
Theories and Proofs in Fault Diagnosis

Ilyas Cicekli

Dept� of Comp� Eng� and Info� Sc�� Bilkent University�
����� Bilkent� Ankara� TURKEY�

ilyas�cs�bilkent�edu�tr

Abstract� This paper illustrates how theories �contexts�� fail branches�
and the ability to control the construction of proofs in MetaProlog play
an important role in the expression of the fault diagnosis problem� These
facilities of MetaProlog make it easier to represent digital circuits and
the fault diagnosis algorithm on them� MetaProlog theories are used both
in the representation of digital circuits and in the implementation of the
fault diagnosis algorithm� Fail branches and the ability to control their
construction play a key role during the construction of hypothesises to
explain the fault in a given faulty circuit�

� Introduction

Meta�level facilities in logic programming languages provide explicit represen�
tation of contexts �theories�� statements �clauses�� derivability relationship be�
tween theories and goals� and proofs� This explicit representation of meta�level
objects and control knowledge may improve the expressive power of the language
and help to shrink the search space of a goal by avoiding unnecessary searches�

Many systems having some kind of meta�level facility are presented in the
literature ����� Weyhrauch	s FOL system ��
� builds up contexts �theories� by
declaring predicates� functions� constants and variables� and de�ning axioms� In
that system� theorems are proved with respect to the axioms of a context and
proofs are recorded� In the OMEGA system ���� a metalanguage de�nes the syn�
tax of expressions and statements� viewpoints describe sets of assumptions� and
the consequence concept formalizes derivability relationship between statements
and viewpoints� The system developed by Lamma et al� ��� for the contextual
logic programming ���� represents a set of Prolog clauses as a unit� and an or�
dered set of units as a context� Nadathur et al� ���� create a new context adding
clauses in an implication goal to the current context in their system� Some other
researchers in the logic programming communityhave sought meta�level facilities
in meta�interpreters ������� based on Prolog� Even standard Prolog ��� has some
meta�level facilities� The predicates assert and retract add and remove clauses
from a system�wide database by destroying the old version of that database�
The meta predicate call tries to prove an explicitly given goal with respect to
the single system�wide database� There are no notions of contexts in standard
Prolog�



MetaProlog is a meta�level extension of Prolog which is evolved from the
research of Bowen and Kowalski ������ In MetaProlog� theories are made ex�
plicit so that they can be manipulated just as other data objects in the system�
Once theories are made explicit� deductions are made from these theories in�
stead of a single system�wide database� The basic two�argument demo predicate
in MetaProlog is used to represent the derivability relation between an explic�
itly represented theory and goal� Another meta�level facility in MetaProlog is
dynamically�constructed proof trees� They are collected by the system when a
goal is proved with respect to a theory by using the three�argument version of
demo predicate� A given partially instantiated proof of a goal when the deduction
of that goal is started may shrink the search space of that goal�

We implemented a compiler�based MetaProlog system ���
� for e�cient im�
plementation of theories and derivability relation� This compiler�based MetaPro�
log system supports multiple theories and a fast context switching among the
theories in MetaProlog� Since MetaProlog is an extension of Prolog� the Warren
Abstract Machine ��� ���� which is used in the implementation of Prolog� is ex�
tended to get e�cient implementation meta�level facilities and this extension is
called the Abstract MetaProlog Engine �
��

There can be many applications of meta�level facilities in a logic programming
language� An obvious application of proofs is the explanation facility of an expert
system� Collected proofs can be used to give justi�cations about the behavior
of a rule based expert system� Sterling describes a meta�level architecture for
expert systems in ����� In ���� Eshghi shows how to use meta�level knowledge in a
fault �nding problem in logic circuits� Bowen ��� describes how to use meta�level
programming techniques in knowledge representation�

In this paper� we chose the fault diagnosis problem as an application to
demonstrate how multiple theories and fail branches in MetaProlog play a key
role in the representation of this problem� This problem is problem chosen� be�
cause we use the most of the meta�level facilities in MetaProlog in its represen�
tation� Dynamically created multiple theories are used in the representation of
logic circuits� hypothesises representing faulty circuits and the problem itself�
Fail branches are used to construct the set of hypotheses describing possible
faults in the given faulty circuit�

The next section explains the representation of theories and how they are
created in the MetaProlog system� Section � explains derivability relations� cre�
ation of proofs and fail branches� and how the creation of proofs are controlled
in the MetaProlog system� Section � illustrates how these meta�level facilities
are used in the representation of the fault diagnosis problem�

� MetaProlog Theories

Theories are the meta�level objects which are addressed �rstly in many meta�
level systems� They are made explicit in these meta�level systems so that they can
be manipulated just as other data objects� Since they are explicitly represented�
we can reason about them or we can discuss their characteristics� Since explicit



representations of theories and statements are available� the provability relation
between them can also be de�ned explicitly�

In Prolog� there is only one theory� and all goals are proved with respect to
this single theory� On the other hand� there can be more than one theory in
MetaProlog at a certain time� so that a goal can be proved with respect to any
of them� The same goal can also be proved with respect to a di�erent theory in
the MetaProlog system�

Since there is a single implicitly represented database in Prolog� ad hoc meth�
ods are used when there is a need to update this database� The builtin predicates
assert and retract update the Prolog database to create a new version of this
database by destroying the old version in favor of the new version� On the other
hand� we do not need to destroy an old theory when we create a new one from
that theory in the MetaProlog system�

Theories of the MetaProlog system are organized in a tree whose root is
a distinguished theory� the base theory� The base theory consists of all builtin
predicates� and all other theories in the system are its descendants� i�e�� all
builtin predicates in the base theory can be accessed from all other theories in
the system�

A new theory is created from an old theory by adding or dropping some
clauses� The new theory inherits all the procedures of the old theory except for
procedures explicitly modi�ed during its creation� The system can still access
both the new theory and the old theory� The following builtin predicates are
used to create new theories in the MetaProlog system�

addto�OldTheory� Clauses� NewTheory�

dropfrom�OldTheory� Clauses� NewTheory�

The given clauses are added to �dropped from� the given old theory to create a
new theory by the predicate addto �dropfrom�� The variableNewTheory is bound
to the internal representation of the new theory after the execution of one of these
commands� Assume that p is a procedure in NewTheory� The clauses of p are
exactly the same as the clauses of p in OldTheory � if p does not contain any
clause in Clauses� Otherwise� the clauses of p in NewTheory consist of the clauses
in OldTheory and Clauses which belongs to p if NewTheory is created by the
addto predicate� If NewTheory is created by the dropfrom predicate� the clauses
of p contains all clauses of p in OldTheory except the clauses which appear in
Clauses�

The �rst argument of the addto �dropfrom� predicate is a theory �a variable
bound to the internal representation of that theory�� the second argument is a list
of clauses� and the third argument must be an unbound variable which is going
to be bound to the internal representation of the new theory after the successful
execution of the addto �dropfrom� predicate� Both predicates create a completely
new theory with a unique theory identi�er in its internal representation� This
means that any two theories with two di�erent internal representations are not
uni�able in our system even though they may contain exactly the same clauses�
In fact� this is the reason why the last argument of these predicates must be



an unbound variable� Two theories can be uni�able only if they have the same
internal representations�

� Derivability Predicates in MetaProlog

The basic derivability relation in MetaProlog is represented by a two�argument
demo predicate between an explicitly represented theory and a goal� The basic
demo�Theory�Goal� predicate holds i� Goal is provable in Theory � This predicate
is used to check whether a goal is provable in a theory which is currently available
in the system�

The �rst argument of the demo is normally a variable which is bound to
the internal representation of a theory� The second argument is a regular Prolog
goal� If the given goal is provable in the given theory� the two�argument demo
predicate succeeds� otherwise it fails� If there are more than one solution� we can
get all solutions one by one by backtracking to that demo predicate�

In the MetaProlog system� we not only prove a goal with respect to a theory�
but also can collect its proof� The proof of a goal is collected by a three�argument
demo�Theory�Goal�proof�Proof�� predicate� The variable Proof is normally an
unbound variable before the three�argument demo predicate is submitted� and
that variable is bound the proof of Goal in Theory after the successful execution
of the demo predicate� The more details about derivability relations including
three�argument demo predicate and their implementation can be found in �
��

The three�argument demo predicate can also be submitted with a partially
instantiated proof� In this case� the demo predicate tries to �nd a solution whose
proof can be uni�able with the given partial proof� After a successful execution�
the partial proof is completed� By giving a partial proof� the search space of a
goal can be shrunk since the system may not need to search all parts of its search
space�

The structure of the proof of a goal G in the MetaProlog system is a list
whose head is an instance of G� and whose tail is the list of the proofs of the
subgoals of the clause whose head is uni�ed with the goal G� For example� let
us assume that the variable T� is bound to the internal representation of the
theory containing the following clauses�

p�X�Y� �� q�X�� r�Y�� s����
q�X� �� s�X�� r�a��

After the execution of demo�T��p�X�Y��proof�P��� the variable P is bound to
the following term�

�p���a���q�����s�������r�a���

Proofs are just success branches in a search tree� In the MetaProlog system�
we can also collect fail branches of a search tree� When the following three�
argument demo predicate is executed in the MetaProlog system� Branch is bound
to the leftmost branch of the search tree of Goal relative to Theory�

demo�Theory�Goal�branch�Branch��



a� A Trivial Theory T

p�X�Y� �	 q�X�Y��

q�a�b��

q�b�c��

c� Branches of The Search Tree


� �p�a�Y���q�a�b����q�b�Y��fail��

� �p�a�c���q�a�b����q�b�c���

�� �p�b�Y���q�b�c����q�c�Y��fail��

�� �p�b�Y���q�b�c����q�c�Y��fail��

b� The Search Tree of p�X�Y�

� p�X�Y�

� q�X�Z��q�Z�Y�

� q�b�Y�

failure success

fX�a�Y�cg

� q�c�Y�

failure failure

�
�

�

�
�
�

�
�
��

J
J
JJ

�
�
��

J
J
JJ

Fig� �� A Trivial Theory and Its Search Tree

Backtracking into this demo predicate will cause Branch to be bound to succes�
sive branches of the search tree� This branch can be a success branch �proof� or
a fail branch of the search tree�

In Figure �� a trivial theory T and the search tree of the goal p�X�Y� relative
to theory T are given� In that search tree� there are one success branch and
three fail branches� After the execution of demo�T�p�X�Y��branch�Branch��� the
variable Branch is bound to the �rst branch of the search tree in Figure �� We
can get other branches by backtracking to the demo predicate�

Each fail branch has exactly one atomic fail subbranch� An atomic fail sub�
branch is a list whose head is a subgoal and its tail is the list �fail�� For example�
the atomic fail subbranch of the �rst branch in Figure � is the following term�

� q�b�Y��fail�

An atomic fail subbranch separates a fail branch into two parts� The �rst part
is the collected part of the fail branch� and the second part is the uncollected
part of the fail branch� Even though fail branches are not completely collected�
their collected parts are enough to give the reason of that failure� The collected
part will re�ect all uni�cations occurred before the failure� and the atomic fail
subbranch will re�ect the exact location of that failure�

Although branches �proofs or fail branches� are useful in many applications�
all details of branches may be unnecessary in some cases� We should not pay
extra cost to collect these unnecessary parts of branches in those cases� In the
MetaProlog system� certain subbranches of a branch can be skipped by using



a four�argument demo predicate instead of a three�argument demo predicate�
The fourth argument of this demo predicate contains a list of procedures whose
branches are skipped during the execution of the given goal�

� Fault Diagnosis in Digital Circuits

In this section� we describe a MetaProlog program which tries to �nd a fault in
a given faulty digital circuit� The fault diagnosis algorithm given in this section
is based on the ideas of Esghi �cf� ����� We will assume that there is a single
faulty gate in the given faulty circuit in the form of a gate sticking at zero or
one� Although this program is designed to �nd the fault in digital circuits with
a single faulty gate� it can easily be extended for digital circuits with multiple
faulty gates�

Section ��� describes how a digital circuit is represented in MetaProlog� The
description given in Section ��� can be used to represent the topological de�
scription of both normal and faulty circuits� In Section ���� the fault diagnosis
algorithm and its implementation in MetaProlog are described�

��� Digital Circuit Description

We have to describe a digital circuit in some sort of predicate calculus formalism�
A circuit will be represented by a MetaProlog theory which contains its topo�
logical description in the form of facts and rules� The theory will be organized
in such a way that hypotheses describing faulty circuits can be created from it
by simply adding a fact indicating that one of the gates is stuck at zero or one�

qin


qin

HH
H
���

g


HH
H
���

g�

�
�g

�
�g�

�
�
�
�g�

out

Fig� �� An Exor Circuit

For the purposes of this simple example� we will consider the exor circuit
given in Figure �� There are �ve gates in that exor circuit and they are labeled
as g�� � �g�� A faulty exor circuit will have one of its �ve gates stuck at one or
zero� The exor circuit has one output and two input lines� and its input lines are
labeled as in� and in��



circuit�in�In
�In�� out�Out�� �	
gate�g
� not�in
�� In
� � G
Out��
gate�g� and�in�g
�� In� G
Out� GOut��
gate�g�� not�in�� In� � G�Out��
gate�g�� and�in
�g��� In
� G�Out� G�Out��
gate�g�� or�g�g��� GOut� G�Out� Out��

gate�G� � � � Out� �	 stuckAt�G� At�� �� Out � At�
gate� � and�L
�L�� X� Y� Z� �	 andTable�X� Y� Z�� ��
gate� � or�L
�L�� X� Y� Z� �	 orTable�X� Y� Z�� ��
gate� � not�L
�� X� � Z� �	 notTable�X� Z�� ��

getInput�in�In
�In�� �	 lowHigh�In
�� lowHigh�In��

lowHigh���� notTable���
�� andTable�������� orTable��������
lowHigh�
�� notTable�
���� andTable���
���� orTable���
�
��

andTable�
������ orTable�
���
��
andTable�
�
�
�� orTable�
�
�
��

Fig� �� Theory exor Representing Exor Circuit

The MetaProlog theory exor given in Figure � represents the exor circuit
given in Figure �� The theory exor contains truth tables for not� and and or
gates in addition to the topological description of the exor circuit� The theory
exor could have inherited truth tables from one of its ancestors� but for simplicity
reasons� we put truth tables together with the circuit description into a single
theory� The theory has also the predicate getInput to create a possible input for
the exor circuit�

The topological description of a circuit is represented by a call to the predi�
cate circuit which has two arguments� The �rst argument is a term holding input
lines of the circuit� and the second one is the output of the circuit� Each gate
in the circuit is represented by the predicate gate whose �rst argument holds
the name of a gate� The second argument is a term representing the type of the
gate� and the names of its input lines� The last three arguments of that predicate
denote the inputs and the output of the gate in consideration� Each gate takes
an input line or the output of another gate as its input� The output of a circuit
is the output of one of its gates� In theory exor � the output of the gate g� is also
the output of the exor circuit�

The signi�cance of the �rst clause of the predicate gate is that �rst we check
whether a given gate is stuck at zero or one before we look at its truth table
for its behavior� In other words� normally a gate behaves as it is described in
its truth table unless it is a faulty gate� This clause makes it easier to represent
faulty circuits in addition to normal circuits with no fault in the form of the
theory given in Figure ��

Since the theory exor in Figure � does not contain a fact stuckAt�G�At�� it
represents a normal exor circuit without a faulty gate� We can create a theory



representing a faulty exor circuit whose gate G is stuck at value At by adding a
fact stuckAt�G�At� to the theory exor� For example� the following addto state�
ment creates theory FaultyExor which represents a faulty exor circuit whose gate
g� is stuck at zero�

addto�� theoryexor ��stuckAt�g����FaultyExor�

We will create theories representing faulty circuits when we create a hypothesis
to explain the fault in a given faulty circuit�

The predicate circuit in the theory exor can be used to simulate the action
of the exor circuit in Figure �� For example� to simulate the action of the exor
circuit when its input lines are respectively � and � we would run the MetaProlog
goal

demo�� theoryexor ��circuit�in�����out�Out���

which would be solved yielding the output value Out���

��� Fault Diagnosis

Our problem is that we have to �nd the faulty gate in a given faulty circuit from
the given circuit description and a faulty input�output pair� Although the algo�
rithm given here is designed for circuits with a single faulty gate� it can be easily
extended for circuits with multiple faulty gates by modifying the hypothesis
generation�

The algorithm presented here relies heavily on the ability to manipulate
and create theories in MetaProlog� In this algorithm� we will get a theory Cir�
cuit which describes the circuit under diagnosis and a faulty input�output pair
�InF�OutF� for the actual circuit represented by the theory Circuit for which the
output OutF is a faulty output� We will also get another theory representing the
physical faulty circuit� The main task of this algorithm is to infer a new theory
FaultyDescription from the given theory Circuit such that this new theory will
correctly simulate the input�output pair �InF�OutF�� This new theory will also
describe the faulty behavior in the given circuit due to a single gate stuck at
zero or one�

The basic fault diagnosis algorithm given in Figure � has two major parts�
The �rst part is Step � in which a set FAULTS of theories is created� This
set includes all possible theories which simulate the faulty input�output pair
�InF�OutF�� Steps ��� of the algorithm constitute a standard test and eliminate
loop which is used to choose the theory which correctly describes the faulty
circuit from the set created in Step ��

Step � of the fault diagnosis algorithm in Figure � is implemented in MetaPro�
log by the following procedure possibleFaults which takes a theory describing a
circuit and a faulty input�output pair for that circuit as input� and returns a
set of theories in which every theory correctly simulates the given faulty input�
output pair�




� From the circuit description Circuit and the faulty input	output pair �InF�OutF��
construct a set FAULTS of theories such that every theory in that set correctly
simulates the faulty input	output pair�

� If the cardinality of the set FAULTS is 
� the set FAULTS contains the theory
correctly describing the faulty circuit� Stop and output the result�

�� Choose two distinct theories Fi and Fj in FAULTS � and construct� if possible� a
discriminating input InD which distinguishes Fi and Fj � If this is impossible� stop
and output FAULTS which contains more than one theory which describes the
faulty circuit� Otherwise� go to Step ��

�� Apply the input InD to the given physical faulty circuit to the resulting output
OutD�

�� Delete all Fi which cannot simulate the input	output pair �InD�OutD� from the
set FAULTS�

�� Go to Step �

Fig� �� Fault Diagnosis Algorithm

possibleFaults�Circuit� InF� OutF� Faults� ��
demo�Circuit� circuit�InF�OutF�� branch�Branch�� skip�gate�����
member��Gate��fail��� Branch��
getFaults�Gate� Branch� Circuit� Faults��

This procedure constructs the set of theories in which every theory correctly
simulates the faulty input�output pair by using a failed branch and a heuristic
deduction method� Normally� when we run the following goal

demo�Circuit�circuit�InF�OutF��

it will fail since �InF�OutF� is a faulty input�output pair for the correct circuit�
On the other hand� the goal

demo�Circuit�circuit�InF�OutF��branch�Branch��

will succeed by binding the variable Branch to a failed branch� We can get all
failed branches of the search tree by running the goal above recursively� But
we are not interested in all branches and their complete details� we are only
interested in which subgoals of the predicate circuit succeeded and which one
failed� For these reasons� the procedure possibleFaults calls the following subgoal

demo�Circuit�circuit�InF�OutF��branch�Branch�� skip�gate����

to skip the proof of subgoals gate� In this case� the fail branch we get will not
contain proof details of these subgoals� In this fail branch� there will be a success
branch for a subgoal gate indicating that output behavior of that gate for its
input is correct based on its truth table� or a fail branch for it indicating that
the output behavior of that gate for its input is faulty� Another fact about this
fail branch is that it will contain a single failed gate� For example� if we run
the goal above for the theory exor in Figure � and the faulty input�output pair
�in������out����� the variable Branch will be bound to the following term�



� circuit�in������out�����
� gate�g��not�in����� �� ��
� gate�g��and�g��in������� ��
� gate�g��not�in����� �� ��
� gate�g��and�in��g������� ��
� gate�g��or�g��g�������� �fail� � �

The term above is a failed branch of the goal circuit in the theory exor for the
faulty input�output pair �in������out����� In this failed branch� the gate g� is a
failed gate since � is a faulty output for an or gate when its inputs are �

Later� the procedure possibleFaults chooses the failed gate in the fail branch
which has a single failed gate� Then� it calls the procedure getFaults to construct
the hypothesis set of theories which correctly simulate the faulty input�output
pair� The procedure getFaults is represented in MetaProlog by the following
clause�

getFaults�Gate� Branch� Circuit� �Fault j Faults�� ��
Gate � gate�G�GType�GIn��GIn��GOut��
addto�Circuit� stuckAt�G�GOut�� Fault��
getFaultyInputs�Gate� Branch� Circuit� Faults��

The procedure getFaults simply starts from the failed gate in the fail branch
to construct the hypothesis set of theories� A gate fails if its input�output pair
is a faulty one based on its truth table� For example� the gate g� which is an
or gate fails since the output of an or gate cannot be � when its inputs are
� So� either gate g� is stuck at one or one of its input lines is not zero� The
procedure getFaults constructs the hypothesis set by �rst assuming the failed
gate is stuck at its faulty output and then calls the procedure getFaultyInputs
given in Figure � to �nd out the possible faulty input lines for that failed gate�

The procedure getFaultyInputs �nds out which input line of a failed gate can
be faulty� We only check input lines which are outputs of another gate since we
assumed that only gates can be faulty in a circuit� Each clause of the procedure
getFaultyInputs in Figure � represents a faulty input�output pair for or � and � and
not gates� Since we assumed that there is a single faulty gate in a given faulty
circuit� we do not consider all possible faulty input�output pairs for all gates� For
example� the faulty input�out pair ��������� for an or gate is intentionally not
included in Figure �� since it requires that both inputs of or gate must be faulty��

If we want to update our algorithm so that it can �nd out faults in circuits with
more than one faulty gate� we only have to update procedures getFaults and
getFaultyInputs to satisfy our goals�

The top level of the fault diagnosis algorithm is represented by the following
procedure 	ndFault which takes theories describing normal and faulty circuits�
and a faulty input�output pair as input� and prints out an explanation for the
fault in the faulty circuit�

� We also assume that an output of a gate can be used as an input for only one gate�
If an output of a gate can be the input of more than one gate� we should change the
procedure getFaultyInputs to accommodate this fact�



getFaultyInputs�gate�G�or�L
�L������
�� Branch� Circuit� Faults� �	
� member��gate�L
�L
Type�L
In
�L
In����� Branch�� ��
getFaults�gate�L
�L
Type�L
In
�L
In�
�� Branch� Circuit� Faults
��
Faults
 � �� ��

� member��gate�L�LType�LIn
�LIn����� Branch�� ��
getFaults�gate�L�LType�LIn
�LIn�
�� Branch� Circuit� Faults��
Faults � �� ��

append�Faults
� Faults� Faults��
getFaultyInputs�gate�G�or�L
�L����
���� Branch� Circuit� Faults� �	
member��gate�L�LType�LIn
�LIn�
��� Branch�� ��
getFaults�gate�L�LType�LIn
�LIn���� Branch� Circuit� Faults��

getFaultyInputs�gate�G�or�L
�L��
������ Branch� Circuit� Faults� �	
member��gate�L
�L
Type�L
In
�L
In�
��� Branch�� ��
getFaults�gate�L
�L
Type�L
In
�L
In���� Branch� Circuit� Faults��

getFaultyInputs�gate�G�and�L
�L����
�
�� Branch� Circuit� Faults� �	
member��gate�L
�L
Type�L
In
�L
In����� Branch�� ��
getFaults�gate�L
�L
Type�L
In
�L
In�
�� Branch� Circuit� Faults��

getFaultyInputs�gate�G�and�L
�L��
���
�� Branch� Circuit� Faults� �	
member��gate�L�LType�LIn
�LIn����� Branch�� ��
getFaults�gate�L�LType�LIn
�LIn�
�� Branch� Circuit� Faults��

getFaultyInputs�gate�G�and�L
�L��
�
���� Branch� Circuit� Faults� �	
� member��gate�L
�L
Type�L
In
�L
In�
��� Branch��
getFaults�gate�L
�L
Type�L
In
�L
In���� Branch� Circuit� Faults
��
Faults
 � �� ��

� member��gate�L�LType�LIn
�LIn�
��� Branch�� ��
getFaults�gate�L�LType�LIn
�LIn���� Branch� Circuit� Faults��
Faults � �� ��

append�Faults
� Faults� Faults��

getFaultyInputs�gate�G�not�L
���� ���� Branch� Circuit� Faults� �	
member��gate�L
�L
Type�L
In
�L
In����� Branch�� ��
getFaults�gate�L
�L
Type�L
In
�L
In�
�� Branch� Circuit� Faults��

getFaultyInputs�gate�G�not�L
��
� �
�� Branch� Circuit� Faults� �	
member��gate�L
�L
Type�L
In
�L
In�
��� Branch�� ��
getFaults�gate�L
�L
Type�L
In
�L
In���� Branch� Circuit� Faults��

getFaultyInputs�Gate� Branch� Circuit� ��� �	 ��

Fig� �� Finding Faulty Inputs for A Gate

�ndFault�Circuit� FaultyCircuit� InF� OutF� ��
possibleFaults�Circuit� InF� OutF� Faults�� ��
�lterFaults�Faults� Fault� FaultyCircuit�� ��
printFault�Fault��

This procedure �rst constructs the set of all possible theories which simulate the
given faulty input�output pair by calling the procedure possibleFaults� Then� it



calls the procedure 	lterFaults to choose the theory which correctly describes
the given faulty circuit from the set created by the procedure possibleFaults�
The procedure printFault which takes the set of theories correctly describing the
faulty circuit� and prints out which gate is faulty in the given faulty circuit is
implemented as follows�

printFault��Fault�� �� ��
demo�Fault� stuckAt�G�At���
nl� write�G�� write�	 is stuck at 	�� write�At��

printFault��Fault j Faults�� ��
demo�Fault� stuckAt�G�At���
nl� write�G�� write�	 is stuck at 	�� write�At�� write�	 or	��
printFault�Faults��

It simply demonstrates which gate is faulty in the theory that correctly describes
the faulty circuit� and prints out this faulty gate� If there is more than one theory
correctly describing the faulty circuit� this fact is also printed out by this printing
routine�

The MetaProlog procedures given in Figure � implement Steps ��� of the
fault diagnosis algorithm in Figure �� The procedure 	lterFaults in Figure � �rst
chooses two distinct theories from the set created by the procedure possibleFaults
and an input which distinguishes those two theories� Then� it applies that in�
put to the faulty circuit to get its behavior on that input� Later� it deletes all
theories whose behaviors di�er from the behavior of the faulty circuit on the
distinguishing input� This �ltering operation continues until it is not possible to
choose two distinct theories and a distinguishing input on them� In that case�
all theories left in the set Faults correctly describe the faulty circuit�

The input�output pair �in����out���� is a faulty input�output pair for the
theory exor � The procedure possibleFaults will construct a set containing three
theories� These theories represent faulty exor circuits whose gates g� � g
 and g�
are stuck at �� respectively� These three theories correctly simulate the faulty
input�output pair above� Unfortunately� there is no input distinguishing any two
of these three theories� So� any of these three gates in the exor circuit can be
faulty� and we cannot determine which one of them� The procedure 	lterFaults
will recognize this fact� and return the set containing these three theories as
output�

Now� let assume that we have a faulty exor circuit whose gate g� �cf� Figure ��
is stuck at zero� and a faulty input�output pair �in�����out���� The procedure
possibleFaults will generate a set containing theories F�� F�� F� representing
exor circuits whose gates g� � g
 and g� are stuck at zero� respectively� The
procedure 	lterFaults will �nd a distinguishing input in���� for theories F� and
F�� Since the output behavior will be di�erent on this input from the behavior
of our original faulty circuit on the same input� the theory F� will be eliminated
from the hypothesis set by leaving theories F� and F� in the set� Unfortunately�
again there will not be any distinguishing input for these two theories� so the
output of the procedure 	lterFaults will be the set containing these two theories�



�lterFaults�Faults� Fault� FaultyCircuit� �	
chooseTwoDistinctFaults�Faults�F
�F�Input�Output
�Output�� ��
demo�FaultyCircuit� circuit�Input�Output���
� Output � Output
� ��

deleteFaults�Faults� NewFaults� Input� Output��
�lterFaults�NewFaults� Fault� FaultyCircuit� �

Output � Output� ��
deleteFaults�Faults� NewFaults� Input� Output
��
�lterFaults�NewFaults� Fault� FaultyCircuit� ��

�lterFaults�Fault� Fault� FaultyCircuit��

chooseTwoDistinctFaults�Faults�F
�F�Input�Output
�Output� �	
chooseTwoFaults�Faults� F
� F��
demo�F
� getInput�Input���
demo�F
� circuit�Input�Output
���
demo�F� circuit�Input�Output���
Output
 n� Output�

chooseTwoFaults��F
 j Faults�� F
� F� �	 member�F� Faults��
chooseTwoFaults��F j Faults�� F
� F� �	 chooseTwoFaults�Faults� F
� F��

deleteFaults��F j Faults�� NewFaults� Input� Output� �	
demo�F� circuit�Input�Output��� ��
deleteFaults�Faults� NewFaults� Input� Output��

deleteFaults��F j Faults�� �F j NewFaults�� Input� Output� �	
deleteFaults�Faults� NewFaults� Input� Output�� ��

deleteFaults���� ��� Input� Output� �	 ��

Fig� 	� Filtering Possible Faults

� Conclusion

In this paper� we illustrated how meta�level facilities in MetaProlog such as
theories and fail branches played a key role in the representation of the fault
diagnosis problem� These meta�level facilities improve the expressive power of the
MetaProlog programming language so that the problems� where these facilities
are necessary� can naturally be represented by the tools in MetaProlog� The
languages without this kind of facilities such as Prolog can only represent those
problems using adhoc methods�

The MetaProlog system� as a programming tool� is also useful for many
other AI and non�AI applications where meta�level facilities such as contexts
and proofs are necessary� For example� the proofs in MetaProlog can also be
used in explanation facilities of expert systems� A proof can be collected when
a goal is proved by a demo predicate� and that proof can be used to justify the
results of that goal� Besides� the inheritance mechanism in MetaProlog theories
can also be useful for the representation of the objects in the object�oriented
programming paradigm�



References


� A��t	Kaci� H�� Warren�s Abstract Machine� A Tutorial Reconstruction� The MIT
Press� Cambridge� 
��
�

� Attardi� G�� and Simi� M�� Metalanguage and Reasoning Across Viewpoints� in�
Proc� of the �th ECAI� Pisa� Italy� 
����

�� Bowen� K�A�� and Kowalski� R�A�� Amalgamating Language and Metalanguage in
Logic Programming� in� Logic Programming� Clark� K�� and Tarnlund� S�	A� �eds���
Academic Press� London� 
��� pp� 
��	
���

�� Bowen� K�A�� and Weinberg� W�� A Meta	Level Extension of Prolog� in� Proc� of
the ��	
 Symp� on Logic Programming� IEEE Computer Society Press� 
���� pp�
��	���

�� Bowen� K�A�� A Meta	Level Programming and Knowledge Representation� New
Generation Computing ���
���	�� 
����

�� Bratko� I�� PROLOG Programming For Articial Intelligence� �nd Edition�
Addison	Wesley� New York� 
����

�� Cicekli� I�� Design and Implementation of An Abstract MetaProlog Engine for
MetaProlog� in� Meta�Programming in Logic Programming� Abramson� H�� and
Rogers� M�H� �eds��� The MIT Press� Cambridge� 
���� pp� �
�	����

�� Cicekli� I�� Abstract MetaProlog Engine� Journal of Logic Programming ����������
���� 
����

�� Eshghi� K�� Application of Meta	Language Programming to Fault Finding in Logic
Circuits� in� Proc� of the �st Int� Conf� on Logic Programming� Marseille� 
���


�� Lamma� E�� Mello� P� and Natali� A�� An Extended Warren Abstract Machine
for The Execution of Structured Logic Programs� Journal of Logic Programming
����	������ 
���



� Montiero� L�� and Porto� A�� Contextual Logic Programming� in� Proc� of the �th
Int� Conf� on Logic Programming� The MIT Press� 
���� pp� ��	���


� Nadathur� G�� Jayaraman� B�� and Kwon� K�� Scoping Constructs in Logic Pro	
gramming� Implementation Problems and Their Solution� Journal of Logic Pro�
gramming �
��������� 
����


�� des Rivieres� J�� Meta	Level Facilities in Logic	Based Computational Systems�
in� Proc� of The Workshop on Meta�Level Architectures and Re�ection� Alghero	
Sardinia� Italy� 
����


�� Safra� M� and Shapiro� E�� Meta	Interpreters for Real� in� Concurrent Prolog� Vol
�� Shapiro� E� �ed��� The MIT Press� Cambridge� 
���� pp� 
��	
���


�� Sterling� L�S�� Meta	Interpreters� The Flavors of Logic Programming�� in� Proc�
of Workshop on Deductive Databases and Logic Programming� Washington D�C��

���� pp� 
��	
���


�� Sterling� L�S�� A Meta	Level Architecture for Expert System� in� Meta�Level Ar�
chitectures and Re�ection� Maes� R�� and Nardi� D� �eds��� North Holland� 
����


�� Warren� D�H�D�� An Abstract Prolog Instruction Set� SRI Technical Report ����

����


�� Weyhrauch� R�W�� Prolegomena to A Theory of Mechanized Formal Reasoning�
Articial Intelligence ����������� 
����


