two dimensions s and t represented in VA+-stream or
VA+-file, 4σ

′
s

2
> σ

′
t

2
.

Proof. By contradiction. If there exists s and t, st. σ
′
s

2
< σ

′
t

2
and also

4σ
′
s

2
< σ

′
t

2
, this implies that s should not get its last bit in its last assignment.

That will make t deserve that bit. This is contradictory to the current bit as-
signment. END

Lemma 2 The VA+-file built by ALGORITHM 3b incrementally to reflect
the impact of new dimension is the same as the VA+-file built from the scratch
for streaming database with new dimensions coming.

Proof. Assume at the beginning, we have a data set of n dimensions, and a
VA+-file is built for this n-dimensional data set. Then according to the algorithm
for building VA+-file, there must exist a sequence (1,2,...,n), s.t. b1 ≥ b2 ≥ ... ≥
bn and σ2

1 ≥ σ2
2 ... ≥ σ2

n. Here bi is the number of bits assigned to dimension with
sequence index i, σ2

i is the variance of each dimensional data. Let di = σi
2

4bi
. Let

si denote the index of the ith dimension in the sequence.



Now assume the (n + 1)th new dimension comes. Let its variance be σ2
n+1.

If we rebuild the whole VA+-file from scratch, then will get a new sequence
(2,3,...,n+1), s.t. b2 ≥ b3 ≥ ... ≥ bn+1, s.t. σ2

2 ≥ σ2
3 ... ≥ σ2

n+1. Since the variance
of each of dimension is a constant once the data is fixed, the order for the
dimensions from dimension 2 to dimension n should stay unchanged though the
assigned number of bit might have been changed. Hence, for the new dimension
n + 1, it should only be inserted into a proper place, denoted by sn+1, at the
ordered sequence of the last n − 1 dimensions. Let j be the sequence index of
(n + 1)th dimension. Hence bsn+1 should satisfy the following conditions σj−1 >
σsn+1 > σj+1.

If we use VA+-Stream approach, the same sequence will be produced since it
compares the variance of new dimension n + 1 against those of other remaining
dimensions until we find a proper bit assignment, say bsn+1 , s.t. b2 ≥ b3 ≥ .. ≥
bj−1 ≥ bs(n+1) ≥ bj+1... ≥ bn+1 and σ2

1 ≥ σ2
2 ... ≥ σ2

j−1 ≥ σ2
sn+1

≥ σ2
j+1... ≥ σ2

n.
Now we need to show the number of bits assigned to each dimension from

both will be same. Since we already show there is one and only one order for all
dimensions based on the variance of each dimension, σ2

1 ≥ σ2
2 ... ≥ σ2

n, the num-
ber of assigned bits to each dimension bi should make a sequence with the same
order, b1 ≥ b2 ≥ ... ≥ bn. Now a unique order of all dimensions can be obtained
based on the variance. Moreover, Lemma 1 shows that the current variance di

between any two dimensions can not differ by a factor of more than four. Since
di = σi

2

4bi
, we will always assign the same number of bits to the dimension for a

total of b bit quota for allocation. END

ALGORITHM 3a, 3b and 3c are all used to deal with the streaming data sets
with fixed-size sliding, and suitable for processing QUERY 1 and QUERY 3. If
there is an infinite window, i.e., all available dimensions are involved in queries,
and the index size is kept the same, then some bits need to be extracted from
those old dimensions for the new dimension. This is the case for QUERY 2. In
this case a restructuring on all involved dimensions is needed. An efficient and
effective bit reallocation algorithm should be investigated so that the restruc-
turing work can be kept as least as possible while maximizing the accuracy. The
following ALGORITHM 4 is the VA+-Stream approach customized for dynam-
ically building VA+-file for processing QUERY 2.

ALGORITHM 4 VA+-Stream:

1. Begin with the initial data set of k dimensions, build the original
VA+-file for this k-dimensional data set, where bi(1 ≤ i ≤ k) still
represents the number of bits already assigned to the ith dimension,
When new dimension data is coming, let it be j = k + 1 and bj = 0.

2. The following rules will apply.
Case 1: σ

′
j

2
> 4minn=j−1

n=1 σ
′
n

2

Let bj = bj + 1, and bs = bs − 1 where s = min−1n=j−1
n=1 σ

′
n

2
. Also let



σ
′
j

2
= σ

′
j

2

4 , and σ
′
s

2
= 4σ

′
s

2
. Go back to step 2.

Case 2: σ
′
j

2 ≤ 4minn=j−1
n=1 σ

′
n

2

In this case, it means the new jth dimension doesn’t matter too
much in answering the query while all dimensions are concerned.
Let bj = 0. Go to step 3.

3. If bj > 0, quantize the jth dimension based on the number of bits
assigned to it, bj , using ALGORITHM 2.

4. Check if there are any other dimensions whose bits assignments have
been changed during the step 2. Re-quantize each of those affected
dimensions independently using ALGORITHM 2.

5. If there is still new dimension coming, increment j and go to step 2,
else wait.

For QUERY 2 with an infinite window, a similarity search method has to
consider all dimensions up to the current moment. It poses quite a challenge
for using any tree-based index structures like R-tree since the dimensionality
is too high for R-tree to perform better than simply sequential scan [21]. It
also challenges the plain way of rebuilding VA-File or VA+-file from scratch.
For QUERY 1, this plain approach might get lucky when a small window size
for the data set is specified by the user. But for QUERY 2, the query building
time becomes intolerable if we rebuild the VA-file or VA+ from scratch, as the
performance study in Section 4 shows. However, all of the algorithms shown in
this section have the flexibility to accommodate new dimensions without the need
to rebuild either the VA-file or the VA+-file from scratch, and by dynamically
changing the VA-file or VA+-file with only modifying a small portion of the index
file, it can deliver much faster response to similarity queries. This is because the
scalar quantization technique is dealing with each dimension independently while
building the index structure. Hence, dimensionwise, the overall index structure
can be easily extended without a need for an exhaustive restructuring work when
new dimensions come.

3.4 Aging Data Stream

Another interesting query in a streaming database is the aged query [11]. When
each dimension of the data set has been assigned a different role for evaluating
the similarity, a weight value should be assigned to different dimensions. For
example, in the context of network traffic monitoring, a trend-related analysis is
made over data streams to identify some kind of access pattern, more emphasis is
usually needed to put on the most recent traffic. It is quite reasonable to think
the traffic in this week should be more important than the traffic in the last
week since a trend analysis should focus more on current. Let ..., d−3, d−2, d−1, d0

be a stream of network traffic data, where d0 means today’s data, d−1 means
yesterday’s data, and so on. A λ-aging data stream will take the following form:



... + λ(1− λ)3d−3 + λ(1− λ)2d−2 + λ(1− λ)d−1 + λd0.
Hence in λ-aging data stream, the weight of the data at a certain time position

is decreasing exponentially with time. There are also other types of aging streams
besides λ-aging data stream, for example, linear aging stream, where the recent
data contributes to the data stream with linearly more weight than the older
data. In order for the proposed VA+Stream to be able to work for the aging
stream database, we need to make the following modifications regarding the
heuristic rule for allocating bits. If a weight gi is specified for dimension i, the
following heuristic rule should be used: if for any two dimensions i and j, ∃ k ≥
0, st. σ2

i gi ≥ 4kσ2
j gj , then bi ≥ bj + k [10]. The rest of the algorithms remain

same.

3.5 Other Discussions

In a streaming database, the number of streams changes too. Our approach can
handle this scenario trivially too. For queries with a fixed-size sliding window,
if the new data streams pop up, we will wait to collect the new ones until the
size matches the sliding window. At the same time, we continue quantizing the
new data for existing data streams incrementally. Then we quantize all new data
streams collected so far, and add them to the VA+file which we have maintained
incrementally so far. On the other hand if some data streams drop out, we just
simply delete the corresponding record in our VA+file. For queries with infinite
window size, if new data streams pop up, we can simply assume the old data
for these new streams don’t matter in order to adapt to the infinite window
size, and let them be zero then. On the other hand, if new data streams drop
out for queries with infinite window size, just delete their records from VA+file.
Actually when a large number of data streams come in or drop out , it will affect
the existing bit allocation too. If this is the case, we can reallocate the bits from
scratch and rebuild the VA+file for once.

By showing the scalar quantization technique as a natural choice for handling
streaming database, it reminds us of other techniques which might be good po-
tential choices for indexing streaming database. As is known, R tree and its
variant are not suitable for streaming databases. Because they are based on the
spatial containment relationship between data points, once new dimension comes
it might completely destroy this relationship. However, the grid file poses a d-
dimensional orthogonal grid on the universe, resulting many cells with different
sizes and shapes. Since when new dimensional data come, it will only need to
further spit the cells to adapt new data without destroying the previous struc-
ture. This indicates it might be a good choice for indexing streaming database
too.

4 Performance Evaluation

In this section, we evaluate the performance of the proposed techniques and
compare them with other possible approaches for query processing. The design



of our experiments aims to show the advantage of the proposed approaches in
terms of both query response time and index building time.

4.1 Data Sets

For the purpose of performance evaluation, we used several real-life and semi-
synthetic data sets from different application domains. The techniques proposed
in this paper are for high dimensional streaming data sets, therefore we chose
our real-life data sets to have high dimensions and streaming nature. The first
data set, Stock Time-series (Stockdata), is a time-series data set which contains
360-day stock price movements of 6,500 companies, i.e., 6,500 data points with
dimensionality 360. The second data set Highly Variant Stockdata (HighVariant)
is a semi-synthetic data set based on Stockdata, and is of size 6,500 with 360-
dimensional vectors too. The generation of the second data set aims at obtaining
a data set with high variance across dimensions. In order to do that, we per-
formed KLT transform on the original Stockdata, and as a result the transformed
data set tends to have larger variance at the beginning dimensions, and smaller
variance at the ending dimensions. Then we randomly re-order the dimensions
inside the data set so that the dimensional data with a certain level of variance
can be uniformly distributed. The third data set is Satellite Image Data Set,
which has 270,000 60-dimensional vectors representing texture feature vectors
of satellite images. This data set provides challenging problems in high dimen-
sional indexing and is widely used in high dimensional indexing and similarity
searching research [19, 12, 5]. In the context of streaming database, we adapt all
the above data sets for our purpose by having the data pretend to come into
database one dimension after another dimension. For example, in the case of
Stockdata, each dimension corresponds to daily stock prices of all companies.

When not stated otherwise, VA+Stream in the following experimental study
refers to the implementation version of Algorithm 3b and an average of 3 bits
per dimension is used to generate the vector approximation file. When not stated
otherwise, k is set to be 10 for k-NN queries through our whole experimental
study.

4.2 Experiments on Query Performance

As Lemma 2 states that the vector approximation file built by Algorithm 3b is
the same as the one built from scratch using VA+-file approach, the first thing
we want to show is that the generated vector approximation file can support
efficient continuous queries in streaming database. We will show the advantage
of our approach over sequential scan. The reason we chose the sequential scan
as the yardstick here is because of the infeasibility of well-known techniques for
stream data and the well-known dimensionality curse, which make other choices
like R-tree and its variants out of the question for efficient k nearest neighbor
search. However, while compared with R-tree and its variants, sequential scan
can perform much better in high-dimensional space due to its sequential nature
of I/O requests.



A group of experiments was first set up to evaluate the performance of the
vector approximation file generated by our approach for a snapshot of streaming
databases. Two metrics were used to evaluate how the generated vector approx-
imation file can support k-NN queries: vector selectivity and page ratio. Vector
selectivity was used to measure how many vectors have been actually visited in
order to find the k nearest neighbors of the query. Since vectors actually share
pages, the vector selectivity does not exactly reflect the paging activity and query
response during the similarity search. Hence, page ratio was adopted to measure
the number of pages visited as a percentage of the number of pages necessary
for sequential scan algorithm.

In our experiment, vector selectivity was measured as a function of average
number of bits per dimension, which actually reflects the quota for the total
number of available bits b. Figure 3 (left) shows the results for 360-dimensional
Stockdata. When the quota for bit allocation is increasing, the vector selectivity,
e.g. the percentage of actual visited vectors, is quickly decreasing. The pruning
rate of the generated vector approximation file during the first phase of similarity
search is also shown as dotted line in this figure, and it is getting higher when
the bit quota is increasing. For example, when the average number of bits per
dimension is 4, the vector selectivity of the approximation file is only 8%. In
contrast, the vector selectivity is always 100% for sequential scan since it needs
to visit all the vectors in order to find the k nearest neighbors.

Page ratio was measured as a function of average number of bits per dimen-
sion too. Figure 3 (right) shows that the number of visited pages is decreasing
quickly in vector approximation file when the number of available bits for al-
location is increasing. When the average number of bits per dimension is 4.5,
the number of visited pages in vector approximation file is only around 10% of
that in sequential scan. Even when we consider the fact that sequential scan will
not invoke any random access which might actually contribute to a factor of 5
for performance improvement [21], the vector approximation file approach still
shows advantage.

To show the impact of window size on the query performance, we also varied
the window size in Stockdata. Figure 4 shows the results.

To show the impact of data points on the query performance, we also varied
the number of data points in Satellite Image Data Set. Figure 5 shows the results.

4.3 Experiments on Index Building

Previous section has demonstrated that the vector approximation file generated
by the proposed approach in this paper can support efficient continuous queries
in streaming database. We now want to show that the proposed approach can
also support dynamic data streams in terms of building such an vector approx-
imation file as an efficient index structure. A group of experiments was set up
for this purpose. We compared the time of using VA+-Stream to build an index
structure incrementally against using VA+-file technique to build an index struc-
ture from scratch each time new data element is streaming into the database.
The reason we chose VA+-file as the yardstick here is because of the following



two reasons. First, it is shown that both VA+-file and VA+-Stream can gen-
erate the vector approximation file which supports efficient k nearest neighbor
search in high-dimensional space, while R-tree and its variants are suffering from
the dimensionality curse and can not be used in streaming database. Secondly,
to the best of our knowledge, there exists no specific techniques for targeting
efficient k nearest neighbor search in streaming database, hence the possible
approaches that can be used here for comparison purposes are just direct appli-
cations of existing efficient techniques for traditional high-dimensional databases
to streaming databases.

The first experiment was set up for ALGORITHM 3b and 3c, which target
QUERY 1 with a fixed window size. To show the impact of window size on
the performance of the approaches under test, the window sizes were chosen to
be 60, 120, 180, 240, and 300 for Stockdata and HighVariant, respectively; the
window sizes were set to be 30, 35, 40, 45, and 50 for Satellite Image Data Set.
The experiment were set up to process k-NN queries for the streaming database
at any time positions after new dimension comes.

The following two types of metrics were used here for performance evaluation:
average index building time and average query response time.

In order to get the average index building time and the average query re-
sponse time, for each different window size we chose, we processed 20 10-NN
queries at each time position after the new dimension arrived. We recorded the
index building time and the average query response time over 20 queries at each
time position. For practical reasons, we actually sampled 10 continuous time
positions for each different window size, and then computed the average index
building time over 10 and the average query response time over 200 queries. Since
for QUERY 1 and QUERY 2, the query points usually come from the database,
the 20 10-NN queries issued at each time position in our experimental study
were from the streaming data sets. These 20 queries were randomly chosen from
the data set. For testing QUERY 1, Stockdata, HighVariant and Satellite Image
Data Set are used. Since QUERY 3 can be treated as a special case of QUERY
1, no separate test was done for it. The algorithm to build the VA+-file from
scratch was used as one of the benchmarks with the same setup for the purpose
of comparison.

At each sampled time position or dimension, we restructured the VA+-file
incrementally using ALGORITHM 3b. For a specific test instance of a certain
window size, the total number of bits allocated to the feature vectors were always
kept same. We also rebuilt a VA+-file from scratch to make the comparison.
We performed queries by asking 10-NN of 20 data points in the data set. The
same k-NN search algorithm discussed before was applied to both techniques.
The performance of the methods was evaluated in terms of their average index
building time and also the average query response time. Since the same search
algorithm was used to search the resulting VA+-file, the query response time
only depended on the structure of VA+-file. The search algorithm consists of
a first-phase elimination, and a second-phase checkup. For all cases, the stated
results are mean values.



Figure 6 (left) compares the index building time of two methods, for stock
time series data. The index building time does not vary too much for VA+-
Stream technique, since it is an incremental method and works almost on only
one dimension. But the index building time for completely rebuilt VA+ method
is skyrocketing with the window size increasing. This is because when we build
a VA+-file from scratch, the amount of efforts is proportional to the number
of dimensions or the window size we want to consider for the data set. When
the window size is 300, VA+Stream achieves a speedup of around 270. It is
not surprising that Figure 6 (right) shows the average query response time of
both methods is basically the same for stock time series data since the VA+-files
generated by them are actually the same. With the window size increasing, the
query response time is getting longer.

Similarly, Figure 7 shows the comparison of the index building time, for highly
variant stock time series data and satellite image data set. For highly variant
stock time series, VA+Stream achieves a speedup of 100 when the window size is
300. A speedup of around 28 is achieved when the window size is 50 for satellite
image data set. It is also observed that the speedup of VA+Stream is increasing
with bigger window size for all three data sets.

We ran the test to compare the different implementations of VA+-Stream.
Figure 8 (left) shows the comparison of indexing building time of Algorithm 3b
and Algorithm 3c for implementing VA+Stream.

An experiment was also set up for testing ALGORITHM 4 over QUERY
2, which has an infinite window and needs to consider all the dimensions up
to now. Stockdata was used here. For the purpose of testing the performance
of algorithms, the experiment was set with an initial data set of 300 dimen-
sions, i.e., we took the first 300 dimensions from Stockdata as our initial data
set. Therefore each time new dimension comes, the proposed VA+-Stream and
the traditional VA+ were run separately to build the index structure. Similarly,
20 10-NN queries were issued at each time position after new dimensions ar-
rived. The index building time and the query response time were then recorded.
Figure 8 (right) shows the comparison between VA+-file and VA+-Stream for
processing QUERY 2. It is obvious there exists a huge difference between these
two methods while the index building time is concerned. Especially, with the
number of dimensions increasing in the data set, the index building time for
traditional VA+-files tends to increase a little bit, but the index building time
for VA+-Stream almost remains same since it is only dealing with one new di-
mension.

5 Conclusions

In this paper, we presented a scheme to efficiently build an index structure for
streaming database, called VA-Stream and VA+-Stream. We motivated the need
for an effective index structure in streaming database. Our performance evalu-
ation establishes that the proposed techniques can be in fact used to build the
index structure for streaming database in a much shorter time than other avail-



able approaches, especially when the number of dimensions under consideration
for building index structure is large.

To the best of our knowledge, the proposed technique is the first solution for
building an index structure on multiple data streams. Our technique can work
both as an update-efficient index and as a dynamic summary on stream data.

Although multi-dimensional index structure on multiple streams can signifi-
cantly improve the performance of queries, dynamic nature of dimensions would
cause a significant restructuring on a tree-based index such as an R-tree. Neither
an efficient method to restructure the tree nor whether the effort is worthwhile
has been studied yet. The problem can be possibly attacked by a dual-based
approach, e.g., a dual R-tree which is built on dimensions. Hence, when new
dimension comes, we only need to consider an insertion problem instead of to-
tally rebuilding the index tree. More investigation is needed to develop a more
effective index for dynamic dimensionality.
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Fig. 3. Vector Selectivity (left) and Page Ratio (right) versus Number of Available Bits
in Stockdata
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Fig. 4. Vector Selectivity (left) and Page Ratio (right) versus Window Size in Stockdata
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Fig. 5. Vector Selectivity (left) and Page Ratio (right) versus Data Size in Satellite
Image Data Set
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Fig. 6. Comparison of Index Building Time (left) and Query Response Time (right)
between VA+-file and VA+-Stream for QUERY 1 (i.e. sliding windows) in Stockdata
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Fig. 7. Comparison of Index Building Time between VA+-file and VA+-Stream for
QUERY 1 (i.e. sliding windows) in HighVariant (left) and Satellite Image Data Set
(right)
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Fig. 8. Comparison of VA+Stream (Algorithm 3b) and VA+Stream (Algorithm 3c)
in Satellite Image Data Set (left) and Comparison of Index Building Time between
VA+-file and VA+-Stream for QUERY 2 (i.e. no sliding window) in Stockdata


