
Automatic Creation of a Morphological Processor

in Logic Programming Environment�

Ilyas Cicekli and Murat Temizsoy

Department of Computer Engineering and Information Science�
Bilkent University� ����� Bilkent� Ankara� Turkey�

e�mail� ilyas�cs�bilkent�edu�tr�temizsoy�cs�bilkent�edu�tr

Abstract

In this paper� we describe a two�level processor which automatically creates a mor�
phological processor from a given set of two�level phonological rules and morphotac�
tic rules� The given two�level phonological and morphotactic rules are automatically
converted into Prolog programs which represent a morphological processor for the lan�
guage in concern� We propose new logical representations for two�level phonological
rules� and two�level phonological rules are mapped into these new logical representa�
tions which are implemented in Prolog� Morphotactic rules are mapped into a �nite
state automaton �FA� representing those rules in Prolog� The mechanism described
here is applied to Turkish and the results we get are compared with the results of the
PC�KIMMO system which is developed for the same purpose� The experiments show
that our system� which is in logic programming environment� is more e�cient than the
PC�KIMMO system�

Keywords� logic programming� program synthesis� morphological analysis� two�level
phonology�

� Introduction

Morphology is the study of word structures in a language� and phonology is the study of
sound structure� The morphological analysis� which is a major branch of natural language
processing� uses techniques of both morphology and phonology to analyze word structures of
a language in a computational environment� There are two di�erent representations for each
word� the common representation known as surface form and the structural representation
known as lexical form� For example� the surface form of the English word cried is itself� but
its lexical form is cry�ed which describes that the word consists of the root word cry and
the su	x �ed� Morphological analysis tries to model the relation between these two distinct
representations of words�

There are a lot of studies on the morphological analysis of languages to be used in large
scale natural language systems 
�� �� �� 
�� The method proposed by Kimmo Koskenniemi 
��
explains the morphological structure of a language using two�level phonological rules which
give correspondences between lexical and surface representations of words� Although this
method includes phonological constructs in addition to morphological ones� it is known as
two�level morphology� Our system and the PC�KIMMO system 
�� are two general purpose
processors for two�level morphology�

Two�level morphology consists of two parts� two�level phonological rules which give corre�
spondences between lexical and surface characters and morphotactic rules speci�es the order
of morphemes� minimal meaningful units� in word structures� For example� the realization
of the lexical character y in the lexical form cry�ed by the surface character i in the surface

�This work was supported by NATO Science for stability Project Grant TU�LANGUAGE�



form cried is speci�ed by a two�level phonological rule� A verb such as cry can be followed
by the su	x �ed in lexical forms� This is speci�ed by a morphotactic rule�

In the PC�KIMMO system� two�level phonological rules are represented by two�way trans�
ducers� two �nite automatons working in parallel� They also represent morphotactic rules a
single �nite automaton �FA�� In our processor for two�level morphology� phonological rules
are converted into Prolog programs which represent logical meanings of those phonological
rules� We also convert morphotactic rules into a Prolog program which simulates the FA
for those morphotactic rules� These synthesized Prolog programs are used in recognition of
the lexical forms of words from their surface forms� and generation of the surface forms of
words from their lexical forms� Our two�level processor is applied to two�level morphological
description of Turkish 

�� and our results are compared with the results of the PC�KIMMO
system in Section ��

The rest of this paper is organized as follows� Section � and Section � describe structures
of phonological and morphotactic rules in more detail� respectively� Section � explains how
phonological and morphotactic rules are converted into Prolog programs� Section � compares
our results with the results of the PC�KIMMO system� and Section � concludes the paper�

� Two�Level Phonological Rules

A two�level phonological rule states a certain correspondence between a lexical character
and a surface character� These rules are bi�directional� i�e� the representation in one level
can be obtained from the representation in other level in both directions� The process of
�nding the surface level representation of a word from its lexical level representation is known
as generation� and the process of �nding the lexical level representation of a word from its
surface form is known as recognition� These two processes can be exempli�ed by the example
given in Figure �� In that example� lexical characters c� r� e and d correspond to surface
characters c� r� e and d� respectively� On the other hand� the lexical character y corresponds
to the surface character i� and the lexical character � corresponds to a null surface character�

Morphological Generator� �cry�ed
lexical form of a word�

cried
its surface form�

Morphological Recognizer� �cried
surface form of a word�

cry�ed
its lexical form�

Figure �� Morphological Generation and Recognition

A two�level rule can be de�ned by three components� a correspondence between a lex�
ical and a surface character� an environment �or context� in which the correspondence is
valid� and a rule operator that de�nes the relation between the correspondence and the
environment� It is denoted as�

LexicalCharacter � SurfaceCharacter RuleOperator LeftContext RightContext

Some of two�level rules have only a correspondence between a lexical and surface character�
and they are known as default rules� For example� y�y is a default rule which de�nes a
normal correspondence between the lexical character y and the surface character y� and the



lexical character y can be realized by the surface character y if other rules with the lexical
character y do not block this realization� The environment is separated into two parts�
left�context de�nes the constraints that must be satis�ed by correspondences before this
correspondence� and right�context de�nes the constraints that must be satis�ed after this
correspondence� The semantics of the rule operators are de�ned as follows�

� The correspondence only� but not always occurs in that environment� For example�
the rule t�c � i�i states that the lexical character t corresponds to the surface
character c only preceding the correspondence i�i� but not necessarily always in that
environment� Thus� other realizations of t may be found in that environment such as
the default realization of t by t�

� The correspondence always� but not only occurs in that environment� For example�
the rule t�c � i�i states that the lexical character t has to correspond to the
surface character c preceding the correspondence i�i� but not necessarily only in that
environment� Thus� the correspondence t�c may occur in other environments but
the lexical character t must always be realized by the surface character c in that
environment�

� The correspondence always occurs in that environment� and it only occurs in that
environment� For example� the rule t�c � i�i states that the lexical character
t has to correspond to the surface character c preceding the correspondence i�i� this
correspondence is not possible in other environments� and other realizations of the
lexical character t are invalid in that environment�

�� The correspondence never occurs in that environment� and generally used to cover
exceptions in a more general rule� For example� the rule t�c �� i�i states that
the lexical character t cannot correspond to the surface character c preceding the
correspondence i�i�

� Morphotactic Rules

The second component of two�level morphology for a language contains morphotactic rules�
One of the important observations about natural languages is that the morphotactic rules
of a language can be represented as a FA� and this is exploited in two�level morphology�
A morphologically complex word can be obtained from its morphemes by following legal
translations in the FA representing morphotactic rules� and attaching the current morpheme
to the end of string of morphemes� So� if we have the morpheme stream en�rich in a state
Si� then there must be a transition with the morpheme �ment to another state Sj to get the
noun en�rich�ment in a FA representing morphotactics of English� Another observation
that can be made is that the same state transitions can be used for en�large�ment� so
lexicals �morphemes including root words� can be divided into classes that morphotactically
behave alike to reduce the complexity of the FA for a language� Often� these subclasses
re�ect major word classes such as nouns� verbs and adjectives� The last observation is that
there are some exceptional cases in any language which should be handled explicitly� For
example� there is no word like en�small�ment in English�

The morphotactic rules of a language determine the structure and the ordering of mor�
phemes� A state of the FA for morphotactic rules represents a subclass of words in that
language� and we can move from one state to another with an arc labeled with a morpheme�
For example� Figure � gives a FA to describe a small subset of the morphotactic rules for



adjectives in English� Here� we have two special states BEGIN and END to mark initial and
�nal states of that FA� We can move from state BEGIN to state ADJROOT by consuming
an adjective root� In order to make a move from the state ADJROOT to state END � we
have to consume one of morphemes �er or �est� or we have to make an empty transition�
This means that we can recognize adjective roots or adjectives ending with morphemes �er
and �est�

�
�

�
�BEGIN �adj�root

�
�

�
�ADJROOT ��er��est��

�
�

�
�END

Figure �� A Simple FA for English Adjectives

� Logical Representation of Rules

Our two�level processor takes two�level phonological rules and morphotactic rules for a lan�
guage� and produces Prolog clauses representing these rules� These Prolog clauses are used
as parts of a morphological processor� Some of these clauses are used in the recognizer of
the morphological processor� and some of them in the generator� There are also clauses used
in both the recognizer and generator � Figure � describes the inputs and the outputs of our
two�level processor �

Since two�level phonological rules can be represented as a two�way transducer� they can
be separated into two FAs that work in parallel� Similarly� the produced Prolog clauses
corresponding to the two�level phonological rules are separated into two groups� lexical�to�
surface and surface�to�lexical � The lexical�to�surface clauses are used in the generator � and
the surface�to�lexical clauses are used in the recognizer � In addition to these two groups� the
two�level processor produces the Prolog clauses corresponding to environmental restrictions
in two�level phonological rules� These clauses are used by both lexical�to�surface and surface�
to�lexical clauses�

From the morphotactic rules� the two�level processor creates a lexico�graphic tree for
root words� and a set of Prolog clauses representing the FA de�ned by these morphotactic
rules� Both the lexico�graphic tree and the FA for morphotactic rules are used only by the
recognizer �

The generator consists of the produced Prolog clauses which represent phonological rules
and a small hand�written Prolog code �cf� Figure ��� The generator takes the lexical
representation of a word and produces its surface representation� For each character in
the lexical level� the generator tries to �nd a corresponding surface character by using the
produced Prolog clauses representing phonological rules� The correspondence between a
lexical character and a surface character must satisfy the environmental constraints given in
the phonological rules�

The recognizer consists of the produced Prolog clauses which represent phonological rules
and morphotactic rules� and a small hand�written Prolog code �cf� Figure ��� The recognizer
also contains the lexico�graphic tree created for root words� The recognizer takes the surface
representation of a word and �nds all possible lexical representations of that word by using
the root and the su	x knowledge of the language in concern� The recognizer �rst tries to
�nd a root word by searching the lexico�graphic tree and checking constraints imposed by
the phonological rules� Then� it tries to add morphemes to this root word�



two�level
phonological
rules

Two�Level Processor

lexical�to�surface

Prolog clauses

surface�to�lexical

Prolog clauses

environmental

Prolog clauses

� �
�
�
�
��

�
�
�
�
�
�R

a� Converting Phonological Rules

morphotactic
rules including
root words

Two�Level Processor

lexico�graphic tree

for root words

Prolog clauses
representing
morphotactic rules

� ��
��
��

HHHHHj

b� Converting Morphotactic Rules

Figure �� Two�Level Processor Creating A Morphologic Processor

Morphological Generator

hand�written Prolog code for generator

lexical�to�surface

Prolog clauses
environmental

Prolog clauses

lexical form of a word � � its surface form

Morphological Recognizer

hand�written Prolog code for recognizer

surface�to�lexical

Prolog clauses
lexico�graphic tree

for root words

environmental

Prolog clauses

Prolog clauses
representing
morphotactic rules

surface form of a word � � its lexical form

Figure �� Produced Morphologic Processor



��� Representation of Phonological Rules

From the de�nitions of the rule operators in two�level phonology� operators � and � must
have a higher priority than the operator � since they de�ne an always condition for an
environment� So� when a correspondence with an operator � or � is legal in some context�
the realizations from other rules with the operator � and default correspondences for the
same lexical character must be avoided� In order to achieve this in the lexical�to�surface

part� the rules with operators � and � must be checked �rst� and if they succeed� other
correspondences must be blocked for that environment� For example� the following rules
de�ne two correspondences of the lexical character t for a particular language�

t�c � left�context right�context a special correspondence of t to c�
t�t a default correspondence of t to t�

These two rules are represented by Prolog clauses corresponding to the following if�construct
if they are the only rules for the lexical character t�

if �left�context and right�context� holds
then t is realized by c

else t is realized by t

If conditions in a rule with the operator �� are satis�ed� the correspondence imposed by
that rule must be rejected� For example� consider the following rules�

t�c � left�context� right�context� a special correspondence of t to c�
t�c �� left�context� right�context� a special limiting correspondence of t to c�

These two rules are represented by Prolog clauses corresponding to the following if�construct�

if ��left�context� and right�context�� and not �left�context� and right�context��� holds
then t is realized by c

Now� let us assume that the following two�level phonological rules are the only rules for
the lexical character t�

�� t�a � lc� rc�
�� t�b � lc� rc�
�� t�c � lc� rc�
�� t�c �� lc� rc�
�� t�d � lc� rc�
�� t�d � lc� rc�
�� t�t

These rules are represented by the following �ve Prolog clauses�� Each clause realizes the
lexical character t with a di�erent surface character� A subgoal rule i in those clauses
checks whether the conditions given in left and right contexts of the ith rule hold in the
environment Env or not� These environment restriction clauses �rule i� are also used by
the surface�to�lexical part�

lex�to�sur�t�	a�Env
 �� rule���Env
� ��
lex�to�sur�t�	b�Env
 �� rule�
�Env
� ��
lex�to�sur�t�	c�Env
 �� rule���Env
� not�rule���Env

�
lex�to�sur�t�	d�Env
 �� � rule���Env
 � rule���Env
 
�
lex�to�sur�t�	t�Env
�

�In ALS Prolog� �c means that the ASCII code of the character c�



First two clauses may block the realizations of the lexical character t with the surface
characters di�erent from a and b if the environmental constraint of the �rst rule �rule ��
or the second rule �rule 
� is satis�ed�

The simple representation of rule operators in the lexical�to�surface part does not work
in the surface�to�lexical part� So� we generate di�erent Prolog clauses to represent two�level
phonological rules in the surface�to�lexical part� Since there may be more than one lexical
character corresponding to a surface character� each correspondence should be checked to
see whether it is appropriate in that environment or not� For example� let us assume that
the following four rules are only rules for surface characters a and b� and lexical characters
a� b and t�

�� t�a � lc� rc�
�� t�b � lc� rc�
�� a�a

�� b�b

These rules are represented by the following Prolog procedures in the surface�to�lexical part�
Each procedure represents the correspondences of a surface character� and each clause of a
procedure represents the correspondence of that surface character with a lexical character�

sur�to�lex�a�	t�Env
 �� rule���Env
�
sur�to�lex�a�	a�Env
�
sur�to�lex�b�	t�Env
 �� rule�
�Env
� not�rule���Env

�
sur�to�lex�b�	b�Env
�

Although the �rst rule with the correspondence t�a looks like it has nothing to do with the
process of realizing the surface character b with the lexical character t� it plays a key role
in that process� The reason for this is that the �rst rule enforces that the lexical character
t must be realized by the surface character a in the environment given in that rule� So�
the third Prolog clause must check that the environment does not hold before it can realize
the surface character b with the lexical character t� In general� before a surface character S
can be realized by a lexical character L� the conditions in the rules with the correspondence
containing lexical character L and the operator � or � should not hold�

Example� In this example� we give a set of two�level phonological rules� and some of the
corresponding Prolog clauses in the lexical�to�surface part and the surface�to�lexical part�
Now� let us assume that the following six two�level rules are given�

�� t�a � i�i j�j

�� t�b � or�m�m�n�n�
�� t�b �� p�p

�� t�t

�� a�a

�� b�b

The conditions given in the left and right contexts of the environments of the �rst three
rules are represented by the following Prolog clauses� The subgoal previous lex char
�previous sur char� checks whether the given character is the previous lexical �surface�
character in the given environment or not� Similarly� the subgoals next lex char and
next sur char checks the next lexical and surface characters�



rule���Env
 ��
previous�lex�char�Env�	i
� previous�sur�char�Env�	i
�
next�lex�char�Env�	j
� next�sur�char�Env�	j
�

rule�
�Env
 ��
� next�lex�char�Env�	m
� next�sur�char�Env�	m
 
 �

� next�lex�char�Env�	n
� next�sur�char�Env�	n
 
�
rule���Env
 ��

next�lex�char�Env�	p
� next�sur�char�Env�	p
�

The following three Prolog procedures are produced in the lexical�to�surface part for three
di�erent lexical characters in the rules above� and each clause of a Prolog procedure represents
the realization of that lexical character with a di�erent surface character�

lex�to�sur�t�	a�Env
 �� rule���Env
� ��
lex�to�sur�t�	b�Env
 �� rule�
�Env
� not�rule���Env

�
lex�to�sur�t�	t�Env
�

lex�to�sur�a�	a�Env
�
lex�to�sur�b�	b�Env
�

In addition to these clauses� our two�level processor also produces a dispatcher procedure
lex to sur� and each clause of this procedure calls one of the procedures given above de�
pending on the incoming value of the lexical character� For example� this procedure contains
the following clauses�

lex�to�sur�	a�SurChar�Env
 �� lex�to�sur�a�SurChar�Env
�
lex�to�sur�	b�SurChar�Env
 �� lex�to�sur�b�SurChar�Env
�
lex�to�sur�	t�SurChar�Env
 �� lex�to�sur�t�SurChar�Env
�

Since there are three di�erent surface characters in the two�level rules� we also have three
Prolog procedures in the surface�to�lexical part�

sur�to�lex�a�	t�Env
 �� rule���Env
�
sur�to�lex�a�	a�Env
�
sur�to�lex�b�	t�Env
 �� rule�
�Env
� not�rule���Env

� not�rule���Env

�
sur�to�lex�b�	b�Env
�
sur�to�lex�t�t�Env
 �� not�rule���Env

�

In addition to these clauses� a dispatcher procedure lex to sur is also produced� and each
clause of this procedure calls one of the procedures given above depending on the incoming
value of the surface character� For example� this procedure contains the following clauses�

sur�to�lex�	a�LexChar�Env
 �� sur�to�lex�a�LexChar�Env
�

sur�to�lex�	b�LexChar�Env
 �� sur�to�lex�b�LexChar�Env
�
sur�to�lex�	t�LexChar�Env
 �� sur�to�lex�t�LexChar�Env
�

��� Representation of Morphotactic Rules

The morphotactic rules of a language consists of two things� a set of root words and a FA�
Each root word is a pair of its lexical representation and its class� A class of a root word can
be verb� noun� adjective� etc�� and it describes the next state in the FA after that root word
is consumed� We compile the given FA into a set of Prolog clauses which represents that
FA� The set of root words is converted into a lexico�graphic tree� For example� we create
a lexico�graphic tree for adjective words and the following simpli�ed Prolog clauses for the
morphotactic rules given as a FA in Figure ��



state�BEGIN�Env�NewEnv
 ��
get�root�word�Env�TempEnv�NextState
�
NextState � adj�root�
state�ADJROOT�TempEnv�NewEnv
�

state�ADJROOT�Env�NewEnv
 ��

� Morpheme � �	��	e�	r� �
Morpheme � �	��	e�	s�	t� �
Morpheme � ��
 
�

consume�morpheme�Morpheme�Env�TempEnv
�
state�END�TempEnv�NewEnv
�

state�END�Env�Env
 ��
empty�lex�right�context�Env
�
empty�sur�right�context�Env
�

The environment variable Env contains four di�erent values for the lexical and surface rep�
resentations of a word�

� lex�left�context which is a list of consumed lexical characters�

� lex�right�contex which is a list of unconsumed lexical characters�

� sur�left�context which is a list of consumed surface characters�

� sur�right�context which is a list of unconsumed surface characters�

Before the procedure state�BEGIN is entered� sur�right�context in Env contains the sur�
face representation of the word� and all others are empty lists� The procedure get�root�word
gets a lexical form of root word corresponding to surface character from the lexico�graphic
tree� At the same time� it returns the subclass of that root word which will be the next
state and it properly updates the environment information� When this procedure searches
the lexico�graphic tree for a root word� it also checks the phonological constraints by call�
ing the procedure sur�to�lex for each consumed surface character� When the procedure
get�root�word returns� the values in the new environment TempEnv are�

� lex�left�context contains the lexical form of the root word�

� lex�right�context contains the lexical characters which are enforced by the phono�
logical rules applied during the recognition of the root word�

� sur�left�context contains the surface form of the root word�

� sur�right�context contains the unconsumed surface characters of the word�

The procedure consume�morpheme tries to consume the given lexical characters in the given
environment by checking phonological constraints� The procedures empty�lex�context and
empty�sur�context check whether all lexical and surface characters are consumed or not�
respectively� If the FA accepts the given surface representation of the word� the procedure
state�BEGIN returns its lexical form in left�lex�context of the new environment variable
NewEnv�



� Implementation and Results

Our system is developed by using ALS Prolog 
��� and tested with two�level morphology for
Turkish which is givenin 

�� This system is used as a part of the ongoing natural language
processing project which aims to develop computational environments for Turkish� Turkish

�� ��� is one of the languages having very complex phonological and morphotactic rules�
It is an agglutinative language with word structures formed with productive a	xations of
derivational and infectional su	xes to root words� Morphemes can be added to a root word
or a stem to convert a word from a nominal structure to a verbal structure� or vice�versa�
Phonological rules constrain and modify the surface realizations of morphological construc�
tions� For example� a vowel in the a	xed morpheme has to agree with the preceding vowel to
achieve vowel harmony� and consonants may be deleted or realized with di�erent characters
in certain circumstances� The following structure� of Turkish word duyulam�yormu�s which
can be translated into English as ��it is said that
 it could not be heard�may give
a �avor of the complexity of phonological and morphotactic rules for Turkish�

Surface Form � duyulam�yormu�s

Lexical Form � duy�Hl�yAmA�Hyor�ymH�s

Structure � duy�PASS�NEGC�PR�CONT�NARR

This word is constructed from the root word duy �hear� and four morphemes which are
a	xed according to Turkish morphotactic rules� According to the vowel harmony rules stated
by Turkish phonological rules� the following realizations are done� the lexical character H of
�Hl is realized by the surface character u� the �rst A of �yAmA is realized by a and the second
A is dropped� H of �Hyor is realized by �� y of �ymH�s is dropped and H is realized by u�

After feeding Turkish morphotactic rules which include ������ root words� and �� two�
level phonological rules to our two�level processor� a morphological recognizer and a morpho�
logical generator for Turkish are automatically produced� We tested the produced recognizer
and generator� which are Prolog programs� with various data to ensure the correctness of
rule mapper algorithms and to check the e	ciency of the produced code� For example� we
create two test data� one of them contains lexical forms of ���� words and the other one
contains surface forms of ��� words� We test our system and the PC�KIMMO system with
this data to compare them� To generate surface forms of ���� lexical forms takes � second
in our system when it runs on a Sun sparc station� On the other hand� PC�KIMMO takes

 seconds for the same data on the same machine� To recognize lexical forms of ��� surface
forms� takes �� seconds in our system and �� seconds in the PC�KIMMO system� From
these results and other test data we used� we can conclude that our produced generator is

 times faster than the generator of the PC�KIMMO system and our recognizer is � times
faster than the recognizer of PC�KIMMO�

The reason that our system is faster than the PC�KIMMO system can be explained
as follows� The PC�KIMMO system compiles two�level phonological rules into two�way
transducers� For each two�level rule� they create a two�way transducer� When they �nd a
correspondence between a lexical character and a surface character� they have to make a
move in each transducer even though the rule corresponding to that transducer may have
nothing to do with that correspondence� For example� they produce �� transducers for
phonological rules for Turkish� and they make a move in each of these �� transducers for a
correspondence� In other words� they update all transducers for a single character to leave
the transducers in proper positions� On the other hand� we do not map phonological rules

�Notation� PASS means passive� NEGC means negative capability� PR�CONT means present continues tense�

and NARR means narrative�



into transducers� We designed a logical representation for phonological rules as described in
Section ���� and they are represented by Prolog programs� When we �nd a correspondence�
we only execute Prolog clauses corresponding to phonological rules with lexical and surface
characters in that correspondence� In our system� all phonological rules are not involved in
the process of �nding a correspondence� only the related ones are considered�

� Conclusion

In this paper� we present a two�level processor which takes phonological rules and morphotac�
tic rules as input and automatically produces a morphological processor in logic programming
environment� The phonological rules are mapped to their proposed logical representation
and morphotactic rules are mapped into a FA� Produced Prolog programs are used as a mor�
phological analyzer or generator� Our system is much more e	cient than the PC�KIMMO
system which is developed for the same purpose�

One of the main contributions of this paper is the new logical representation of two�level
phonological rules� The older method for representing two�level phonological rules was to
use two�way transducers which was employed by the PC�KIMMO system� The results of
our system shows that our logical representation gives much better results than the method
used in the PC�KIMMO system� We tested our system with the rules for Turkish� and we
are planning to test it with the rules for other languages such as English and French�

References


�� ALS Prolog User�s Guide and Reference Manual� Applied Logic Systems Inc�� �

��


�� Antworth E� L�� PC�KIMMO� A Two�Level Processor for Morphological Analysis� Sum�
mer Institute of Linguistics� Occasional Publications in Academic Computing� No����
Dallas� Texas� �

��


�� Karttuen L�� KIMMO� A General Morphological Processor� Texas Linguistic Forum�
Vol� ����������� �
���


�� Karttuen L�� and Wittenburg K�� A Two�Level Morphological Analysis of English� Texas
Linguistic Forum� Vol� ����������� �
���


�� Koskenniemi K�� Two�Level Morphology� A General Computational Model for Word

Form Recognition and Production� Technical Report ��� Department of General Lin�
guistics� University of Helsinki� �
���


�� Koskenniemi K�� An Application of Two�Level Model to Finish� Technical Report� De�
partment of General Linguistics� University of Helsinki� �
���


�� Lewis G� L�� Turkish Grammar� Oxford University Press� �

��


�� Lun S�� A Two�Level Morphological Analysis of French� Texas Linguistic Forum� Vol�
����������� �
���



� O�azer K�� Two�Level Description of Turkish Morphology� Literary and Linguistic Com�
puting� Vol� 
� No� �� �

��


��� Underhill R�� Turkish Grammar� The MIT Press� �
���


