
Generating Time-Varying Road Network Data
Using Sparse Trajectories

Elif Eser1, Furkan Kocayusufoğlu2, Bahaeddin Eravcı3, Hakan Ferhatosmanoğlu4, Josep L. Larriba-Pey5

1, 3, 4Dept. of Computer Engineering, Bilkent University, Ankara, Turkey
2Dept. of Computer Science University of California, Santa Barbara, California, USA
5DAMA-UPC, Universitat Politecnica de Catalunya, BarcelonaTech, Barcelona, Spain

E-mail: 1elif.eser@bilkent.edu.tr, 2furkankyo@gmail.com, 3beravci@gmail.com, 4hakan@cs.bilkent.edu.tr, 5larri@ac.upc.edu

Abstract—While research on time-varying graphs has attracted
recent attention, the research community has limited or no access
to real datasets to develop effective algorithms and systems. Using
noisy and sparse GPS traces from vehicles, we develop a time-
varying road network data set where edge weights differ over
time. We present our methodology and share this dataset, along
with a graph manipulation tool. We estimate the traffic conditions
using the sparse GPS data available by characterizing the sparsity
issues and assessing the properties of travel sequence data
frequency domain. We develop interpolation methods to complete
the sparse data into a complete graph dataset with realistic
time-varying edge values. We evaluate the performance of time-
varying and static shortest path solutions over the generated
dynamic road network. The shortest paths using the dynamic
graph produce very different results than the static version.
We provide an independent Java API and a graph database to
analyze and manipulate the generated time-varying graph data
easily, not requiring any knowledge about the inners of the graph
database system. We expect our solution to support researchers to
pursue problems of time-varying graphs in terms of theoretical,
algorithmic, and systems aspects. The data and Java API are
available at: http://elif.eser.bilkent.edu.tr/roadnetwork.

Index Terms—time-varying graphs, data generation, dynamic
road networks, time dependent shortest paths, graph databases

I. INTRODUCTION

Dynamic management and analysis of road networks is
an essential task for smart city applications such as traf-
fic management and location based services (LBSs). Road
networks are spatial graphs with vertices representing the
geo-locational points and edges representing the streets/roads
between the vertices. Most traditional graph algorithms on
road networks assume that the edges have static attributes,
such as the length of the road and the speed limit. A more
enhanced representation is a time-varying road network that
models changing traffic information via a graph with edges
having a time-series of values, rather than a single aggregate
value.

Computing shortest paths over time-dependent road net-
works is shown to be polynomially solvable with Dijkstra
based solutions adapted for these graphs [1] [2]. Route
planning over time-dependent graphs has also appeared in
the literature aiming at reducing traffic jams [3]. Beyond,
personalized route planning[4] arises by considering driver’s

preferences. Research on time-varying graphs has a significant
projection in shortest path and route planning algorithms. To
develop and compare algorithms, systems, and analysis of
traffic for dynamic road networks, the research community
needs publicly available time-varying graph datasets, with
edge weights varying over time based on realistic patterns,
and associated APIs to manage and analyze such datasets. In
this paper, we present our methodology to generate a realistic
time-varying graph for road networks and share our dataset
and an associated graph management tool to help research on
time-varying graphs and dynamic road networks.

Major service providers such as Google, Yandex, and Tom-
Tom have the ability to observe real time traffic in certain
regions and can update their underlying road network’s edge
weights accordingly. However, most users and researchers
do not have access to such dynamic updates. The datasets
used in the literature are usually combinations of real maps
with synthetically generated travel time-series [1] or real data
collected over a limited amount of time [3] [4]. This makes the
comparison of algorithms difficult because they usually have
data dependencies or these datasets are not publicly available
via an API or web service.

Employing GPS traces to build or exploit road networks
has also been studied in the literature [5] [6]. In [5], GPS
data are utilized to generate a road network without any prior
information about the network topology. In [6], GPS data
are employed with a road network for traffic and travel time
estimation of the paths by using probabilistic model based
approaches.

In this piece of work, by using real yet sparse and noisy GPS
trajectories, we build a realistic time-varying graph dataset
with different travel times for each time slot for its edges.
We use the sparse trajectories found in the Floating Car
Dataset of Telecom Italia [7]. After mapping the trajectories
to the road network, we use statistical inference methods to
estimate the missing values to generate a time-varying graph.
We analyze the frequency content of nearly-complete edges
using frequency analysis tools. We observe that the time series
of interest are band-limited and most of the signal power is
in the low-pass region, i.e., the time series are slow varying
signals. We complete the missing data using minimum travel



time for the respective edge and random sample drawn from a
normal distribution, with parameters equal to the signal itself.
We make the preference of these two values based on Nyquist-
Shannon sampling theorem to counter aliasing. After padding
the signal we use the fact that the signals are expected to
be band-limited to smooth the padded time series such that
the resultant signal is of the same model as the expected
signals. We store the time-varying road network dataset on
the Sparksee [8] graph database . We provide a Java API for
easy manipulation of the graph, such that there is no need
for a prior knowledge about Sparksee. The API is available at
http://elif.eser.bilkent.edu.tr/roadnetwork.

II. DATA GENERATION

In this section, we explain our process to generate the time-
varying graph dataset and store it in a graph database. We first
build the road network and match the trajectory GPS traces
with the underlying network. We estimate the incomplete parts
of the dataset by a variety of statistical approaches.

Fig. 1: System Structure

A. Building and Managing the Road Network Topology

We generate the road network as a directed graph with
vertices as latitude-longitude pairs and edges with both fixed
and time-dependent weights. For time-dependent weights, we
seek to identify accurate travel time values for 288 time slots in
a day starting from 00:00 to 23:55. The fixed weight represents
the average travel time of the edge.

We use OpenStreetMap (OSM) [9] to gather the topology of
the underlying road network. OSM gives an XML file based
on given geo-location boundaries with latitude and longitude
values along with sequences of roads. We build the network
by representing the road/street intersections and end points as
vertices and the road/street segments as edges. We treat each
direction of double roads as different edges.

For storage and manipulation of the data, we employ
Sparksee, formerly known as DEX, which is a scalable graph
database [8]. Figure 1 shows the layers of the system structure.
We provide a new Java API with easy to use features and
functionalities. Apart from the access to the network, e.g.
retrieving edges and vertices or finding the closest vertex to a

given geo-location inside the boundary, we provide methods
for computing the shortest paths both for time-varying and
fixed travel times of the edges. For details, please refer
to web-based documentation on http://elif.eser.bilkent.edu.tr/
roadnetwork/documentation.

B. Sample Dataset: Milan City Traffic

To generate the time-varying graph dataset, we apply our
process over Telecom Italia Data Challenge Floating Car data
for Milan which contains 65,956,914 different trajectories for
61 days between March and April, 2015 [7]. The trajectory
traces include latitude-longitude pairs, time and speed infor-
mation covering the rectangular area between the minimum
and maximum latitude-longitude pairs within 45.3335945◦N,
8.9415892◦E and 45.5725183◦N, 9.376938◦E (Figure 2).

Fig. 2: Road Map of Milan

Figure 3 shows the distribution of the collected Telecom
Italia trajectories over time. It depicts the percentage of all
the trajectories as y-axis and the time slots in a day as x-
axis. The figure shows that the density of the trajectories
increases during the rush hours, i.e., between 07:30-10:00 and
17:00-19:30, and reaches to the maximum level at 18:15. The
trajectories captured during rush hours cover approximately
38% of the total. The time slots having the least number of
trajectories belong to the night hours, from 00:00 to around
05:00, and reaches the minimum level at 03:55.

Fig. 3: Trajectory Density over Time



C. Data Preparation and Cleaning

We seek to assign accurate time-varying travel times to
the edges of the underlying graph. The GPS trajectories are
typically noisy and sparse, thus, careful examination and
cleansing are needed. For example, we observe that 33% of
the trajectories (21,706,508) have a speed of less than 10 km/h
in our dataset. Around 27% of this subset is indeed noise: it
corresponds to the starting of the engine and ending of the trip;
and they do not represent the actual traffic. The remaining data
are captured during an active driving session and represent real
traffic conditions such as waiting at the traffic lights or being
stoped due to an obstruction on the road. We distinguish these
two cases via interpolation based on the location and speed
information of two consecutive traces of the same trajectory,
x′ and x. We omit the data for the starting and ending traces of
the trip. As a final step, we apply the following modifications
in order to detect unusual decelerations or stops, which also
do not represent real traffic conditions, and might be caused
by instantaneous circumstances:

∀ trajectory traces x with v < 10 km/h :

v′ = ∆distance(x′, x)/∆time(x′, x)

v =

{
v′ v′ > v

v otherwise

(1)

where ∆distance(x′, x) is the physical distance between two
traces, x′, and x. ∆time(x′, x) is the time spent to arrive from
the location of trace x′ to that of trace x. v is the recorded
speed provided by the trace, and v′ is the speed computed
according to the movement and time difference between x′

and x. If the calculated speed value indicates that the vehicle
is faster, we replace the recorded speed v with movement-
based speed v′.

D. Matching Trajectories with the Road Network

To efficiently match the trajectory points with the edges,
we partition the graph into spatial subgraphs by exploiting the
planarity of the road network. We compute the geographically
closest edge for each trajectory point in the corresponding
subgraph. The double-ways are represented by two edges with
almost the same distance to the trajectory points. The direction
is disambiguated using the previous road matches for that
trajectory, if available. Else, we make the direction assignment
based on the geographic position of the point.

E. Dividing Data into Time Slots

After we match all trajectory points with the corresponding
network, we sort the trajectory points of each edge by date and
time. For each edge, we divide each day into 288 time slots,
i.e., with 5-minute periods in a day from 00:00 to 23:55 and
distribute each trajectory point of the corresponding edge to
the corresponding time slot. The different dates show similar
patterns for all the days of the week. Figure 4 depicts the
autocorrelation function for a sample edge. The figure clearly
shows an autocorrelation of the signal within a day lag with

peaks at one day and at multiples of a day. This strengthens our
intuition that the data has a daily periodicity with a relatively
high level of confidence. However, the autocorrelation function
does not exhibit a clear weekly period since we do not observe
a significantly higher peak at lag seven (day). We observe
that the patterns for weekdays and weekends is similar, which
apparently seems counter-intuitive. Thus, in practice, we do
not observe any significant difference in Milan. Hence, in
order to avoid space inefficiency and lessen sparsity, we merge
the same time slots of all days’ (including weekdays and
weekends) trajectory data together to form the aggregated data
for each edge.

Fig. 4: Autocorrelation of An Edge Data

Note that we do not have any value for some time slots
of some edges due to the sparsity of the traces. Figure 5
represents the load ratio of edges with respect to the time slots.
The x-axis represents the time slots while y-axis (load ratio)
shows the percentage of edges that have travel time values
based on existing real data for the corresponding time slot.
The time slots having the maximum, 37%, and the minimum,
3.5%, load factors correspond to 18:20 and 03:55, respectively.
This figure clearly shows the level of sparsity of the data.
Using commercial providers’ data with larger amounts of data
per time slot, like TomTom [10], would lead us to larger load
ratios. In our case, the obtained ratios expose the need for
further estimations as we explain in the following sections.

Fig. 5: Load Ratio of Edges over Time



F. Outlier Detection

We need to identify outlier speed values, i.e., that were
recorded not due to traffic but due to various other reasons,
such as cars run over the speed limits, etc. To detect and ex-
clude those outliers we apply Generalised Extreme Studentised
Deviate (ESD) Test [11], which is a generalisation of Grubb’s
Test for more than one outlier. Once the outliers are removed,
we expect that the remaining speed values enable us to have a
better understanding of the traffic condition at each time slot.
Because we employ travel time as weights in the time-varying
graph, we aggregate the length of the edges from OSM, then
divide it by the speed values.

G. Interpolation and Filtering

We need to address two major issues to finalize the dataset
with the resultant vector with 288 weights spanning a day with
5-minute intervals:

• Missing Data: After forming the daily vectors, i.e., that
contain 288 slots per day per edge, we observed that
77.68% of the vector slots do not contain any data.

• Noise: The data after the aggregation stage has noise,
i.e., high frequency components apparent as jumps in the
data, associated with it.

To address these issues we compute the frequency spectrum
of the most populous edges to give an idea about the nature of
the time series involved. The average power of the respective
frequencies is plotted in Figure 6.

Fig. 6: Average Frequency Spectrum of The Most Populous
4000 Edges

The spectrum shows a band-limited signal with the majority
of the content in the low-pass region. The other components
out of the region are the noise that we observe in the
aggregated signal. The signal of interest is depicted with a
red band in Figure 6. This shows us that the signal is band-
limited. The cutoff frequency for the signal is 0.0069/min
which we select according to the noise level.

According to the signals and systems theory, this signal has
to be sampled with at least Nyquist rate which is the twice
the highest frequency (Fmax) in the signal [12]. The minimum

sampling interval for the signals of interest is given in Equation
2.

FNyquist ≥ 2.Fmax ≥ 0.0139

Tsampling ≤
1

FNyquist
≤ 72 minutes ≤ 14 samples (2)

Equation 2 illustrates that any signal which has data with
14 consecutive missing data is undersampled and will cause
aliasing. We observe from the data that this requirement does
not hold for most of the edges of the data. To overcome
these problems we develop two solutions for the respective
cases. If the length of consecutive missing data is larger
than 14 samples we use the minimum duration for that edge.
This minimum duration is calculated using the length of the
edge and the speed limit where available, or the value for
urban areas (50 km/h). Else, we draw a sample data from a
normal distribution N (µ, σ2) where the parameters µ and σ
are calculated from the existent data for the edge. With these
corrections in the time series, we use a low pass filter with
cutoff frequency as depicted in Figure 6 (this filter is applied
in the spectral domain) to compute the final time series. This
interpolation technique is also called sinc interpolation or
Whittaker-Shannon interpolation for band-limited signals. The
flow of the process is outlined in Algorithm 1.

Input:
1) S: Time series set for the edges of the given network
2) δ: Minimum travel time for edge n
Output: µ and σ: variance and standard deviation from
the complete data

1: procedure DataInfo(S, δ)
2: Define I . a set for missing data intervals
3: for n = 1 : size(S) do
4: I[n]←MissingDataIntervals(S[n]) . the time

slots of S[n] having no data
5: end for
6: S′[n] = S[n]
7: for all I[n] ∈ I do
8: if Len(I[n]) ≥ 14 then
9: Fill I[n] with δ

10: else
11: Fill I[n] with samples drawn from N (µ, σ2)
12: end if
13: Update S′[n] missing intervals with I[n]
14: end for
15: SLPF [n] = Low pass filter S′[n]
16: Fill missing data of S[n] with SLPF [n]
Algorithm 1: Algorithm for interpolation and filtering

III. TIME-DEPENDENT SHORTEST PATHS

In this section, we compare traditional vs time-dependent
versions of shortest paths solutions over the dataset and system
we built. We aim to quantify the difference in using a fixed
weight graph vs. a time-varying graph in finding the shortest
paths. Since the edges of the graph have different travel time



values(edge weights) for different time slots within a day,
in time-dependent shortest paths (TDSP) the employed travel
time (edge weight) of an edge changes depending when the
path employs the edge. This information has a cascading
dependence on the travel times of the previous edges. The
steps of the TDSP we employ is given in Algorithm 2. The
algorithm spreads from the start vertex s to the destination
vertex d, by iterating until there is no new vertex to be
processed, i.e., the shortest paths of all vertices that can be
reached by s are discovered, or d is already found (Line 8).
For the edge weight between two vertices, the algorithm uses
the weight belonging to arrival time of the preceding vertex
as in Line 14.

For the standard shortest path problem, we utilize the same
algorithm by modifying the edge weight related parts (Line
12, 14). We discard the usage of tstart and get the fixed
edge weights, i.e., based on the average travel time on the
corresponding edges.

A. Experimental Setup
We sample the dataset by using the start and destination

locations of randomly selected 4,620 real trajectories. The
distribution of the selected trajectories (Figure 7) is similar
to the trajectory density over the time slots (Figure 3).

Fig. 7: Sample Trajectory Distribution over All Time Slots

We compare the time-varying vs. fixed weights shortest
paths using two measures: similarity of resulting paths and
gain of time-dependent shortest path regarding the travel time.
The similarity of paths is based on the common edges of two
given paths. Here we calculate the similarity between TDSP
and traditional shortest path. We use Jaccard distance (Eq. 3).
The range of similarity index is [0,1].

sim(p1, p2) =
edgeSet(p1) ∩ edgeSet(p2)

edgeSet(p1) ∪ edgeSet(p2)
(3)

where p1 and p2 represent paths, i.e., an ordered vertex set.
The gain on the path length, or more accurately path

duration is as follows:
Θ(SPf (s, d), t)−Θ(SPtv(s, d), t)

Θ(SPf (s, d), t)
(4)

where the Θ function computes the duration of the path
starting at t. SPtv and SPf are the shortest paths obtained

Input:
1) G(V,E): the spatiotemporal network whose each edge
e has travel times for different time slots
2) s: source vertex over the network
3) d: destination vertex over the network
4) tstart: start time of desired path for s and t.
Output: p: a path including vertex list

1: procedure TDSP(G, s, d, tstart)
2: p← ∅ . result path
3: Define D . a priority queue of vertices with travel time

as priority index
4: D[s]← 0
5: Define P . a list of preceding vertices
6: P [s]← NIL
7: Define S . vertices having the shortest paths
8: while D.size 6= S.size ∨ d∈S do
9: v ← ExtractMin(D)

10: S ← S ∪ v . add v to discovered list
11: for all u ∈ outNeighbors(v) do
12: if u /∈ S ∧

D[u] > D[v] + edge(v, u).weight[tstart +D[v]]
then

13: . the index of a vertex not included in D is +∞
14: D[u]← D[v] + edge(v, u).weight[tstart +D[v]]

. update travel time to u
15: P [u]← v . update preceding of u
16: end if
17: end for
18: end while
19: if d ∈ D then
20: cur ← d
21: while cur 6= NIL do
22: p.addHead(cur)
23: cur ← P [cur]
24: end while
25: end if
26: return p
Algorithm 2: Time Dependent Shortest Path (TDSP)

with the time-varying and fixed weights, respectively. For each
query,i.e., source-destination pair (s-d), we measure how much
gain one would get using a time-varying network instead of
employing the traditional network. For simplicity, we refer the
path retrieved with time-varying weights as SPtv and the one
with fixed weights as SPf .

B. Experimental Results

Figure 8 presents the result of each measure with respect to
path sizes, i.e., number of vertices of the paths, ranging from
1 to 80 for our dataset. The average similarity ranges from
0.18 to 1, for path sizes of 79 and 5, respectively. Similarity
between SPtvs and SPf s decreases as the path size increases
(Figure 8a). Note that the fluctuations on the figures stem from
varying the number of samples we have for each path size. For
example, there are 161 paths of length 23 vertices, and there



are only 2 of length 76. Figure 8b illustrates that the shortest
path queries over time-varying network get higher gains, i.e.,
SPtv has much lower travel time than SPf , as the number of
vertices increases. Note that the gain cannot be lower than 0,
because if SPf had lower travel time at t, SPtv would be the
same as SPf according to TDSP algorithm (Algorithm 2). In
other words, if a path for a query provides more benefit, i.e.,
less travel time, than any other paths starting at the same time,
the path would be the resultant path of TDSP. For the dataset
the gain goes up to 0.14, for the path with 80 vertices.

(a) Similarity of Time-varying Shortest Paths vs Static Paths

(b) Gain of Time-varying Shortest Paths over Static Paths w.r.t. Path
Length

Fig. 8: Path Size based Analysis

Figure 9 shows the results related to one query started at
different times to show the changes in the result paths. We
choose a representative query with an average of 37 vertices
in all its resulting paths having the start times with half-hour
intervals. It means there are 48 different queries with the same
source-destination pair yet different start times. The x-axis of
the figure represents the start times of the query. The red
line illustrates the similarity index between SPtv and SPf

with the corresponding start times. Similarity between SPtvs
and SPf varies in time reaching exact paths in some cases,
i.e., similarity index 1, and not exactly equal paths in other
cases, with a worse case similarity index 0.5. Additionally, we
present the similarity between the consecutive shortest paths
with the green dashed line. According to the results, all result
paths are at least 45% similar. In total, 15 different paths are
retrieved and SPf is observed in the time-varying shortest
paths twice. On average, the consecutive paths are similar in an
hour period, probably because of the similar traffic patterns, in
the period. After the period, the selected path at the next start
time change drastically, i.e., not smoothly any more. It may

indicate the changes in the traffic conditions may not evolve
gradually. The paths belonging to night hours, i.e., 22:00-6:00,
do not change as much as the ones between 7:00 and 18:00.

The results confirm that time-varying shortest paths can
reveal alternative paths with shorter time routes and the paths
are not necessarily similar to the paths computed in static
networks.

Fig. 9: Comparisons on Time-Varying Paths for the Same
Query with Different Start Times

IV. CONCLUSION AND FUTURE WORK

We presented our methodology to generate a time-varying
road network dataset along with a graph manipulation API
that we share to help research on time-varying graphs.

We match the traces of a sparse GPS data with a road
network, aggregate the data to a single day version with 5
minutes sampling interval, and develop a time-series model
that infers and estimates the missing data. We employ a
scalable database, Sparksee, for the storage and manipulation
of our dataset. We provide a Java API for easy utilization.
One can download the database file and can use the .jar
to manipulate the network. Besides the basic operations on
graphs such as getting edges and vertices, we include shortest
path methods for time-varying and fixed weights of the edges.

We employ the system in a use case evaluation of time-
varying shortest path solutions. The difference between the
shortest paths using time-varying vs. fixed weights increases
as the number of vertices increases. The travel times of these
two types of shortest paths give different results in favor of
using the time-varying road network.

Our work is an early step towards generating benchmarks
and systems for analysis and management of time-varying
graphs. The dataset we employ is not a large-scale one. One
of our future directions is building larger time-varying road
networks with larger amount of GPS traces. Additionally, we
plan to feed our database with more real based trajectory
data and increase the ratio of the real based data against the
synthetic (estimated) data; redistribute trajectories considering
each day of the week independently, instead of merging all
trajectories into one sample day. An accurate and scalable
dataset and graph manipulation tool can be used in smart
city applications, route recommendation systems and location
based services.



REFERENCES

[1] B. George and S. Shekhar, “Time-aggregated graphs for modeling spatio-
temporal networks,” in Advances in conceptual modeling-theory and
practice. Springer, 2006, pp. 85–99.

[2] S. E. Dreyfus, “An appraisal of some shortest-path algorithms,” Opera-
tions research, vol. 17, no. 3, pp. 395–412, 1969.

[3] H. Wang, G. Li, H. Hu, S. Chen, B. Shen, H. Wu, W.-S. Li, and K.-L.
Tan, “R3: a real-time route recommendation system,” Proceedings of the
VLDB Endowment, vol. 7, no. 13, pp. 1549–1552, 2014.

[4] J. Letchner, J. Krumm, and E. Horvitz, “Trip router with individualized
preferences (trip): Incorporating personalization into route planning,”
in Proceedings of the National Conference on Artificial Intelligence,
vol. 21, no. 2. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2006, p. 1795.

[5] L. Cao and J. Krumm, “From gps traces to a routable road map,” in
Proceedings of the 17th ACM SIGSPATIAL international conference on
advances in geographic information systems. ACM, 2009, pp. 3–12.

[6] T. Hunter, R. Herring, P. Abbeel, and A. Bayen, “Path and travel time
inference from gps probe vehicle data,” NIPS Analyzing Networks and
Learning with Graphs, vol. 12, no. 1, 2009.

[7] “Source of the dataset: Tim big data challenge 2015,” www.telecomitalia.
com/bigdatachallenge, accessed: 2015-06-1.

[8] N. Martı́nez-Bazan, V. Muntés-Mulero, S. Gómez-Villamor, J. Nin, M.-
A. Sánchez-Martı́nez, and J.-L. Larriba-Pey, “Dex: high-performance
exploration on large graphs for information retrieval,” in Proceedings
of the sixteenth ACM conference on Conference on information and
knowledge management. ACM, 2007, pp. 573–582.

[9] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, 2008.

[10] “Tomtom city,” http://www.tomtom.com/en gb/traffic-news/, accessed:
2016-07-1.

[11] “Michael thomas flanagan’s java scientific library,” http://www.ee.ucl.ac.
uk/∼mflanaga/java/.

[12] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Systems,
ser. Prentice-Hall signal processing series. Upper Saddle River, N.J.
Prentice Hall London: Prentice Hall international, 1997.


