Automatic Creation of a Morphological Processor
in Logic Programming Environment'

Ilyas Cicekli and Murat Temizsoy

Department of Computer Engineering and Information Science,
Bilkent University, 06533 Bilkent, Ankara, Turkey,

e-mail: ilyas@cs.bilkent.edu.tr,temizsoy@cs.bilkent.edu.tr

Abstract

In this paper, we describe a two-level processor which automatically creates a mor-
phological processor from a given set of two-level phonological rules and morphotac-
tic rules. The given two-level phonological and morphotactic rules are automatically
converted into Prolog programs which represent a morphological processor for the lan-
guage in concern. We propose new logical representations for two-level phonological
rules, and two-level phonological rules are mapped into these new logical representa-
tions which are implemented in Prolog. Morphotactic rules are mapped into a finite
state automaton (FA) representing those rules in Prolog. The mechanism described
here is applied to Turkish and the results we get are compared with the results of the
PC-KIMMO system which is developed for the same purpose. The experiments show
that our system, which is in logic programming environment, is more eflicient than the
PC-KIMMO system.

Keywords: logic programming, program synthesis, morphological analysis, two-level
phonology.

1 Introduction

Morphology is the study of word structures in a language, and phonology is the study of
sound structure. The morphological analysis, which is a major branch of natural language
processing, uses techniques of both morphology and phonology to analyze word structures of
a language in a computational environment. There are two different representations for each
word: the common representation known as surface form and the structural representation
known as lexical form. For example, the surface form of the English word cried is itself, but
its lexical form is cry+ed which describes that the word consists of the root word cry and
the suffix +ed. Morphological analysis tries to model the relation between these two distinct
representations of words.

There are a lot of studies on the morphological analysis of languages to be used in large
scale natural language systems [4, 6, 8, 9]. The method proposed by Kimmo Koskenniemi [5]
explains the morphological structure of a language using two-level phonological rules which
give correspondences between lexical and surface representations of words. Although this
method includes phonological constructs in addition to morphological ones, it is known as
two-level morphology. Our system and the PC-KIMMO system [2] are two general purpose
processors for two-level morphology.

Two-level morphology consists of two parts: two-level phonological rules which give corre-
spondences between lexical and surface characters and morphotactic rules specifies the order
of morphemes, minimal meaningful units, in word structures. For example, the realization
of the lexical character y in the lexical form cry+ed by the surface character i in the surface

! This work was supported by NATO Science for stability Project Grant TU-LANGUAGE.

form cried is specified by a two-level phonological rule. A verb such as cry can be followed
by the suffix +ed in lexical forms. This is specified by a morphotactic rule.

In the PC-KIMMO system, two-level phonological rules are represented by two-way trans-
ducers, two finite automatons working in parallel. They also represent morphotactic rules a
single finite automaton (FA). In our processor for two-level morphology, phonological rules
are converted into Prolog programs which represent logical meanings of those phonological
rules. We also convert morphotactic rules into a Prolog program which simulates the FA
for those morphotactic rules. These synthesized Prolog programs are used in recognition of
the lexical forms of words from their surface forms, and generation of the surface forms of
words from their lexical forms. Our two-level processor is applied to two-level morphological
description of Turkish [9], and our results are compared with the results of the PC-KIMMO
system in Section 5.

The rest of this paper is organized as follows. Section 2 and Section 3 describe structures
of phonological and morphotactic rules in more detail, respectively. Section 4 explains how
phonological and morphotactic rules are converted into Prolog programs. Section 5 compares
our results with the results of the PC-KIMMO system, and Section 6 concludes the paper.

2 Two-Level Phonological Rules

A two-level phonological rule states a certain correspondence between a lexical character
and a surface character. These rules are bi-directional, i.e. the representation in one level
can be obtained from the representation in other level in both directions. The process of
finding the surface level representation of a word from its lexical level representation is known
as generation, and the process of finding the lexical level representation of a word from its
surface form is known as recognition. These two processes can be exemplified by the example
given in Figure 1. In that example, lexical characters ¢, r, e and d correspond to surface
characters ¢, r, e and d, respectively. On the other hand, the lexical character y corresponds
to the surface character i, and the lexical character + corresponds to a null surface character.

lexical form of a word: its surface form:
cryted —— Morphological Generator ——— cried

surface form of a word: its lexical form:
cried —— Morphological Recognizer —— cry+ed

Figure 1: Morphological Generation and Recognition

A two-level rule can be defined by three components: a correspondence between a lex-
ical and a surface character, an environment (or context) in which the correspondence is
valid, and a rule operator that defines the relation between the correspondence and the
environment. It is denoted as:

LezicalCharacter : Sur faceC haracter RuleOperator Le ftContext __ RightContext

Some of two-level rules have only a correspondence between a lexical and surface character,
and they are known as default rules. For example, y:y is a default rule which defines a
normal correspondence between the lexical character y and the surface character y, and the

lexical character y can be realized by the surface character y if other rules with the lexical
character y do not block this realization. The environment is separated into two parts:
left-context defines the constraints that must be satisfied by correspondences before this
correspondence, and right-context defines the constraints that must be satisfied after this
correspondence. The semantics of the rule operators are defined as follows:

= The correspondence only, but not always occurs in that environment. For example,
the rule t:c = __ i:1i states that the lexical character t corresponds to the surface
character ¢ only preceding the correspondence i:1, but not necessarily always in that
environment. Thus, other realizations of t may be found in that environment such as
the default realization of t by t.

< The correspondence always, but not only occurs in that environment. For example,
the rule t:c < __ i:i states that the lexical character t has to correspond to the
surface character ¢ preceding the correspondence i:1, but not necessarily only in that
environment. Thus, the correspondence t:c¢ may occur in other environments but
the lexical character t must always be realized by the surface character ¢ in that
environment.

& The correspondence always occurs in that environment, and it only occurs in that
environment. For example, the rule t:c & __ i:1 states that the lexical character
t has to correspond to the surface character ¢ preceding the correspondence 1i:1i, this
correspondence is not possible in other environments, and other realizations of the
lexical character t are invalid in that environment.

/< The correspondence never occurs in that environment, and generally used to cover
exceptions in a more general rule. For example, the rule t:c /< __ i:1 states that
the lexical character t cannot correspond to the surface character ¢ preceding the
correspondence 1:1.

3 Morphotactic Rules

The second component of two-level morphology for a language contains morphotactic rules.
One of the important observations about natural languages is that the morphotactic rules
of a language can be represented as a FA, and this is exploited in two-level morphology.
A morphologically complex word can be obtained from its morphemes by following legal
translations in the FA representing morphotactic rules, and attaching the current morpheme
to the end of string of morphemes. So, if we have the morpheme stream en+rich in a state
S;, then there must be a transition with the morpheme +ment to another state .S; to get the
noun en+rich+ment in a FA representing morphotactics of English. Another observation
that can be made is that the same state transitions can be used for en+large+ment, so
lexicals (morphemes including root words) can be divided into classes that morphotactically
behave alike to reduce the complexity of the FA for a language. Often, these subclasses
reflect major word classes such as nouns, verbs and adjectives. The last observation is that
there are some exceptional cases in any language which should be handled explicitly. For
example, there is no word like en+small+ment in English.

The morphotactic rules of a language determine the structure and the ordering of mor-
phemes. A state of the FA for morphotactic rules represents a subclass of words in that
language, and we can move from one state to another with an arc labeled with a morpheme.
For example, Figure 2 gives a FA to describe a small subset of the morphotactic rules for

adjectives in English. Here, we have two special states BEGIN and END to mark initial and
final states of that FA. We can move from state BEGIN to state ADJROOT by consuming
an adjective root. In order to make a move from the state ADJROOT to state END, we
have to consume one of morphemes +er or +est, or we have to make an empty transition.
This means that we can recognize adjective roots or adjectives ending with morphemes +er
and +est.

adj-root +er,+est,0
BEGIN ADJROOT END

Figure 2: A Simple FA for English Adjectives

4 Logical Representation of Rules

Our two-level processor takes two-level phonological rules and morphotactic rules for a lan-
guage, and produces Prolog clauses representing these rules. These Prolog clauses are used
as parts of a morphological processor. Some of these clauses are used in the recognizer of
the morphological processor, and some of them in the generator. There are also clauses used
in both the recognizer and generator. Figure 3 describes the inputs and the outputs of our
two-level processor.

Since two-level phonological rules can be represented as a two-way transducer, they can
be separated into two FAs that work in parallel. Similarly, the produced Prolog clauses
corresponding to the two-level phonological rules are separated into two groups: lexical-to-
surface and surface-to-lexical. The lexical-to-surface clauses are used in the generator, and
the surface-to-lexical clauses are used in the recognizer. In addition to these two groups, the
two-level processor produces the Prolog clauses corresponding to environmental restrictions
in two-level phonological rules. These clauses are used by both lexical-to-surface and surface-
to-lexical clauses.

From the morphotactic rules, the two-level processor creates a lexico-graphic tree for
root words, and a set of Prolog clauses representing the FA defined by these morphotactic
rules. Both the lexico-graphic tree and the FA for morphotactic rules are used only by the
recognizer.

The generator consists of the produced Prolog clauses which represent phonological rules
and a small hand-written Prolog code (cf. Figure 4). The generator takes the lexical
representation of a word and produces its surface representation. For each character in
the lexical level, the generator tries to find a corresponding surface character by using the
produced Prolog clauses representing phonological rules. The correspondence between a
lexical character and a surface character must satisfy the environmental constraints given in
the phonological rules.

The recognizer consists of the produced Prolog clauses which represent phonological rules
and morphotactic rules, and a small hand-written Prolog code (cf. Figure 4). The recognizer
also contains the lexico-graphic tree created for root words. The recognizer takes the surface
representation of a word and finds all possible lexical representations of that word by using
the root and the suffix knowledge of the language in concern. The recognizer first tries to
find a root word by searching the lexico-graphic tree and checking constraints imposed by
the phonological rules. Then, it tries to add morphemes to this root word.

lexical-to-surface
Prolog clauses
two-level :
. surface-to-lexical
phonological Two-Level Processor
Prolog clauses
rules
environmental
)) Prolog clauses
a. Converting Phonological Rules
lexico-graphic tree
morphotactic for root words
rules including Two-Level Processor
root words Prolog clauses
representing

morphotactic rules

b. Converting Morphotactic Rules

Figure 3: Two-Level Processor Creating A Morphologic Processor

Morphological Generator

hand-written Prolog code for generator

lexical form of a word — - its surface form

lexical-to-surface | environmental
Prolog clauses Prolog clauses

Morphological Recognizer

hand-written Prolog code for recognizer

surface-to-lexical | lexico-graphic tree

— its lexical form
Prolog clauses for root words

surface form of a word —

Prolog clauses
representing
morphotactic rules

environmental
Prolog clauses

Figure 4: Produced Morphologic Processor

4.1 Representation of Phonological Rules

From the definitions of the rule operators in two-level phonology, operators < and < must
have a higher priority than the operator = since they define an always condition for an
environment. So, when a correspondence with an operator < or < is legal in some context,
the realizations from other rules with the operator = and default correspondences for the
same lexical character must be avoided. In order to achieve this in the lexical-to-surface
part, the rules with operators < and < must be checked first, and if they succeed, other
correspondences must be blocked for that environment. For example, the following rules
define two correspondences of the lexical character t for a particular language:

t:c & left-context __ right-context a special correspondence of t to c.
t:t a default correspondence of t to t.

These two rules are represented by Prolog clauses corresponding to the following if-construct
if they are the only rules for the lexical character t.

if (left-conteat and right-context) holds
then t is realized by ¢
else t is realized by t

If conditions in a rule with the operator /< are satisfied, the correspondence imposed by
that rule must be rejected. For example, consider the following rules:

t:c = left-context; __ right-context; a special correspondence of t to c.
t:c /< left-contexty __ right-contexly a special limiting correspondence of t to c.

These two rules are represented by Prolog clauses corresponding to the following if-construct:

if ((left-context; and right-context;) and not (left-context, and right-contexty)) holds
then t is realized by ¢

Now, let us assume that the following two-level phonological rules are the only rules for
the lexical character t:

1. t:a & log _rg
2. t:b <« ey _reg
3. tic = les __res
4. tic /< ey —rey
5. t:d = les _res
6. t:d = lcg __reg
7. t:t

These rules are represented by the following five Prolog clauses?. Each clause realizes the

lexical character t with a different surface character. A subgoal rule_i in those clauses
checks whether the conditions given in left and right contexts of the ¢ rule hold in the
environment Env or not. These environment restriction clauses (rule_i) are also used by
the surface-to-lexical part.

rule_1(Env), !'.
rule_2(Env), !.
rule_3(Env), not(rule_4(Env)).
(rule_5(Env) ; rule_6(Env)).

lex_to_sur_t("a,Env)
lex_to_sur_t("b,Env)
lex_to_sur_t(“c,Env)
lex_to_sur_t(~d,Env)
lex_to_sur_t("t,Env).

2In ALS Prolog, ~c means that the ASCII code of the character c.

First two clauses may block the realizations of the lexical character t with the surface
characters different from a and b if the environmental constraint of the first rule (rule_1)
or the second rule (rule_2) is satisfied.

The simple representation of rule operators in the lexical-to-surface part does not work
in the surface-to-lexical part. So, we generate different Prolog clauses to represent two-level
phonological rules in the surface-to-lexical part. Since there may be more than one lexical
character corresponding to a surface character, each correspondence should be checked to
see whether it is appropriate in that environment or not. For example, let us assume that
the following four rules are only rules for surface characters a and b, and lexical characters
a, b and t.

1. t:a & log _rg
2. t:b = leg _reg
3. a:a
4. b:b

These rules are represented by the following Prolog procedures in the surface-to-lexical part.
Each procedure represents the correspondences of a surface character, and each clause of a
procedure represents the correspondence of that surface character with a lexical character.

sur_to_lex_a("t,Env) :- rule_1(Env).
sur_to_lex_a(~a,Env).

sur_to_lex_b("t,Env) :- rule_2(Env), not(rule_1(Env)).
sur_to_lex_b("b,Env).

Although the first rule with the correspondence t:a looks like it has nothing to do with the
process of realizing the surface character b with the lexical character t, it plays a key role
in that process. The reason for this is that the first rule enforces that the lexical character
t must be realized by the surface character a in the environment given in that rule. So,
the third Prolog clause must check that the environment does not hold before it can realize
the surface character b with the lexical character t. In general, before a surface character S
can be realized by a lexical character L, the conditions in the rules with the correspondence
containing lexical character L and the operator < or <= should not hold.

Example: In this example, we give a set of two-level phonological rules, and some of the
corresponding Prolog clauses in the lezical-to-surface part and the surface-to-lexical part.
Now, let us assume that the following six two-level rules are given:

I. tra & 1:1 _ j:j

2. t:b = _ or(m:mn:n)
3. t:b /&= _p:p

4. t:t

5. a:a

6. b:b

The conditions given in the left and right contexts of the environments of the first three
rules are represented by the following Prolog clauses. The subgoal previous lex char
(previous_sur_char) checks whether the given character is the previous lexical (surface)
character in the given environment or not. Similarly, the subgoals next_lex_char and
next_sur_char checks the next lexical and surface characters.

rule_1(Env) :-

previous_lex_char(Env,~ i), previous_sur_char(Env, 1),

next_lex_char(Env,~j), next_sur_char(Env,~j),
rule_2(Env) :-

(next_lex_char(Env, m), next_sur_char(Env, m)) ;

(next_lex_char(Env, n), next_sur_char(Env, n)).
rule_3(Env) :-

next_lex_char(Env,“p), next_sur_char(Env, p).

The following three Prolog procedures are produced in the lexical-to-surface part for three
different lexical characters in the rules above, and each clause of a Prolog procedure represents
the realization of that lexical character with a different surface character

lex_to_sur_t(~a,Env) :- rule_1(Env), !.
lex_to_sur_t("b,Env) :- rule_2(Env), not(rule_3(Env)).
lex_to_sur_t("t,Env).

lex_to_sur_a("a,Env).

lex_to_sur_b("b,Env).

In addition to these clauses, our two-level processor also produces a dispatcher procedure
lex to_sur, and each clause of this procedure calls one of the procedures given above de-
pending on the incoming value of the lexical character. For example, this procedure contains
the following clauses.

lex_to_sur(~a,SurChar,Env) :- lex_to_sur_a(SurChar,Env).
lex_to_sur("b,SurChar,Env) :- lex_to_sur_b(SurChar,Env).
lex_to_sur(“t,SurChar,Env) :- lex_to_sur_t(SurChar,Env).

Since there are three different surface characters in the two-level rules, we also have three
Prolog procedures in the surface-to-lexical part.

sur_to_lex_a("t,Env) :- rule_1(Env).

sur_to_lex_a(~a,Env).

sur_to_lex_b("t,Env) :- rule_2(Env), not(rule_3(Env)), not(rule_1(Env)).
sur_to_lex_b("b,Env).

sur_to_lex_t(t,Env) :- not(rule_1(Env)).

In addition to these clauses, a dispatcher procedure lex_to_sur is also produced, and each
clause of this procedure calls one of the procedures given above depending on the incoming
value of the surface character. For example, this procedure contains the following clauses.

sur_to_lex("a,LexChar,Env) :- sur_to_lex_a(LexChar,Env).
sur_to_lex("b,LexChar,Env) :- sur_to_lex_b(LexChar,Env).
sur_to_lex("t,LexChar,Env) :- sur_to_lex_t(LexChar,Env).

4.2 Representation of Morphotactic Rules

The morphotactic rules of a language consists of two things: a set of root words and a FA.
Each root word is a pair of its lexical representation and its class. A class of a root word can
be verb, noun, adjective, etc., and it describes the next state in the FA after that root word
is consumed. We compile the given FA into a set of Prolog clauses which represents that
FA. The set of root words is converted into a lexico-graphic tree. For example, we create
a lexico-graphic tree for adjective words and the following simplified Prolog clauses for the
morphotactic rules given as a FA in Figure 2.

state_BEGIN(Env,NewEnv) :-
get_root_word(Env,TempEnv,NextState),
NextState = adj_root,
state_ADJROOT(TempEnv,NewEnv) .
state_ADJROOT(Env,NewEnv) :-
(Morpheme = [“+,7e,"r] ;

Morpheme = ["+,7e,”s,"t] ;

Morpheme 1)),
consume_morpheme(Morpheme,Env,TempEnv),
state_END(TempEnv,NewEnv) .

state_END(Env,Env) :-
empty_lex_right_context (Env),
empty_sur_right_context (Env),

The environment variable Env contains four different values for the lexical and surface rep-
resentations of a word:

o lex_left_context which is a list of consumed lexical characters.

e lex_right_contex which is a list of unconsumed lexical characters.

o sur_left_context which is a list of consumed surface characters.

e sur_right_context which is a list of unconsumed surface characters.

Before the procedure state_BEGIN is entered, sur_right_context in Env contains the sur-
face representation of the word, and all others are empty lists. The procedure get_root_word
gets a lexical form of root word corresponding to surface character from the lexico-graphic
tree. At the same time, it returns the subclass of that root word which will be the next
state and it properly updates the environment information. When this procedure searches
the lexico-graphic tree for a root word, it also checks the phonological constraints by call-
ing the procedure sur_to_lex for each consumed surface character. When the procedure
get_root_wordremniw,the‘wﬂuesintheluﬂvenvhannentTempEnvare

o lex_left_context contains the lexical form of the root word.

e lex_right_context contains the lexical characters which are enforced by the phono-
logical rules applied during the recognition of the root word.

e sur_left_context contains the surface form of the root word.
e sur_right_context contains the unconsumed surface characters of the word.

The procedure consume_morpheme tries to consume the given lexical characters in the given
environment by checking phonological constraints. The procedures empty_lex_context and
empty_sur_context check whether all lexical and surface characters are consumed or not,
respectively. If the FA accepts the given surface representation of the word, the procedure
state_BEGIN returns its lexical form in left_lex_context of the new environment variable
NewEnv.

5 Implementation and Results

Our system is developed by using ALS Prolog [1], and tested with two-level morphology for
Turkish which is givenin [9]. This system is used as a part of the ongoing natural language
processing project which aims to develop computational environments for Turkish. Turkish
[7, 10] is one of the languages having very complex phonological and morphotactic rules.
It is an agglutinative language with word structures formed with productive affixations of
derivational and infectional suffixes to root words. Morphemes can be added to a root word
or a stem to convert a word from a nominal structure to a verbal structure, or vice-versa.
Phonological rules constrain and modify the surface realizations of morphological construec-
tions. For example, a vowel in the affixed morpheme has to agree with the preceding vowel to
achieve vowel harmony, and consonants may be deleted or realized with different characters
in certain circumstances. The following structure® of Turkish word duyulamiyormus which
can be translated into English as " (it is said that) it could not be heard'" may give
a flavor of the complexity of phonological and morphotactic rules for Turkish.

Surface Form : duyulamiyormus
Lexical Form : duy+Hl+yAmA+Hyor+ymHg
Structure : duy+PASS+NEGC+PR-CONT+NARR

This word is constructed from the root word duy (hear) and four morphemes which are
affixed according to Turkish morphotactic rules. According to the vowel harmony rules stated
by Turkish phonological rules, the following realizations are done: the lexical character H of
+H1 is realized by the surface character u; the first A of +yAmA is realized by a and the second
A is dropped; H of +Hyor is realized by 1; y of +ymHsg is dropped and H is realized by u.

After feeding Turkish morphotactic rules which include 23,000 root words, and 22 two-
level phonological rules to our two-level processor, a morphological recognizer and a morpho-
logical generator for Turkish are automatically produced. We tested the produced recognizer
and generator, which are Prolog programs, with various data to ensure the correctness of
rule mapper algorithms and to check the efficiency of the produced code. For example, we
create two test data: one of them contains lexical forms of 1200 words and the other one
contains surface forms of 800 words. We test our system and the PC-KIMMO system with
this data to compare them. To generate surface forms of 1200 lexical forms takes 1 second
in our system when it runs on a Sun sparc station. On the other hand, PC-KIMMO takes
9 seconds for the same data on the same machine. To recognize lexical forms of 800 surface
forms, takes 14 seconds in our system and 85 seconds in the PC-KIMMO system. From
these results and other test data we used, we can conclude that our produced generator is
9 times faster than the generator of the PC-KIMMO system and our recognizer is 6 times
faster than the recognizer of PC-KIMMO.

The reason that our system is faster than the PC-KIMMO system can be explained
as follows. The PC-KIMMO system compiles two-level phonological rules into two-way
transducers. For each two-level rule, they create a two-way transducer. When they find a
correspondence between a lexical character and a surface character, they have to make a
move in each transducer even though the rule corresponding to that transducer may have
nothing to do with that correspondence. For example, they produce 22 transducers for
phonological rules for Turkish, and they make a move in each of these 22 transducers for a
correspondence. In other words, they update all transducers for a single character to leave
the transducers in proper positions. On the other hand, we do not map phonological rules

3Notation: PASS means passive; NEGC means negative capability; PR—-CONT means present continues tense;
and NARR means narrative.

into transducers. We designed a logical representation for phonological rules as described in
Section 4.1, and they are represented by Prolog programs. When we find a correspondence,
we only execute Prolog clauses corresponding to phonological rules with lexical and surface
characters in that correspondence. In our system, all phonological rules are not involved in
the process of finding a correspondence, only the related ones are considered.

6 Conclusion

In this paper, we present a two-level processor which takes phonological rules and morphotac-
tic rules as input and automatically produces a morphological processor in logic programming
environment. The phonological rules are mapped to their proposed logical representation
and morphotactic rules are mapped into a FA. Produced Prolog programs are used as a mor-
phological analyzer or generator. Our system is much more efficient than the PC-KIMMO
system which is developed for the same purpose.

One of the main contributions of this paper is the new logical representation of two-level
phonological rules. The older method for representing two-level phonological rules was to
use two-way transducers which was employed by the PC-KIMMO system. The results of
our system shows that our logical representation gives much better results than the method
used in the PC-KIMMO system. We tested our system with the rules for Turkish, and we
are planning to test it with the rules for other languages such as English and French.

References

[1] ALS Prolog User’s Guide and Reference Manual, Applied Logic Systems Inc., 1991.
[2] Antworth E. L., PC-KIMMO: A Two-Level Processor for Morphological Analysis, Sum-

mer Institute of Linguistics, Occasional Publications in Academic Computing, No:16,

Dallas, Texas, 1990.

[3] Karttuen L., KIMMQO: A General Morphological Processor, Texas Linguistic Forum,
Vol. 22:163-186. 1983.

[4] Karttuen L., and Wittenburg K., A Two-Level Morphological Analysis of English, Texas
Linguistic Forum, Vol. 22:217-228. 1983.

[5] Koskenniemi K., Two-Level Morphology: A General Computational Model for Word
Form Recognition and Production, Technical Report 11, Department of General Lin-
guistics, University of Helsinki, 1983.

[6] Koskenniemi K., An Application of Two-Level Model to Finish, Technical Report, De-
partment of General Linguistics, University of Helsinki, 1985.

[7] Lewis G. L., Turkish Grammar, Oxford University Press, 1991.

[8] Lun S., A Two-Level Morphological Analysis of French, Texas Linguistic Forum, Vol.
22:271-278. 1983.

[9] Oflazer K., Two-Level Description of Turkish Morphology, Literary and Linguistic Com-
puting, Vol. 9, No. 2, 1994.

[10] Underhill R., Turkish Grammar, The MIT Press, 1976.

