Theories and Proofs in Fault Diagnosis

Ilyas Cicekli

Dept. of Comp. Eng. and Info. Sc., Bilkent University,
06533 Bilkent, Ankara, TURKEY,
ilyas@cs.bilkent.edu.tr

Abstract. This paper illustrates how theories (contexts), fail branches,
and the ability to control the construction of proofs in MetaProlog play
an important role in the expression of the fault diagnosis problem. These
facilities of MetaProlog make it easier to represent digital circuits and
the fault diagnosis algorithm on them. MetaProlog theories are used both
in the representation of digital circuits and in the implementation of the
fault diagnosis algorithm. Fail branches and the ability to control their
construction play a key role during the construction of hypothesises to
explain the fault in a given faulty circuit.

1 Introduction

Meta-level facilities in logic programming languages provide explicit represen-
tation of contexts (theories), statements (clauses), derivability relationship be-
tween theories and goals, and proofs. This explicit representation of meta-level
objects and control knowledge may improve the expressive power of the language
and help to shrink the search space of a goal by avoiding unnecessary searches.

Many systems having some kind of meta-level facility are presented in the
literature [13]. Weyhrauch’s FOL system [18] builds up contexts (theories) by
declaring predicates, functions, constants and variables, and defining axioms. In
that system, theorems are proved with respect to the axioms of a context and
proofs are recorded. In the OMEGA system [2], a metalanguage defines the syn-
tax of expressions and statements, viewpoints describe sets of assumptions, and
the consequence concept formalizes derivability relationship between statements
and viewpoints. The system developed by Lamma et al. [10] for the contextual
logic programming [11] represents a set of Prolog clauses as a unit, and an or-
dered set of units as a context. Nadathur et al. [12] create a new context adding
clauses in an implication goal to the current context in their system. Some other
researchers in the logic programming community have sought meta-level facilities
in meta-interpreters [14-16] based on Prolog. Even standard Prolog [6] has some
meta-level facilities. The predicates assert and retract add and remove clauses
from a system-wide database by destroying the old version of that database.
The meta predicate call tries to prove an explicitly given goal with respect to
the single system-wide database. There are no notions of contexts in standard
Prolog.

MetaProlog is a meta-level extension of Prolog which is evolved from the
research of Bowen and Kowalski [3,4]. In MetaProlog, theories are made ex-
plicit so that they can be manipulated just as other data objects in the system.
Once theories are made explicit, deductions are made from these theories in-
stead of a single system-wide database. The basic two-argument demo predicate
in MetaProlog is used to represent the derivability relation between an explic-
itly represented theory and goal. Another meta-level facility in MetaProlog is
dynamically-constructed proof trees. They are collected by the system when a
goal is proved with respect to a theory by using the three-argument version of
demo predicate. A given partially instantiated proof of a goal when the deduction
of that goal is started may shrink the search space of that goal.

We implemented a compiler-based MetaProlog system [7,8] for efficient im-
plementation of theories and derivability relation. This compiler-based MetaPro-
log system supports multiple theories and a fast context switching among the
theories in MetaProlog. Since MetaProlog is an extension of Prolog, the Warren
Abstract Machine [1,17], which is used in the implementation of Prolog, is ex-
tended to get efficient implementation meta-level facilities and this extension is
called the Abstract MetaProlog Engine [8].

There can be many applications of meta-level facilities in a logic programming
language. An obvious application of proofs is the explanation facility of an expert
system. Collected proofs can be used to give justifications about the behavior
of a rule based expert system. Sterling describes a meta-level architecture for
expert systems in [16]. In [9], Eshghi shows how to use meta-level knowledge in a
fault finding problem in logic circuits. Bowen [5] describes how to use meta-level
programming techniques in knowledge representation.

In this paper, we chose the fault diagnosis problem as an application to
demonstrate how multiple theories and fail branches in MetaProlog play a key
role in the representation of this problem. This problem is problem chosen, be-
cause we use the most of the meta-level facilities in MetaProlog in its represen-
tation. Dynamically created multiple theories are used in the representation of
logic circuits, hypothesises representing faulty circuits and the problem itself.
Fail branches are used to construct the set of hypotheses describing possible
faults in the given faulty circuit.

The next section explains the representation of theories and how they are
created in the MetaProlog system. Section 3 explains derivability relations, cre-
ation of proofs and fail branches, and how the creation of proofs are controlled
in the MetaProlog system. Section 4 illustrates how these meta-level facilities
are used in the representation of the fault diagnosis problem.

2 MetaProlog Theories

Theories are the meta-level objects which are addressed firstly in many meta-
level systems. They are made explicit in these meta-level systems so that they can
be manipulated just as other data objects. Since they are explicitly represented,
we can reason about them or we can discuss their characteristics. Since explicit

representations of theories and statements are available, the provability relation
between them can also be defined explicitly.

In Prolog, there is only one theory, and all goals are proved with respect to
this single theory. On the other hand, there can be more than one theory in
MetaProlog at a certain time, so that a goal can be proved with respect to any
of them. The same goal can also be proved with respect to a different theory in
the MetaProlog system.

Since there is a single implicitly represented database in Prolog, ad hoc meth-
ods are used when there is a need to update this database. The builtin predicates
assert and retract update the Prolog database to create a new version of this
database by destroying the old version in favor of the new version. On the other
hand, we do not need to destroy an old theory when we create a new one from
that theory in the MetaProlog system.

Theories of the MetaProlog system are organized in a tree whose root is
a distinguished theory, the base theory. The base theory consists of all builtin
predicates, and all other theories in the system are its descendants; i.e., all
builtin predicates in the base theory can be accessed from all other theories in
the system.

A new theory is created from an old theory by adding or dropping some
clauses. The new theory inherits all the procedures of the old theory except for
procedures explicitly modified during its creation. The system can still access
both the new theory and the old theory. The following builtin predicates are
used to create new theories in the MetaProlog system:

addto(OldTheory, Clauses, NewTheory)
dropfrom(OldTheory, Clauses, NewTheory)

The given clauses are added to (dropped from) the given old theory to create a
new theory by the predicate addto (dropfrom). The variable NewTheory is bound
to the internal representation of the new theory after the execution of one of these
commands. Assume that p is a procedure in NewTheory. The clauses of p are
exactly the same as the clauses of p in OldTheory, if p does not contain any
clause in Clauses. Otherwise, the clauses of p in NewTheory consist of the clauses
in OldTheory and Clauses which belongs to p if NewTheory is created by the
addto predicate. If NewTheory 1s created by the dropfrom predicate, the clauses
of p contains all clauses of p in OldTheory except the clauses which appear in
Clauses.

The first argument of the addto (dropfrom) predicate is a theory (a variable
bound to the internal representation of that theory), the second argument is a list
of clauses, and the third argument must be an unbound variable which is going
to be bound to the internal representation of the new theory after the successful
execution of the addto (dropfrom) predicate. Both predicates create a completely
new theory with a unique theory identifier in its internal representation. This
means that any two theories with two different internal representations are not
unifiable in our system even though they may contain exactly the same clauses.
In fact, this is the reason why the last argument of these predicates must be

an unbound variable. Two theories can be unifiable only if they have the same
internal representations.

3 Derivability Predicates in MetaProlog

The basic derivability relation in MetaProlog is represented by a two-argument
demo predicate between an explicitly represented theory and a goal. The basic
demo(Theory, Goal) predicate holds iff Goal is provable in Theory. This predicate
is used to check whether a goal is provable in a theory which 1s currently available
in the system.

The first argument of the demo is normally a variable which is bound to
the internal representation of a theory. The second argument is a regular Prolog
goal. If the given goal is provable in the given theory, the two-argument demo
predicate succeeds; otherwise it fails. If there are more than one solution, we can
get all solutions one by one by backtracking to that demo predicate.

In the MetaProlog system, we not only prove a goal with respect to a theory,
but also can collect its proof. The proof of a goal is collected by a three-argument
demo(Theory, Goal,proof(Proof)) predicate. The variable Proof is normally an
unbound variable before the three-argument demo predicate is submitted, and
that variable is bound the proof of Goal in Theory after the successful execution
of the demo predicate. The more details about derivability relations including
three-argument demo predicate and their implementation can be found in [8].

The three-argument demo predicate can also be submitted with a partially
instantiated proof. In this case, the demo predicate tries to find a solution whose
proof can be unifiable with the given partial proof. After a successful execution,
the partial proof is completed. By giving a partial proof, the search space of a
goal can be shrunk since the system may not need to search all parts of its search
space.

The structure of the proof of a goal G in the MetaProlog system is a list
whose head is an instance of G, and whose tail is the list of the proofs of the
subgoals of the clause whose head is unified with the goal G. For example, let
us assume that the variable T1 is bound to the internal representation of the
theory containing the following clauses.

p(X,Y) :- q(X), r(Y). s(1).

q(X) - s(X). r(a).
After the execution of demo(T1,p(X,Y),proof(P)), the variable P is bound to
the following term:

[p(1,a),[q(1),[s(D)]},[r(a)]]

Proofs are just success branches in a search tree. In the MetaProlog system,
we can also collect fail branches of a search tree. When the following three-
argument demo predicate is executed in the MetaProlog system, Branch is bound
to the leftmost branch of the search tree of Goal relative to Theory.

demo(Theory, Goal,branch(Branch))

a. A Trivial Theory T b. The Search Tree of p(X,Y)

p(X,Y) :- q(X)Y). — p(X,Y)
q(a,b). ‘
a(b,c)
— q(X,Z},a(Z,Y)
c. Branches of The Search Tree / \

1. [P aaY)’[q(a’b)]’[q(b’Y)’faﬂ]] — q(b,Y) — q(C,Y

()
2. [P(a’c)’[q(a’b)]’[q(b’c)]] \ / \
- [p(
(

):la(b,e)][ale,Y), fail]]

Y
failure success failure failure
Y

4. [p(b,Y),[a(b,c)],[a(c, Y) fail]] {X=a,Y=c}

Fig. 1. A Trivial Theory and Its Search Tree

Backtracking into this demo predicate will cause Branch to be bound to succes-
sive branches of the search tree. This branch can be a success branch (proof) or
a fail branch of the search tree.

In Figure 1, a trivial theory T and the search tree of the goal p(X,Y) relative
to theory T are given. In that search tree, there are one success branch and
three fail branches. After the execution of demo(T,p(X,Y),branch(Branch)), the
variable Branch is bound to the first branch of the search tree in Figure 1. We
can get other branches by backtracking to the demo predicate.

Each fail branch has exactly one atomic fail subbranch. An atomic fail sub-
branch is a list whose head is a subgoal and its tail is the list [fail]. For example,
the atomic fail subbranch of the first branch in Figure 1 is the following term:

[a(b,Y),fail]

An atomic fail subbranch separates a fail branch into two parts. The first part
is the collected part of the fail branch, and the second part is the uncollected
part of the fail branch. Even though fail branches are not completely collected,
their collected parts are enough to give the reason of that failure. The collected
part will reflect all unifications occurred before the failure, and the atomic fail
subbranch will reflect the exact location of that failure.

Although branches (proofs or fail branches) are useful in many applications,
all details of branches may be unnecessary in some cases. We should not pay
extra cost to collect these unnecessary parts of branches in those cases. In the
MetaProlog system, certain subbranches of a branch can be skipped by using

a four-argument demo predicate instead of a three-argument demo predicate.
The fourth argument of this demo predicate contains a list of procedures whose
branches are skipped during the execution of the given goal.

4 Fault Diagnosis in Digital Circuits

In this section, we describe a MetaProlog program which tries to find a fault in
a given faulty digital circuit. The fault diagnosis algorithm given in this section
is based on the ideas of Esghi (cf. [9]). We will assume that there is a single
faulty gate in the given faulty circuit in the form of a gate sticking at zero or
one. Although this program is designed to find the fault in digital circuits with
a single faulty gate, it can easily be extended for digital circuits with multiple
faulty gates.

Section 4.1 describes how a digital circuit is represented in MetaProlog. The
description given in Section 4.1 can be used to represent the topological de-
scription of both normal and faulty circuits. In Section 4.2, the fault diagnosis
algorithm and its implementation in MetaProlog are described.

4.1 Digital Circuit Description

We have to describe a digital circuit in some sort of predicate calculus formalism.
A circuit will be represented by a MetaProlog theory which contains its topo-
logical description in the form of facts and rules. The theory will be organized
in such a way that hypotheses describing faulty circuits can be created from it
by simply adding a fact indicating that one of the gates is stuck at zero or one.

inl
gl
97
in2
g3
97

Fig.2. An Exor Circuit

For the purposes of this simple example, we will consider the exor circuit
given in Figure 2. There are five gates in that exor circuit and they are labeled
as gl---gh. A faulty exor circuit will have one of its five gates stuck at one or
zero. The exor circuit has one output and two input lines, and its input lines are
labeled as inl and 2.

circuit(in(In1,In2), out(Out)) :-
gate(gl, not(inl), Inl, _, G1Out),
gate(g2, and(in2,g1), In2, G1Out, G20ut),
gate(g3, not(in2), In2, _, G3Out),
(g4, and(in1,g3), Inl, G3Out, G4Out),
(g5, or(g2,g4), G20ut, G4Out, Out).

(G, 5 5 -, Out) :- stuckAt(G, At), !, Out = At.
(-, and(L1,L2), X, Y, Z) :- andTable(X, Y, Z), !
gate(_, or(L1,L2), X, Y, Z) :- orTable(X, Y, Z), .
gate(_, not(L1), X, _, Z) :- notTable(X, Z), L.

getInput(in(Inl,In2)) :- lowHigh(In1), lowHigh(In2).

lowHigh(0). notTable(0,1). andTable(0,0,0). orTable(0,0,0).
lowHigh(1). notTable(1,0). andTable(0,1,0). orTable(0,1,1).
andTable(1,0,0). orTable(1,0,1).
andTable(1,1,1). orTable(1,1,1).

Fig. 3. Theory exor Representing Exor Circuit

The MetaProlog theory ezor given in Figure 3 represents the exor circuit
given in Figure 2. The theory ezor contains truth tables for not, and and or
gates in addition to the topological description of the exor circuit. The theory
exor could have inherited truth tables from one of its ancestors; but for simplicity
reasons, we put truth tables together with the circuit description into a single
theory. The theory has also the predicate getinput to create a possible input for
the exor circuit.

The topological description of a circuit is represented by a call to the predi-
cate circuit which has two arguments. The first argument is a term holding input
lines of the circuit, and the second one is the output of the circuit. Each gate
in the circuit 1s represented by the predicate gate whose first argument holds
the name of a gate. The second argument 1s a term representing the type of the
gate, and the names of its input lines. The last three arguments of that predicate
denote the inputs and the output of the gate in consideration. Each gate takes
an input line or the output of another gate as its input. The output of a circuit
is the output of one of its gates. In theory ezor, the output of the gate g& is also
the output of the exor circuit.

The significance of the first clause of the predicate gate is that first we check
whether a given gate is stuck at zero or one before we look at its truth table
for its behavior. In other words, normally a gate behaves as it i1s described in
its truth table unless it is a faulty gate. This clause makes it easier to represent
faulty circuits in addition to normal circuits with no fault in the form of the
theory given in Figure 3.

Since the theory ezor in Figure 3 does not contain a fact stuckAt(G, At), it
represents a normal exor circuit without a faulty gate. We can create a theory

representing a faulty exor circuit whose gate G is stuck at value At by adding a
fact stuckAt(G,At) to the theory exor. For example, the following addto state-
ment creates theory FaultyFzor which represents a faulty exor circuit whose gate
g2 1s stuck at zero.

addto(< theoryexor > stuckAt(g2,0),FaultyExor)

We will create theories representing faulty circuits when we create a hypothesis
to explain the fault in a given faulty circuit.

The predicate circuit in the theory ezor can be used to simulate the action
of the exor circuit in Figure 2. For example, to simulate the action of the exor
circuit when its input lines are respectively 1 and 0, we would run the MetaProlog
goal

demo(< theoryexor > circuit(in(0,1),out(Out)))

which would be solved yielding the output value Qut=1.

4.2 Fault Diagnosis

Our problem is that we have to find the faulty gate in a given faulty circuit from
the given circuit description and a faulty input-output pair. Although the algo-
rithm given here is designed for circuits with a single faulty gate, it can be easily
extended for circuits with multiple faulty gates by modifying the hypothesis
generation.

The algorithm presented here relies heavily on the ability to manipulate
and create theories in MetaProlog. In this algorithm, we will get a theory Cur-
cuit which describes the circuit under diagnosis and a faulty input-output pair
(InF, OutF) for the actual circuit represented by the theory Circuit for which the
output OQutF is a faulty output. We will also get another theory representing the
physical faulty circuit. The main task of this algorithm is to infer a new theory
FaultyDescription from the given theory Circuit such that this new theory will
correctly simulate the input-output pair (InF,OutF). This new theory will also
describe the faulty behavior in the given circuit due to a single gate stuck at
ZEero or one.

The basic fault diagnosis algorithm given in Figure 4 has two major parts.
The first part is Step 1 in which a set FAULTS of theories is created. This
set includes all possible theories which simulate the faulty input-output pair
(InF, OutF). Steps 2-6 of the algorithm constitute a standard test and eliminate
loop which is used to choose the theory which correctly describes the faulty
circuit from the set created in Step 1.

Step 1 of the fault diagnosis algorithm in Figure 4 is implemented in MetaPro-
log by the following procedure possible Faults which takes a theory describing a
circuit and a faulty input-output pair for that circuit as input, and returns a
set of theories in which every theory correctly simulates the given faulty input-
output pair.

1. From the circuit description Circuit and the faulty input-output pair (InF,OutF),
construct a set FAULTS of theories such that every theory in that set correctly
simulates the faulty input-output pair.

2. If the cardinality of the set FAULTS is 1, the set FAULTS contains the theory
correctly describing the faulty circuit. Stop and output the result.

3. Choose two distinct theories Ft and Fj in FAULTS, and construct, if possible, a
discriminating input /nD which distinguishes Fi and Fj. If this is impossible, stop
and output FAULTS which contains more than one theory which describes the
faulty circuit. Otherwise, go to Step 4.

4. Apply the input InD to the given physical faulty circuit to the resulting output
OutD.

5. Delete all Fi which cannot simulate the input-output pair (InD,OutD) from the
set FAULTS.

6. Go to Step 2.

Fig. 4. Fault Diagnosis Algorithm

possibleFaults(Circuit, InF, OutF, Faults) :-
demo(Circuit, circuit(InF,OutF), branch(Branch), skip(gate/5)),
member([Gate,[fail]], Branch),
getFaults(Gate, Branch, Circuit, Faults).

This procedure constructs the set of theories in which every theory correctly
simulates the faulty input-output pair by using a failed branch and a heuristic
deduction method. Normally, when we run the following goal

demo(Circuit,circuit(InF,OutF))

it will fail since (InF,OutF) is a faulty input-output pair for the correct circuit.
On the other hand, the goal

demo(Circuit,circuit(InF,OutF),branch(Branch))

will succeed by binding the variable Branch to a failed branch. We can get all
failed branches of the search tree by running the goal above recursively. But
we are not interested in all branches and their complete details, we are only
interested in which subgoals of the predicate circuit succeeded and which one
failed. For these reasons, the procedure possible Faulis calls the following subgoal

demo(Circuit,circuit(InF,OutF),branch(Branch), skip(gate/5))

to skip the proof of subgoals gate. In this case, the fail branch we get will not
contain proof details of these subgoals. In this fail branch, there will be a success
branch for a subgoal gate indicating that output behavior of that gate for its
input is correct based on its truth table, or a fail branch for it indicating that
the output behavior of that gate for its input is faulty. Another fact about this
fail branch is that it will contain a single failed gate. For example, if we run
the goal above for the theory ezor in Figure 3 and the faulty input-output pair
(in(1,1),0ut(1)), the variable Branch will be bound to the following term.

[circuit(in(1,1),out(1)),
[gate(gl,not(inl),1,,0)],
[gate(g2,and(gl,in2),0,1,0)],
[gate(g3,not(in2),1,,0)],
[gate(g4,and(inl,g3),1,0,0)],
[gate(gh,or(g2,g4),0,0,1), [fail]]]

The term above is a failed branch of the goal circuit in the theory ezor for the
faulty input-output pair (in(1,1),out(1)). In this failed branch, the gate g5 is a
failed gate since 1 is a faulty output for an or gate when its inputs are 0.

Later, the procedure possibleFaults chooses the failed gate in the fail branch
which has a single failed gate. Then, it calls the procedure getFaults to construct
the hypothesis set of theories which correctly simulate the faulty input-output
pair. The procedure getFaults is represented in MetaProlog by the following
clause.

getFaults(Gate, Branch, Circuit, [Fault | Faults]) :-
Gate = gate(G,GType,GInl,GIn2,GOut),
addto(Circuit, stuckAt(G,GOut), Fault),
getFaultyInputs(Gate, Branch, Circuit, Faults).

The procedure getFaults simply starts from the failed gate in the fail branch
to construct the hypothesis set of theories. A gate fails if its input-output pair
is a faulty one based on its truth table. For example, the gate g5 which is an
or gate fails since the output of an or gate cannot be 1 when its inputs are
0. So, either gate g4 1s stuck at one or one of its input lines is not zero. The
procedure getFaults constructs the hypothesis set by first assuming the failed
gate 1s stuck at its faulty output and then calls the procedure getFaultyInputs
given in Figure 5 to find out the possible faulty input lines for that failed gate.

The procedure getFaultylnputs finds out which input line of a failed gate can
be faulty. We only check input lines which are outputs of another gate since we
assumed that only gates can be faulty in a circuit. Each clause of the procedure
getFaultyInputs in Figure b represents a faulty input-output pair for or, and, and
not gates. Since we assumed that there is a single faulty gate in a given faulty
circuit, we do not consider all possible faulty input-output pairs for all gates. For
example, the faulty input-out pair ((1,1),0)) for an or gate is intentionally not
included in Figure 5, since it requires that both inputs of or gate must be faulty.!
If we want to update our algorithm so that it can find out faults in circuits with
more than one faulty gate, we only have to update procedures getFaults and
getFaultyInputs to satisfy our goals.

The top level of the fault diagnosis algorithm is represented by the following
procedure findFault which takes theories describing normal and faulty circuits,
and a faulty input-output pair as input, and prints out an explanation for the
fault in the faulty circuit.

! We also assume that an output of a gate can be used as an input for only one gate.
If an output of a gate can be the input of more than one gate, we should change the
procedure getFaultylnputs to accommodate this fact.

getFaultyInputs(gate(G,or(L1,12),0,0,1), Branch, Circuit, Faults) :-

(member([gate(L1,L1Type,L1In1,L1In2,0)], Branch), !,
getFaults(gate(L1,L1Type,L1In1,L1In2,1), Branch, Circuit, Faultsl);
Faults1 =[]),

(member([gate(L2,L2Type,L2In1,L2In2,0)], Branch), !,
getFaults(gate(L2,L2Type,L2In1,L.2In2,1), Branch, Circuit, Faults2);
Faults2 =[]),

append(Faultsl, Faults2, Faults).

getFaultyInputs(gate(G,or(L1,12),0,1,0), Branch, Circuit, Faults) :-
member([gate(L2,L2Type, L2In1,L2In2,1)], Branch), !,
getFaults(gate(L2,L2Type,L2In1,1.2In2,0), Branch, Circuit, Faults).

getFaultyInputs(gate(G,or(L1,12),1,0,0), Branch, Circuit, Faults) :-
member([gate(L1,L1Type,L1In1,L1In2,1)], Branch), !,
getFaults(gate(L1,L1Type,L1In1,L1In2,0), Branch, Circuit, Faults).

getFaultyInputs(gate(G,and(L1,1.2),0,1,1), Branch, Circuit, Faults) :-
member([gate(L1,L1Type,L1In1,L1In2,0)], Branch), !,
getFaults(gate(L1,L1Type,L1In1,L1In2,1), Branch, Circuit, Faults).

getFaultyInputs(gate(G,and(L1,1.2),1,0,1), Branch, Circuit, Faults) :-
member([gate(L2,L2Type, L2In1,L2In2,0)], Branch), !,
getFaults(gate(L2,L2Type,L2In1,1.2In2,1), Branch, Circuit, Faults).

getFaultyInputs(gate(G,and(L1,1.2),1,1,0), Branch, Circuit, Faults) :-

(member([gate(L1,L1Type,L1In1,L1In2,1)], Branch),
getFaults(gate(L1,L1Type,L1In1,L1In2,0), Branch, Circuit, Faultsl);
Faults1 =[]),

(member([gate(L2,L2Type,L2In1,L2In2,1)], Branch), !,
getFaults(gate(L2,L2Type,L2In1,L.2In2,0), Branch, Circuit, Faults2);
Faults2 =[]),

append(Faultsl, Faults2, Faults).

getFaultyInputs(gate(G,not(L1),0,_,0), Branch, Circuit, Faults) :-
member([gate(L1,L1Type,L1In1,L1In2,0)], Branch), !,
getFaults(gate(L1,L1Type,L1In1,L1In2,1), Branch, Circuit, Faults).

getFaultyInputs(gate(Gnot(L1),1,_,1), Branch, Circuit, Faults) :-
member([gate(L1,L1Type,L1In1,L1In2,1)], Branch), !,
getFaults(gate(L1,L1Type,L1In1,L1In2,0), Branch, Circuit, Faults).

getFaultyInputs(Gate, Branch, Circuit, []) :- L.

Fig. 5. Finding Faulty Inputs for A Gate

findFault(Circuit, FaultyCircuit, InF, OutF) :-
possibleFaults(Circuit, InF, OutF, Faults), !,
filterFaults(Faults, Fault, FaultyCircuit), !,
printFault(Fault).

This procedure first constructs the set of all possible theories which simulate the
given faulty input-output pair by calling the procedure possibleFaults. Then, 1t

calls the procedure filterFaults to choose the theory which correctly describes
the given faulty circuit from the set created by the procedure possible Faults.
The procedure printFault which takes the set of theories correctly describing the
faulty circuit, and prints out which gate is faulty in the given faulty circuit is
implemented as follows.

printFault([Fault]) :- I,
demo(Fault, stuckAt(G,At)),
nl, write(G), write(’ is stuck at), write(At).
printFault([Fault | Faults]) :-
demo(Fault, stuckAt(G,At)),
nl, write(G), write(’ is stuck at), write(At), write(’ or’),
printFault(Faults).

It simply demonstrates which gate is faulty in the theory that correctly describes
the faulty circuit, and prints out this faulty gate. If there 1s more than one theory
correctly describing the faulty circuit, this fact is also printed out by this printing
routine.

The MetaProlog procedures given in Figure 6 implement Steps 2-6 of the
fault diagnosis algorithm in Figure 4. The procedure filterFaulls in Figure 6 first
chooses two distinct theories from the set created by the procedure possible Faults
and an input which distinguishes those two theories. Then, it applies that in-
put to the faulty circuit to get its behavior on that input. Later, it deletes all
theories whose behaviors differ from the behavior of the faulty circuit on the
distinguishing input. This filtering operation continues until it is not possible to
choose two distinct theories and a distinguishing input on them. In that case,
all theories left in the set Faults correctly describe the faulty circuit.

The input-output pair (in(0,0),0ut(1)) is a faulty input-output pair for the
theory ezor. The procedure possibleFaults will construct a set containing three
theories. These theories represent faulty exor circuits whose gates ¢2, g4 and gd
are stuck at 1, respectively. These three theories correctly simulate the faulty
input-output pair above. Unfortunately, there is no input distinguishing any two
of these three theories. So, any of these three gates in the exor circuit can be
faulty, and we cannot determine which one of them. The procedure filterFaults
will recognize this fact, and return the set containing these three theories as
output.

Now, let assume that we have a faulty exor circuit whose gate ¢3 (cf. Figure 2)
is stuck at zero, and a faulty input-output pair (in(1,0),0ut(0)). The procedure
possible Faults will generate a set containing theories F1, F2, F3 representing
exor circuits whose gates ¢3, g4 and g5 are stuck at zero, respectively. The
procedure filterFaults will find a distinguishing input in(0,1) for theories F1 and
F3. Since the output behavior will be different on this input from the behavior
of our original faulty circuit on the same input, the theory F3 will be eliminated
from the hypothesis set by leaving theories F1 and F2 in the set. Unfortunately,
again there will not be any distinguishing input for these two theories, so the
output of the procedure filterFaults will be the set containing these two theories.

filterFaults(Faults, Fault, FaultyCircuit) :-
chooseTwoDistinctFaults(Faults,F1,F2,Input,Outputl,Output2), !,
demo(FaultyCircuit, circuit(Input,Output)),
(Output = Outputl, !,
deleteFaults(Faults, NewFaults, Input, Output?2),
filterFaults(NewFaults, Fault, FaultyCircuit) ;
Output = Output2, !,
deleteFaults(Faults, NewFaults, Input, Outputl),
filterFaults(NewFaults, Fault, FaultyCircuit)).
filterFaults(Fault, Fault, FaultyCircuit).

chooseTwoDistinctFaults(Faults,F1,F2,Input,Outputl,Output2) :-
chooseTwoFaults(Faults, F1, F2),
demo(F1, getInput(Input)),
demo(F1, circuit(Input,Outputl)),
demo(F2, circuit(Input,Output2)),
Outputl \= Output2.

chooseTwoFaults([F1 | Faults], F1, F2) :- member(F2, Faults).
chooseTwoFaults([F | Faults], F1, F2) :- chooseTwoFaults(Faults, F1, F2).

deleteFaults([F | Faults], NewFaults, Input, Output) :-
demo(F, circuit(Input,Output)), !,
deleteFaults(Faults, NewFaults, Input, Output).
deleteFaults([F | Faults], [F | NewFaults], Input, Output) :-
deleteFaults(Faults, NewFaults, Input, Output), !.
deleteFaults([], [], Input, Output) :- L.

Fig. 6. Filtering Possible Faults

5 Conclusion

In this paper, we illustrated how meta-level facilities in MetaProlog such as
theories and fail branches played a key role in the representation of the fault
diagnosis problem. These meta-level facilities improve the expressive power of the
MetaProlog programming language so that the problems, where these facilities
are necessary, can naturally be represented by the tools in MetaProlog. The
languages without this kind of facilities such as Prolog can only represent those
problems using adhoc methods.

The MetaProlog system, as a programming tool, is also useful for many
other AI and non-Al applications where meta-level facilities such as contexts
and proofs are necessary. For example, the proofs in MetaProlog can also be
used 1n explanation facilities of expert systems. A proof can be collected when
a goal 1s proved by a demo predicate, and that proof can be used to justify the
results of that goal. Besides, the inheritance mechanism in MetaProlog theories
can also be useful for the representation of the objects in the object-oriented
programming paradigm.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Ait-Kaci, H., Warren’s Abstract Machine: A Tutorial Reconstruction, The MIT

Press, Cambridge, 1991.

Attardi, G.,; and Simi, M., Metalanguage and Reasoning Across Viewpoints, in:
Proc. of the 6th ECAI Pisa, Italy, 1984.

Bowen, K.A., and Kowalski, R.A., Amalgamating Language and Metalanguage in
Logic Programming, in: Logic Programming, Clark, K., and Tarnlund, S.-A. (eds.),
Academic Press, London, 1982, pp. 153-173.

Bowen, K.A., and Weinberg, W., A Meta-Level Extension of Prolog, in: Proc. of
the 1985 Symp. on Logic Programming, IEEE Computer Society Press, 1985, pp.
48-53.

. Bowen, K.A., A Meta-Level Programming and Knowledge Representation, New

Generation Computing 3:359-383, 1985.
Bratko, I., PROLOG Programming For Artificial Intelligence, 2nd Fdition,
Addison-Wesley, New York, 1990.

. Cicekli, 1., Design and Implementation of An Abstract MetaProlog Engine for

MetaProlog, in: Meta-Programming tn Logic Programming, Abramson, H., and
Rogers, M.H. (eds.), The MIT Press, Cambridge, 1989, pp. 417-434.

Cicekli, 1., Abstract MetaProlog Engine, Journal of Logic Programming 34(3):169-
200, 1998.

. Eshghi, K. Application of Meta-Language Programming to Fault Finding in Logic

Circuits, in: Proc. of the 1st Int. Conf. on Logic Programming, Marseille, 1982.
Lamma, E., Mello, P, and Natali, A., An Extended Warren Abstract Machine
for The Execution of Structured Logic Programs, Journal of Logic Programming
14:187-222,1992.

Montiero, L., and Porto, A., Contextual Logic Programming, in: Proc. of the 6th
Int. Conf. on Logic Programming, The MIT Press, 1989, pp. 284-302.

Nadathur, G.; Jayaraman, B., and Kwon, K. Scoping Constructs in Logic Pro-
gramming: Implementation Problems and Their Solution, Journal of Logic Pro-
gramming 25:119-161, 1995.

des Rivieres, J., Meta-Level Facilities in Logic-Based Computational Systems,
in: Proc. of The Workshop on Meta-Level Architectures and Reflection, Alghero-
Sardinia, Italy, 1986.

Safra, M. and Shapiro, E., Meta-Interpreters for Real, in: Concurrent Prolog, Vol
2, Shapiro, E. (ed.), The MIT Press, Cambridge, 1987, pp. 166-179.

Sterling, L.S., Meta-Interpreters: The Flavors of Logic Programming?, in: Proc.
of Workshop on Deductive Databases and Logic Programming, Washington D.C.,
1986, pp. 163-175.

Sterling, L.S., A Meta-Level Architecture for Expert System, in: Meta-Level Ar-
chitectures and Reflection, Maes, R., and Nardi, D. (eds.), North Holland, 1988.
Warren, D.H.D., An Abstract Prolog Instruction Set, SRI Technical Report 309,
1983.

Weyhrauch, R.W. Prolegomena to A Theory of Mechanized Formal Reasoning,
Artificial Intelligence 13:133-170, 1980.

