
Inductive Dependency Parsing

Joakim Nivre

Växjö University
School of Mathematics and Systems Engineering

SE-35195 Växjö
Sweden

Joakim.Nivre@msi.vxu.se

Abstract. This paper describes experiments on using inductive machine
learning to guide a deterinistic dependency parser for unrestricted natu-
ral language text. Using data from a small treebank of Swedish, an eager
probabilistic learning algorithm is used to induce context-sensitive parse
tables. Evaluation shows a significant improvement over the baseline,
which uses a table without contextual information.

1 Introduction

Deterministic dependency parsing has recently been proposed as a robust and
efficient method for syntactic parsing of unrestricted natural language text [1,2].
Dependency parsing means that the goal of the parsing process is to construct a
dependency graph, of the kind depicted in Figure 1 (rather than, say, a context-
free phrase structure tree). Deterministic parsing means that we always derive a
single analysis for each input string. Moreover, this single analysis is derived in a
monotonic fashion with no redundancy or backtracking, which makes it possible
to parse natural language sentences in linear time [2].

In this paper, I will continue to investigate the parsing algorithm proposed
in [2], which can be described as a left-to-right incremental algorithm, which
blends bottom-up and top-down processing, as opposed to the similar algorithm
described in [1], which proceeds strictly bottom-up. More precisely, I will explore
the possibility of using inductive machine learning to guide the parser, using
data from a small treebank of Swedish [3]. Unlike in previous work [1,2], I will
assume that dependency graphs are labeled with dependency types, although
the evaluation will give results for both labeled and unlabeled representations.

The paper is structured as follows. Section 2 gives the necessary background
definitions and introduces the idea of guided parsing based on inductive machine
learning. Section 3 describes the data used in the experiments, the evaluation
metrics, and the models and algorithms used in the learning process. Results
from the experiments are given in section 4, while conclusions and suggestions
for further research are presented in section 5.
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Fig. 1. Dependency graph for Swedish sentence

2 Background

2.1 Dependency Graphs

The linguistic tradition of dependency grammar comprises a large and fairly
diverse family of theories and formalisms that share certain basic assumptions
about syntactic structure, in particular the assumption that syntactic structure
consists of lexical nodes linked by binary relations called dependencies (see, e.g.,
Tesnière [4], Sgall et al. [5], Mel’čuk [6], Hudson [7]). Thus, the common formal
property of dependency structures, as compared to the representations based on
constituency (or phrase structure), is the lack of nonterminal nodes.

In a dependency structure, every word token is dependent on at most one
other word token, usually called its head or regent, which means that the struc-
ture can be represented as a directed graph, with nodes representing word tokens
and arcs representing dependency relations. In addition, arcs may be labeled
with specific dependency types. Figure 1 shows a labeled dependency graph for
a simple Swedish sentence, where each word of the sentence is labeled with its
part of speech and each arc labeled with a grammatical function.

Formally, we define dependency graphs in the following way:

1. Let R = {r1, . . . , rm} be the set of permissible dependency types (arc labels).
2. A depencency graph for a string of words W = w1· · ·wn is a labeled directed

graph D = (W, A), where
(a) W is the set of nodes, i.e. word tokens in the input string,
(b) A is a set of labeled arcs (wi, r, wj) (wi, wj ∈ W , r ∈ R).
We write wi < wj to express that wi precedes wj in the string W (i.e., i < j);
we write wi

r→ wj to say that there is an arc from wi to wj labeled r, and
wi → wj to say that there is an arc from wi to wj (regardless of the label);
we use →∗ to denote the reflexive and transitive closure of the unlabeled arc
relation; and we use ↔ and ↔∗ for the corresponding undirected relations,
i.e. wi ↔ wj iff wi → wj or wj → wi.

3. A dependency graph D = (W, A) is well-formed iff the following conditions
are satisfied:



Unique label (wi
r→wj ∧ wi

r′
→wj) ⇒ r = r′

Single head (wi→wj ∧ wk→wj) ⇒ wi = wk

Acyclic ¬(wi→wj ∧ wi→∗wj)

Connected wi↔∗wj

Projective (wi↔wk ∧ wi <wj<wk) ⇒ (wi→∗wj ∨ wk→∗wj)

For a more detailed discussion of dependency graphs and well-formedness con-
ditions, the reader is referred to [2].

2.2 Parsing Algorithm

The parsing algorithm presented in [2] is in many ways similar to the basic
shift-reduce algorithm for context-free grammars (Aho et al. [8]), although the
parse actions are different given that no nonterminal symbols are used. Moreover,
unlike the algorithm presented in [1], the algorithm considered here actually uses
a blend of bottom-up and top-down processing, constructing left-dependencies
bottom-up and right-dependencies top-down, in order to achieve incrementality.
For a similar but nondeterministic approach to dependency parsing, see [9].

Parser configurations are represented by triples 〈S, I, A〉, where S is the stack
(represented as a list), I is the list of (remaining) input tokens, and A is the
(current) arc relation for the dependency graph. Given an input string W , the
parser is initialized to 〈nil, W, ∅〉 and terminates when it reaches a configuration
〈S,nil, A〉 (for any list S and set of arcs A). The input string W is accepted if the
dependency graph D = (W, A) given at termination is well-formed; otherwise W
is rejected. The behavior of the parser is defined by the transitions defined in
Figure 2 (where wi and wj are arbitrary word tokens):

Initialization 〈nil, W, ∅〉

Termination 〈S,nil, A〉

Left-Arc 〈wi|S, wj |I,A〉 → 〈S, wj |I, A ∪ {(wj , r, wi)}〉 ¬∃wk∃r′(wk, r′, wi) ∈ A

Right-Arc 〈wi|S, wj |I,A〉 → 〈wj |wi|S, I, A ∪ {(wi, r, wj)}〉 ¬∃wk∃r′(wk, r′, wj) ∈ A

Reduce 〈wi|S, I, A〉 → 〈S, I, A〉 ∃wj∃r(wj , r, wi) ∈ A

Shift 〈S, wi|I, A〉 → 〈wi|S, I, A〉

Fig. 2. Parser transitions



1. The transition Left-Arc adds an arc wj
r→ wi from the next input token wj

to the token wi on top of the stack and reduces (pops) wi from the stack.
2. The transition Right-Arc adds an arc wi

r→ wj from the token wi on top of
the stack to the next input token wj , and shifts (pushes) wj onto the stack.

3. The transition Reduce reduces (pops) the token wi on top of the stack.
4. The transition Shift shifts (pushes) the next input token n onto the stack.

The transitions Left-Arc and Right-Arc are subject to conditions that ensure
that the graph conditions Unique label and Single head are always satisfied.
By contrast, the Reduce transition can only be applied if the token on top of
the stack already has a head. For Shift, finally, the only condition is that the
input list is non-empty.

As it stands, this transition system is nondeterministic, since several tran-
sitions can often be applied to the same configuration. Thus, in order to get a
deterministic parser, we need to introduce a mechanism for resolving transition
conflicts. Regardless of which mechanism is used, the parser is guaranteed to
terminate after at most 2n transitions, given an input string of length n [2].
This means that as long as transitions can be performed in constant time, the
running time of the parser will be linear in the length of the input. Moreover,
the parser is guaranteed to produce a dependency graph that is acyclic and pro-
jective (and satisfies the unique-label and single-head constraints). This means
that the dependency graph given at termination is well-formed if and only if it
is connected [2].

2.3 Guided Parsing

One way of turning a nondeterministic parser into a deterministic one is to use
a guide (or oracle) that can inform the parser at each nondeterministic choice
point; cf. [10,11]. Guided parsing is normally used to improve the efficiency of
a nondeterministic parser, e.g. by letting a simpler (but more efficient) parser
construct a first analysis that can be used to guide the choice of the more complex
(but less efficient) parser. This is the approach taken, for example, in [11].

In our case, we rather want to use the guide to improve the accuracy of a
deterministic parser, starting from a baseline of randomized choice. One way of
doing this is to use a treebank, i.e. a corpus of analyzed sentences, to train a
classifier that can predict the next transition (and dependency type) given the
current configuration of the parser. However, in order to maintain the efficiency
of the parser, the classifier must also be implemented in such a way that each
transition can still be performed in constant time.

Previous work in this area includes the use of memory-based learning to guide
a standard shift-reduce parser [12] and the use of support vector machines to
guide a deterministic dependency parser [1]. In the experiments reported in this
paper, the guide will take the form of a parse table, where the parser can simply
look up the next transition given the current configuration. However, since the
number of possible parser configurations is in principle infinite (given that there



is no upper bound on sentence length), we also need to define suitable abstrac-
tions over configurations, which will be called parser states. Given a particular
definition of a parser state, the learning problem can then be defined as that of
inducing the appropriate parse table from a treebank.

3 Method

3.1 Data

It is standard practice in data-driven approaches to natural language parsing
to use treebanks both for training and evaluation. Thus, the Penn Treebank of
American English [13] has been used to train and evaluate the best available
parsers of unrestricted English text [14,15]. One problem when developing a
parser for Swedish is that there is no comparable large-scale treebank available
for Swedish.

For the experiments reported in this paper we have used a manually anno-
tated corpus of written Swedish, created at Lund University in the 1970’s and
consisting mainly of informative texts from official sources [3]. Although the
original annotation scheme is an eclectic combination of constituent structure,
dependency structure, and topological fields [16], it has proven possible to con-
vert the annotated sentences to dependency graphs with very high accuracy.
In the conversion process, we have also reduced the original fine-grained clas-
sification of grammatical functions to a more restricted set of 16 dependency
types.

The converted treebank contains 6316 sentences with a mean sentence length
of 15.5 words. For the experiments, the treebank was divided into three non-
overlapping data sets: 80% for training 10% for development/validation, and
10% for final testing. The results presented below are all from the validation set.
(The final test set was not used at all in the experiments reported in this paper.)

3.2 Evaluation

Parsing accuracy was measured by the attachment score used by Eisner [17] and
Collins et al. [18], which is computed as the proportion of tokens in a sentence
(excluding punctuation) that are assigned the correct head (or no head if the
token is a root). The overall attachment score is then calculated as the mean
attachment score over all sentences in the sample. In order to measure label
accuracy, we also define a labeled attachment score, where both the head and the
label must be correct, but which is otherwise computed in the same way as the
ordinary (unlabeled) attachment score. Finally, we will report labeled precision
and recall and unlabeled attachment score for selected dependency types.

3.3 Models and Algorithms

In order to define a parse table, where the parser can look up the next transition
given the current configuration, we need to define a space of parser states, which



are abstractions over configurations. For this purpose we define a number of
variables that can be used to define different models of parser state. The variables
used in this study are listed in Table 1.

Variable Explanation
top The token on top of the stack
next The next input token
look The next plus one input token
top.dep The dependency type of top (if any)
top.left The dependency type of top’s leftmost dependent (if any)
top.right The dependency type of top’s rightmost dependent (if any)
next.left The dependency type of next’s leftmost dependent (if any)

Table 1. Parser state variables

The first three variables (top–look) refer to word tokens in the input string.
However, in the experiments reported here, the value of these variables is not the
actual word form but the part-of-speech tag assigned to the token in a prepro-
cessing phase. (The tagger used in the experiments is a standard HMM tagger
trained on the Stockholm-Umeå Corpus [19] and found to have an accuracy of
95–96% when tested on held-out data from the same corpus.)

The four remaining variables (top.dep–next.left) concern dependency
types and can be treated either as binary boolean variables – being true if the
relevant token has been assigned a head and dependency type and false other-
wise – or as multi-valued variables – where the value is the specific dependency
type if one exists and a nil value otherwise. I will use the subscript b when the
former interpretation is intended (thus, top.depb, top.leftb, etc.).

By combining these variables in different ways, we can obtain different parser
state models. The three models used in the experiments are defined in Table 2.
In the baseline model, the parser state is basically determined by the token on
top of the stack and the next input token. Besides being sensitive to whether the
top already has a head or not (which is necessary to ensure that the transitions
Left-Arc and Reduce are only performed when permissible), the model does
not incorporate any contextual information at all. Model 1 introduces context-
dependence by making the state sensitive to the occurrence of right dependents of
top and left dependents of next, as well as the token after next (the lookahead
token look). Model 2 extends the context-sensitivity in two different ways. First,
it also considers left dependents of top. Secondly, it considers not only whether
there exists a dependent in a certain structural position but also looks at its
specific dependency type.

The learning algorithm used in the experiments is based on a probabilistic
model and selects the most probable transition for each state and the most
probable dependency type given the transition and the state. Formally:



Model Variables
Baseline: 〈top,next,top.depb〉
Model 1: 〈top,next,top.depb,top.rightb,next.leftb, look〉
Model 2: 〈top,next,top.dep,top.right,next.left,top.left, look〉

Table 2. Parser state models

1. Let S be the set of all possible parser states according to a given model.
2. Let T : S → {Left-Arc,Right-Arc,Reduce,Shift} × (R ∪ {nil}) be the

parse table for this state space.
3. Then, for every parser state s ∈ S, it should hold that T (s) = (tmax , rmax ),

where

tmax = arg maxt P (t|s)

rmax =
{

arg maxr P (r|tmax , s) if tmax ∈ {Left-Arc,Right-Arc}
nil otherwise

The parse table T defines a mapping from each state s to the most probable
transition from that state and, if the most probable transition is Left-Arc or
Right-Arc, to the most probable dependency type given the state and the
transition.

The learning problem then becomes the problem of estimating the probabil-
ities P (t|s) and P (r|t, s) for every state s, transition t and dependency type r.
The learning method used to solve this problem is the following:

1. The parser is simulated on the treebank in order to determine the correct
transition sequence for each sentence.

2. The simulation gives rise to frequency counts for different combinations of
states, transitions and dependency types.

3. Frequency counts are used to derive maximum-likelihood estimates of the
relevant probabilities as follows:

P̂ (t|s) = C(t,s)
C(s)

P̂ (r|t, s) = C(r,t,s)
C(t,s)

4. For cases where frequency counts are below a certain threshold, smoothing
is performed by backing of to a more coarse-grained parser state model. The
following backoff sequences were used:

Model 1: 〈top,next,top.depb,top.rightb,next.leftb, look〉
⇓

〈top,next,top.depb,top.rightb,next.leftb, 〉
⇓

〈top,next,top.depb〉



Model 2: 〈top,next,top.dep,top.right,next.left,top.left, look〉
⇓

〈top,next,top.dep,top.right,next.left〉
⇓

〈top,next,top.dep〉
If the frequency is too low even in the last backoff model (or in the baseline
model), all the probability mass is assigned to Reduce, if this is permissible,
and to Shift otherwise.

4 Results

Table 3 gives the results obtained with the three models defined in the previous
section and with a frequency threshold of 1 (i.e. as soon as there is at least
one occurrence of the relevant combination of state, transition and dependency
type, no backoff is performed). Both Model 1 and Model 2 give a substantial and
statistically significant improvement over the baseline, but there is no significant
difference between the two models. This is somewhat surprising, given that parser
states in Model 2 contain more information. However, it is possible that Model
2 suffers (more) from sparse data, given that it has a much larger number of
free parameters and given that the training set is fairly small. Therefore, it may
be possible to improve the performance of Model 2 using a more sophisticated
smoothing method.

Model LAS UAS
Baseline 72.4 79.8
Model 1 77.0 84.1
Model 2 76.9 83.8

Table 3. Parsing accuracy for different models (frequency threshold = 1)

If we compare the results to those obtained for other languages (given that
there are no comparable results available for Swedish), we note that the unlabeled
attachment score is considerably lower than for English, where the best results
are above 90% [18,1], but slightly better than for Czech [18]. However, it should
be remembered that the size of the training set in our experiments is fairly small,
only about 10% of the standard training set from the Penn Treebank.

Table 4 shows the effect of using different frequency thresholds for Model 1.
We see that raising the threshold consistently degrades performance. Although
the differences are too small to be statistically significant given the size of the test
set, it seems likely that this is a reliable result. This can be taken to corroborate
the observations made in research on memory-based language processing to the



Threshold LAS UAS
1 77.0 84.1
3 76.3 83.5
5 75.7 82.7

10 74.4 81.3

Table 4. Parsing accuracy with different frequency thresholds (Model 1)

effect that information derived from low-frequency events is important, despite
the fact that it can be unreliable in statistical estimation; cf. [20].

Table 5 shows the precision and recall for a selection of dependency types for
Model 1 with a frequency threshold of 1. For the major grammatical functions
on the clause level, i.e. SUB(ject), OBJ(ect) and PR(e)D(icative), the unlabeled
attachment score seems fairly reasonable, indicating that these head words often
find their correct head, while labeling is much less reliable, especially for OBJ
and PRD. It seems that even if attachment accuracy can be improved, it will
nevertheless be difficult to assign labels deterministically in the same process.
However, it should be possible to improve the labeled precision and recall using a
separate post-processing phase. Finally, we observe that the attachment score is
considerably lower for ADV(erbial) and ATT(ribute) (especially for the former),
which to a large extent is due to the infamous PP-attachment problem.

Dependency LP LR UAS
SUB 81.2 76.9 86.7
OBJ 67.0 67.5 81.7
PRD 71.6 62.4 81.0
ADV 66.6 65.3 69.7
ATT 61.7 74.4 76.0
DET 88.0 74.4 88.0

Table 5. Precision and recall for selected dependency types (Model 1)

5 Conclusion

In this paper I have shown that a combination of inductive machine learning and
deterministic dependency parsing can be used to construct a robust and efficient
parser for unrestricted natural language text, achieving a parsing accuracy which
is close to the state of the art, at least with respect to attachment accuracy.

Suggestions for further research includes the exploration of alternative guid-
ing and learning algorithms, the combination of inductive and analytical learning



to impose high-level linguistic constraints, and the development of new parsing
methods (e.g. involving multiple passes over the data). In addition, it is impor-
tant to evaluate the approach with respect to other languages and corpora.

References

1. Yamada, H., Matsumoto, Y.: Statistical dependency analysis with support vector
machines. In van Noord, G., ed.: Proceedings of the 8th International Workshop
on Parsing Technologies (IWPT 03). (2003) 195–206

2. Nivre, J.: An efficient algorithm for projective dependency parsing. In van Noord,
G., ed.: Proceedings of the 8th International Workshop on Parsing Technologies
(IWPT 03). (2003) 149–160

3. Einarsson, J.: Talbankens skriftspråkskonkordans. Lund University (1976)
4. Tesnière, L.: Éléments de syntaxe structurale. Editions Klincksieck (1959)
5. Sgall, P., Hajicova, E., Panevova, J.: The Meaning of the Sentence in Its Pragmatic

Aspects. Reidel (1986)
6. Mel’cuk, I.: Dependency Syntax: Theory and Practice. State University of New

York Press (1988)
7. Hudson, R.A.: English Word Grammar. Blackwell (1990)
8. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles Techniques, and Tools.

Addison Wesley (1986)
9. Obrebski, T.: Dependency parsing using dependency graph. In van Noord, G., ed.:

Proceedings of the 8th International Workshop on Parsing Technologies (IWPT
03). (2003) 217–218

10. Kay, M.: Guides and oracles for linear-time parsing. In: Proceedings of the 6th
International Workshop on Parsing Technologies (IWPT 03). (2000) 6–9

11. Boullier, P.: Guided earley parsing. In van Noord, G., ed.: Proceedings of the 8th
International Workshop on Parsing Technologies (IWPT 03). (2003) 43–54

12. Venstra, J., Daelemans, W.: A memory-based alternative for connectionist shift-
reduce parsing. Technical Report ILK-0012, University of Tilburg (2000)

13. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated
corpus of English: The Penn treebank. Computational Linguistics 19 (1993) 313–
330

14. Collins, M.: Head-Driven Statistical Models for Natural Language Parsing. PhD
thesis, University of Pennsylvania (1999)

15. Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings NAACL-2000.
(2000)

16. Teleman, U.: Manual för grammatisk beskrivning av talad och skriven svenska.
Studentlitteratur (1974)

17. Eisner, J.M.: An empirical comparison of probability models for dependency gram-
mar. Technical Report IRCS-96-11, Institute for Research in Cognitive Science,
University of Pennsylvania (1996)

18. Collins, M., Hajič, J., Brill, E., Ramshaw, L., Tillmann, C.: A Statistical Parser of
Czech. In: Proceedings of 37th ACL Conference, University of Maryland, College
Park, USA (1999) 505–512

19. Ejerhed, E., Källgren, G.: Stockholm Umeå Corpus. Version 1.0. Produced by
Department of Linguistics, Umeå University and Department of Linguistics, Stock-
holm University. ISBN 91-7191-348-3. (1997)

20. Daelemans, W., van den Bosch, A., Zavrel, J.: Forgetting exceptions is harmful in
language learning. Machine Learning 34 (2002) 11–43


