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Abstract 

Part-of-speech (POS) tagging is the process of assigning 
each word of an input text into an appropriate morphologi-
cal class. Automatic recognition of parts-of-speech is very 
important for high level NLP applications, since it would 
be usually infeasible to perform this task manually in prac-
tical systems. One approach to POS tagging uses morpho-
logical disambiguation which selects the most suitable 
morphological parse for each word from the set of parses 
that is assigned to that word by the morphological analyzer. 
Accurate POS tagging is not a simple task in general. It 
even becomes harder for agglutinative languages like Turk-
ish; the number of morphological parses associated with 
each word in a text is usually much larger than that is for 
non-agglutinative languages such as English. This is due to 
the ambiguous nature of such languages. In this paper, we 
introduce an effective rule based morphological disam-
biguator for Turkish. 

Keywords: part-of-speech tagging, morphological dis-
ambiguation. 

1. Introduction 
Part-of-speech (POS) tagging is the process of assigning 
each word of a given text into an appropriate lexical class 
(part of speech) such as noun, verb, adjective, etc. One ap-
proach to POS tagging is the reduction of the problem of 
tagging to more general morphological disambiguation 
problem. Once a suitable morphological parse is selected 
for each word from its possible morphological parses, it is 
trivial to detect lexical categories of words since this in-
formation is already contained in morphological parses. 

In morphological disambiguation, the morphological ana-
lyzer produces all possible morphological parses for each 
word in the text, and a single morphological parse is tried 
to be selected from the set of parses assigned to that word. 
Unlike the ideal case, the morphological disambiguator 
sometimes may not select a single parse, and the selection 
of the best subset of parses can be aimed. Turkish part-of-
speech tagger described in this paper is actually a morpho-
logical disambiguator that aims to select the best subset of 
the morphological parses if it cannot select a single mor-
phological parse for a word. 

Like many applications that deal with great amounts of 
data, it is infeasible to manually handle parts-of-speech 
tagging for NLP applications that require tagging of large 
corpora. Automatic recognition of parts-of-speech is very 

important for high level NLP applications such as machine 
translation. Although 100% accurate POS tagging is not 
possible in practice, highly effective systems for English 
are available currently. Although the effective POS taggers 
are available for widely studied languages such as English, 
the effective POS taggers are not available for the most of 
the languages that got less attention, and Turkish is one of 
these languages. In this paper, we present an effective mor-
phological disambiguator for Turkish. The developed Turk-
ish morphological disambiguator is planned to be used as a 
part of an example-based machine translation system be-
tween English and Turkish [4,5]. The developed Turkish 
morphological disambiguator is also integrated with a 
graphical user-interface so that it can be used as a morpho-
logical annotator tool for Turkish texts. 

Due to the inherent morphological level ambiguity of 
Turkish, POS tagging and morphological disambiguation in 
general are much more complicated processes for Turkish. 
Agglutinative nature of Turkish makes the number of mor-
phological parses for each word larger when it is compared 
to English. The number of possible inflectional and deriva-
tional suffixes for Turkish nouns and verbs is much higher, 
and this leads to the more morphological level ambiguity in 
Turkish words. According to [7], about 80% of Turkish 
words have more than one morphological parse.  

There can be many different reasons for the morphologi-
cal ambiguities in a Turkish word. For example, the word 
“kitabın” has the following two possible morphological 
parses: 

kitap+Noun+A3sg+P2sg+Nom  your book
kitap+Noun+A3sg+Pnon+Gen  of the book

Here the ambiguity in the word “kitab-ın” is due to the 
phonetic similarity of the genitive suffix in the second 
parse and the second singular possessive suffix in the first 
parse. Both of them are realized as the suffix “ın” at sur-
face level. Similarly, nouns with the accusative suffix and 
the third singular possessive suffix usually have the same 
surface form.  

The finding the just POS tags of Turkish words will not 
be enough for the most NLP applications in Turkish. We 
have to find the actual intended morphological parse of the 
word. For this purpose, we have developed the Turkish 
morphological disambiguator presented in this paper. This 
morphological disambiguator tries to find the intended 
morphological parse of each word. If it cannot select the 



intended morphological parse of the word, it tries to select 
the smallest subset of the morphological parses by eliminat-
ing some of the illegal parses. 

The rest of the paper is organized as follows. Section 2 
summarizes the related work in POS tagging including the 
previous works in Turkish POS tagging. We present the 
general architecture of our rule-based Turkish morphologi-
cal disambiguator in Section 3. In Section 4, the perform-
ance of the presented Turkish morphological disambiguator 
is evaluated.  We give the concluding remarks in Section 5. 

2. Related Work on POS Tagging 
There are two broad categories of POS tagging algorithms 
which are rule-based taggers and stochastic taggers. Rule 
based taggers contain a database of hand crafted rules that 
are designed to minimize ambiguity when applied in a cer-
tain order on each word in the text. Statistical POS taggers 
(also known as stochastic taggers), use a training corpus to 
calculate the likelihood of co-occurrence of all ordered 
pairs of tags. By training a probabilistic model such as 
HMM, the tagger tries to disambiguate any given new text. 
Since we do not have reliable morphological tagged huge 
corpus for Turkish, we have decided to develop a rule-
based morphological disambiguator. 

The earliest algorithms for automatic part-of-speech tag-
ging were the rule-based ones. The tagger TAGGIT that 
was an aid in tagging the famous Brown Corpus was a rule-
based one [6]. Stochastic techniques have proven to be 
more successful compared to pure rule-based ones. Church 
[3] presented a stochastic method that achieved over 95% 
accuracy. Also Cutting [6] presented a part-of-speech tag-
ger based on a hidden Markov model that enables robust 
and accurate tagging with only a lexicon and some unla-

beled training text requirements. Brill [2] presented a rule 
based POS tagger which used a transformation based 
method that learns its rules from a training corpus. Current 
trend in morphological disambiguation and POS tagging is 
blending machine learning techniques and statistic methods 
into rule based approaches. 
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Figure 1. Architecture of the morphological disambiguator 

 Oflazer and Kuruöz [7], developed a Turkish POS tagger 
that uses local neighborhood constraints, heuristics and 
limited amount of statistical information. Oflazer and Tür 
[8] developed a system that combines corpus independent, 
linguistically motivated handcrafted constraint rules, con-
straint rules that are learned via unsupervised learning from 
a training corpus, and additional statistical information 
from the corpus to be morphologically disambiguated. Our 
morphological disambiguator is a rule-based system, and its 
rules are similar to the rules of the system presented in 
[7,8]. 

3. Morphological Disambiguator 
Our main aim was the development of an easy to use, mod-
ern, portable and publicly available effective morphological 
disambiguator for Turkish. Our morphological disambigua-
tor is purely rule-based currently, but we plan to extend it 
with automatic rule learning capability in the near future 
when the reliable morphologically tagged Turkish corpus is 
available. In fact, we are planning to use the developed 
morphological disambiguator as an annotation tool in the 
creation of this kind of corpus. 

The developed rule-based morphological disambiguator 
is implemented in Java programming language, and it 
communicates with Turkish morphological analyzer that is 
developed in PCKIMO environment [1].  Our morphologi-
cal disambiguator has an easy to use graphical user inter-
face but can also be used as a command line tool. The main 
architecture of the morphological disambiguator is given in 
Figure 1. It takes an input Turkish text and produces the 
morphologically tagged text.  

Our morphological disambiguator takes an input text, and 
the input text is first divided into its tokens by the token-
izer. In this way, the text is represented as a sequence of 
tokens. Then the morphological analyzer is run on each 
token and a list of morphological parses is associated with 
each word. Then the unknown word recognizer is run for 
those tokens for which the morphological analyzer has re-
turned an empty list. The unknown token recognizer asso-
ciates each unknown word with a set of morphological 
parses. Then collocation recognizer detects the word se-
quences that constitute some special meaning when they 
are used together, and packs them into composite tokens. 
Lastly the morphological disambiguator is run on the token 
sequence, which detects and eliminates improper morpho-
logical parses using context sensitive rules.   

In our system, we have used a morphologic analyzer for 
Turkish that is developed using PC-KIMMO environment. 
The morphological level description of Turkish that was 



previously used in the Xerox INFL system that is devel-
oped at Bilkent University  [9] has been recently ported to 
PC-KIMMO environment. The re-implemented system has 
more root words, and can handle some extra constructs 
such as different number constructs. The total number of 
the root words is more than 30,000. 

 After the tokenization of an input text, the tokens created 
by the tokenizer are sent to the morphological analyzer. 
After the morphological analysis, each token is assigned 
one or more morphological parses. For example, the results 
of the morphological analyzer for the token “yarışmada” 
are as follows. 

1. yarış+Verb+Pos^DB+Noun+Inf2+A3sg+Pnon+Loc 
2. yarış+Verb+Pos+ASPECT*PR-CONT+A3sg 

After the morphological analysis there may be some 
tokens that are not assigned any parses such as some for-
eign proper nouns. These tokens are currently handled by 
the unknown token recognizer module. The unknown token 
recognizer also uses PC-KIMMO as a backend. In order to 
find suitable morphological parses for unknown tokens, it 
applies some root substitution methods that use phonetic 
rules of Turkish. As a simple example we can give the to-
ken “talkshowu” (his talkshow). The foreign word “talk-
show” is not included in the lexicon of the morphological 
analyzer, so it is an unknown token.  After the morphologi-
cal analyzer and the unknown token recognizer, all of the 
tokens of the input text are associated with a set of parses. 

3.1 Collocation Recognizer 
The collocation recognizer takes the morphologically ana-
lyzed text and tries to detect and combine certain lexical-
ized and non-lexicalized collocations. The need for such a 
processing arises from the fact that a group of words, when 
appeared subsequently in a sentence, may behave as a mul-
tiword construct with a totally or partially different function 
compared to its individual members in that sentence. A 
typical example is the construct “gelir gelmez”: 

• gelir.        (He comes.) 
• gelmez.       (He does not come.)     
• gelir gelmez ayrıldık. (We left as soon as he comes.) 

Here words “gelir gelmez”, when used together, function 
in that sentence as an adverb whereas the words are in-
flected verbs when considered individually.  There are a 
number of other non-lexicalized forms which are in general 
in the form w+x w+y, where w is the duplicated string of a 
root and certain suffixes, and x and y are possibly different 
sequences of other suffixes.  

The collocation recognition is performed according to 
the rules given in the collocation rules file, which contains 
334 rules currently. A collocation rule is sequence of token 
constraints and an action statement. If the sequence of to-
ken constraints matches a sequence of tokens in the text 
that is analyzed, the action in the action statement is ap-
plied. An action statement provides a template using which 

the collocation recognizer can combine the tokens in the 
matched sequence into a single composite token. For ex-
ample, the rule that handles the collocation “gelir gelmez” 
is follows: 

<collocationRule> <costraint> <parse>  
_R+Verb+Pos+Aor+A3sg </parse> </constraint>  
<costraint> <parse> _R+Verb+Neg+Aor+A3sg 
</parse> </constraint> <action> 
%1 %2+Adverb+When </action> </collocationRule> 

A constraint does not always have to declare a parse to 
be matched, but also token readings can be matched. This 
kind of rules is especially used for detecting lexicalized 
collocations. It is also possible use regular expressions 
when writing token constraints. Token matching by regular 
expressions is case sensitive while the ordinary token 
matching is case insensitive. 

3.2 Morphological Disambiguator 
Morphological analysis of a Turkish word usually results in 
more than one morphological parse. This ambiguity is due 
to the agglutinative nature of the language. The morpho-
logical disambiguator module, using a set of context sensi-
tive and handcrafted rules, aims to reduce the number of 
parses associated with each word.  

Disambiguation is performed using two types of disam-
biguation rules, namely choose and delete rules. These 
rules are applied only if a word is in the specified context 
of the rule. By being in the context, we mean that the sur-
rounding words match the constraints of the rule. A disam-
biguation rule must target a token, i.e. the token that this 
rule aims to disambiguate. A rule can also specify 
neighboring tokens, each described by an offset value, i.e. 
the relative position of the neighbor according to the target. 

A high percentage of disambiguation rules in our system 
are similar to the rules in [7,8]. Our morphological disam-
biguator uses more capable and descriptive formatting for 
disambiguation rules, and the number of disambiguation 
rules in our system is higher when compared to that of the 
previous work [7,8]. Currently, the total number of the dis-
ambiguation rules is 342.  289 of them are choose-rules, 
and 53 of them are delete-rules. 

Most of the choose rules in this file are motivated by the 
grammatical constraints of Turkish; so they are independ-
ent from the text category. When choose rules are applied 
to a certain word, if the constraints of the rule are satisfied, 
then the target token and its ambiguous neighbors are dis-
ambiguated at once. For the noun phrase “çocuğun kitabı” 
(the child’s book), the morphological analyzer returns us 
the following parses: 

çocuğun 
1. çocuk+Noun+A3sg+Pnon+Gen        (correct parse) 
2. çocuk+Noun+A3sg+P2sg+Nom 

kitabı 
1. kitap+Noun+A3sg+Pnon+Acc 
2. kitap+Noun+A3sg+P3sg+Nom        (correct parse) 



The tokens of this noun phrase can be disambiguated by the 
following choose-rule: 

<chooseRule> <neighbour offset="-1"> 
<parse>A3sg+Gen</parse> </neighbour>  
<target> <parse stemAllowed="false"> Noun+P3sg 

   </parse> </target> </chooseRule> 

After applying the rule given above on this noun phrase, 
not only the word “kitabı” is disambiguated, but also the 
appropriate parse for its neighbor “çocuğun” is chosen.  

Another set of rules, called delete-rules, are also used in 
the disambiguation process. Delete rules are mainly used to 
remove very rare parses of some common words. Delete 
rules only affect the word that is being disambiguated, and 
they work only in a non-ambiguous context. An example 
delete rule is given below: 

<deleteRule> <target> 
<token>biz</token> <parse>Noun</parse> 

</target> </deleteRule> 

The rule above drops the very infrequent noun parse of the 
word “biz” in favor of the remaining pronoun parse. 

The rules in the disambiguation rules file are grouped ac-
cording to their function. They are also ordered according 
to their generality; the more a rule is stricter (specific), the 
higher in the file it would appear. The order of the rules is 
very important, because if the ordering is wrong, then the 
disambiguation will produce more wrong results. 

4. Evaluation 
In order to evaluate the performance of our morphological 
disambiguator, we created a test set. The test set consists of 
15 randomly selected Turkish newspaper articles from 
online newspapers. First, the selected articles are hand 
tagged so that the results of the morphological disambigua-
tor can be compared with these hand tagged articles in or-
der to evaluate its results. Initially there were 2454 tokens 
in the test set. The human expert detected 77 collocations in 
the test set, and there were 2370 tokens (single or compos-
ite) after all collocations are hand tagged. 329 of these 2370 
tokens are punctuation tokens, and 2041 of them were non-
punctuation tokens. Each of 2370 tokens is correctly tagged 
with a single correct parse by the human expert. The human 
expert also selected a correct parse for the tokens that are 
unhandled by the morphological analyzer (unknown to-
kens). 

Each token is assigned a set of morphological parses by 
the morphological disambiguator. We expect that one of 
these parses to be the correct one. A token is fully disam-
biguated if the disambiguator has dropped all parses except 
the correct one. We call the token correctly disambiguated 
if its multiple parses contain its correct parse.  

We used the common precision and recall metrics in or-
der to evaluate our morphological disambiguator. Precision 
measures the ratio of appropriate parses received from the 
morphological disambiguator to the total number of parses, 

while the recall measures the ratio of correctly disambigu-
ated tokens to the total number of tokens.  

Table 5. The results after the morphological analyzer and 
unknown token recognizer 

# of 
1 2 3 4 5 6 7 parses 8 9 10 11 12

# of 
tokens 1340 701 190 157 29 16 1 10 1 1 0 8 
 

Table 6. The results after the collocation recognizer 

# of 
parses 1 2 3 4 5 6 

After the morphological analyzer and the unknown token 
recognizer steps of the disambiguator, there were 2454 to-

7  8 9 10 11 12
# of 

tokens 1304 674 172 155 28 16 1 10 1 1 0 8
#  of  corr. 
dis. toks. 1304 674 172 155 28 16 1 10 1 1 0 8
 
Number of Collocations 77 
Total Number of Tokens 2370 
Total Number of Parses 4226 
Number of Corr. Disamg. Tokens 2370 
Precision 56.1% 
Recall 100%  

 
Table 7. The results after applying choose-rules 

# of 
parses 1 2 3 4 5 6 7  8 9 10 11 12
# of 

tokens 1820 382 70 72  7  5 1 6 1 0 0 6
#  of  corr. 
dis. toks. 1796 380 67 71  6  5  1 6 1 0 0 6
 
Total Number of Parses 3283 
Number of Corr. Disamg. Tokens 2339 
Precision 71.2% 
Recall 98.7%  

 
Table 8. The results after applying delete rules  

# of 
parses 1 2 3 4 5 6 7  8 9 10 11 12
# of 

tokens 2010 271 56 22  3  7 0  1 0 0 0 0
#  of  corr. 
dis. toks. 1984 266 53 21  2  7  0  1 0 0 0 0
 
Total Number of Parses 2873 
Number of Corr. Disamg. Tokens 2334 
Precision 81.2% 
Recall 98.5%  



kens and there were 4383 parses for those tokens. The dis-
tribution of the tokens into the number of parses can be 
seen in Table 5. 

Then, the collocation recognizer is executed and its re-
sults are given in Table 6. The collocation recognizer cor-
rectly found all of the 77 collocations. So, we can say that 
our collocation recognizer worked with 100% accuracy for 
this set. Although our collocation recognizer worked with 
100% accuracy for this set, it can miss some collocations in 
a larger test set. We believe that our collocation recognizer 
may not be complete, but it is coverage is very high. Ac-
cording to the results given in Table 6, the parses of each 
token contain its correct parse (100% recall), and 56.1% of 
the all parses in the result set are correct (56.1% precision). 
The results in Table 6 also indicate that the average number 
of parses per token is 1.78 (=2370/4226), and a token can 
have maximum 12 parses. These measurements are the 
values before the disambiguation process. 

We measured the precision and recall levels after apply-
ing choose and delete rules. The results after applying 
choose and delete rules are given in Tables 7 and 8. The 
precision increases from 56.1% to 71.2% by applying the 
choose rules by only sacrificing a small recall amount of 
1.3%. The average number of parses per token also drops to 
1.39 after the application of choose rules. 

Finally, we apply delete rules in order to drop rare parses 
of tokens and achieve a precision of 81.2% and the recall 
becomes 98.5%. The average number of parses per token 
also drops to 1.21 after the application of delete rules. This 
is the overall performance of our morphological disam-
biguator. As a result, our disambiguator reduces the level of 
ambiguity from 1.78 parses per token to 1.21 parses per 
token with 81.2% precision and 98.5% recall values. 

In general, precision and recall are inversely proportional 
to each other, i.e. it is usual to sacrifice from recall in order 
to improve precision. As it can be seen from the results, the 
decrease in recall is small when compared to the much sig-
nificant increase in the precision. 

5. Conclusion 
In this paper, we introduced our effective rule-based mor-
phological disambiguator for Turkish. Part-of-speech tag-
ging is one of the low level disambiguation problems of 
NLP domain and although many highly accurate algorithms 
are available today, it still remains as an open research area 
especially for languages such as Turkish. Turkish, because 
of its agglutinative structure, has a higher ambiguity in the 
morphological level when compared to English. The mor-
phological disambiguation of Turkish texts will reduce the 
burden in higher level NLP applications such as machine 
translation [4,5]. 

An advantage of our morphological disambiguator is that 
it uses a very flexible rule format for both the collocation 
recognition and the morphological disambiguation proc-
esses. This enables us to easily develop more rules when 

need arises and fine tune the behavior of the morphological 
disambiguator. But manually maintaining the rule files may 
become cumbersome as the number of rules gets large. This 
is due to the fact that the order of rules affects the effec-
tiveness of the morphological disambiguator. Today, many 
successful algorithms are neither purely rule-based nor sta-
tistical but follow a hybrid approach that combines the best 
properties of the two with some machine learning ap-
proaches. These taggers can usually learn new rules by ana-
lyzing relatively small sized training corpuses and can 
achieve great accuracy values. Although, the morphological 
disambiguator developed during this project is a pure rule-
based tagger with no learning capabilities, it follows a very 
modular approach that can easily be extended with other 
capabilities such as automatic rule learning in the future.  

As a future work, we are planning to morphologically tag 
a huge Turkish corpus using our annotator tool. The re-
searchers can use this corpus for different applications. In 
fact, we are planning to extend our morphological disam-
biguator with the statistical and automatic rule learning 
capabilities using this corpus. 
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