
A Rule-Based Morphological Disambiguator for Turkish

Turhan Daybelge
Department of Computer Engineering

Bilkent University
Bilkent 06800, Ankara, Turkey

daybelge@cs.bilkent.edu.tr

Ilyas Cicekli
Department of Computer Engineering

Bilkent University
Bilkent 06800, Ankara, Turkey

ilyas@cs.bilkent.edu.tr

Abstract

Part-of-speech (POS) tagging is the process of assigning
each word of an input text into an appropriate morphologi-
cal class. Automatic recognition of parts-of-speech is very
important for high level NLP applications, since it would
be usually infeasible to perform this task manually in prac-
tical systems. One approach to POS tagging uses morpho-
logical disambiguation which selects the most suitable
morphological parse for each word from the set of parses
that is assigned to that word by the morphological analyzer.
Accurate POS tagging is not a simple task in general. It
even becomes harder for agglutinative languages like Turk-
ish; the number of morphological parses associated with
each word in a text is usually much larger than that is for
non-agglutinative languages such as English. This is due to
the ambiguous nature of such languages. In this paper, we
introduce an effective rule based morphological disam-
biguator for Turkish.

Keywords: part-of-speech tagging, morphological dis-
ambiguation.

1. Introduction
Part-of-speech (POS) tagging is the process of assigning
each word of a given text into an appropriate lexical class
(part of speech) such as noun, verb, adjective, etc. One ap-
proach to POS tagging is the reduction of the problem of
tagging to more general morphological disambiguation
problem. Once a suitable morphological parse is selected
for each word from its possible morphological parses, it is
trivial to detect lexical categories of words since this in-
formation is already contained in morphological parses.

In morphological disambiguation, the morphological ana-
lyzer produces all possible morphological parses for each
word in the text, and a single morphological parse is tried
to be selected from the set of parses assigned to that word.
Unlike the ideal case, the morphological disambiguator
sometimes may not select a single parse, and the selection
of the best subset of parses can be aimed. Turkish part-of-
speech tagger described in this paper is actually a morpho-
logical disambiguator that aims to select the best subset of
the morphological parses if it cannot select a single mor-
phological parse for a word.

Like many applications that deal with great amounts of
data, it is infeasible to manually handle parts-of-speech
tagging for NLP applications that require tagging of large
corpora. Automatic recognition of parts-of-speech is very

important for high level NLP applications such as machine
translation. Although 100% accurate POS tagging is not
possible in practice, highly effective systems for English
are available currently. Although the effective POS taggers
are available for widely studied languages such as English,
the effective POS taggers are not available for the most of
the languages that got less attention, and Turkish is one of
these languages. In this paper, we present an effective mor-
phological disambiguator for Turkish. The developed Turk-
ish morphological disambiguator is planned to be used as a
part of an example-based machine translation system be-
tween English and Turkish [4,5]. The developed Turkish
morphological disambiguator is also integrated with a
graphical user-interface so that it can be used as a morpho-
logical annotator tool for Turkish texts.

Due to the inherent morphological level ambiguity of
Turkish, POS tagging and morphological disambiguation in
general are much more complicated processes for Turkish.
Agglutinative nature of Turkish makes the number of mor-
phological parses for each word larger when it is compared
to English. The number of possible inflectional and deriva-
tional suffixes for Turkish nouns and verbs is much higher,
and this leads to the more morphological level ambiguity in
Turkish words. According to [7], about 80% of Turkish
words have more than one morphological parse.

There can be many different reasons for the morphologi-
cal ambiguities in a Turkish word. For example, the word
“kitabın” has the following two possible morphological
parses:

kitap+Noun+A3sg+P2sg+Nom your book
kitap+Noun+A3sg+Pnon+Gen of the book

Here the ambiguity in the word “kitab-ın” is due to the
phonetic similarity of the genitive suffix in the second
parse and the second singular possessive suffix in the first
parse. Both of them are realized as the suffix “ın” at sur-
face level. Similarly, nouns with the accusative suffix and
the third singular possessive suffix usually have the same
surface form.

The finding the just POS tags of Turkish words will not
be enough for the most NLP applications in Turkish. We
have to find the actual intended morphological parse of the
word. For this purpose, we have developed the Turkish
morphological disambiguator presented in this paper. This
morphological disambiguator tries to find the intended
morphological parse of each word. If it cannot select the

intended morphological parse of the word, it tries to select
the smallest subset of the morphological parses by eliminat-
ing some of the illegal parses.

The rest of the paper is organized as follows. Section 2
summarizes the related work in POS tagging including the
previous works in Turkish POS tagging. We present the
general architecture of our rule-based Turkish morphologi-
cal disambiguator in Section 3. In Section 4, the perform-
ance of the presented Turkish morphological disambiguator
is evaluated. We give the concluding remarks in Section 5.

2. Related Work on POS Tagging
There are two broad categories of POS tagging algorithms
which are rule-based taggers and stochastic taggers. Rule
based taggers contain a database of hand crafted rules that
are designed to minimize ambiguity when applied in a cer-
tain order on each word in the text. Statistical POS taggers
(also known as stochastic taggers), use a training corpus to
calculate the likelihood of co-occurrence of all ordered
pairs of tags. By training a probabilistic model such as
HMM, the tagger tries to disambiguate any given new text.
Since we do not have reliable morphological tagged huge
corpus for Turkish, we have decided to develop a rule-
based morphological disambiguator.

The earliest algorithms for automatic part-of-speech tag-
ging were the rule-based ones. The tagger TAGGIT that
was an aid in tagging the famous Brown Corpus was a rule-
based one [6]. Stochastic techniques have proven to be
more successful compared to pure rule-based ones. Church
[3] presented a stochastic method that achieved over 95%
accuracy. Also Cutting [6] presented a part-of-speech tag-
ger based on a hidden Markov model that enables robust
and accurate tagging with only a lexicon and some unla-

beled training text requirements. Brill [2] presented a rule
based POS tagger which used a transformation based
method that learns its rules from a training corpus. Current
trend in morphological disambiguation and POS tagging is
blending machine learning techniques and statistic methods
into rule based approaches.

Tokenizer

Morphological Analyzer &
Unknown Token Recognizer

Collocation
Recognizer

Morphological
Disambiguator

Collocation
Rules

Disambiguation
Rules

Input Text

Tagged Text

Figure 1. Architecture of the morphological disambiguator

 Oflazer and Kuruöz [7], developed a Turkish POS tagger
that uses local neighborhood constraints, heuristics and
limited amount of statistical information. Oflazer and Tür
[8] developed a system that combines corpus independent,
linguistically motivated handcrafted constraint rules, con-
straint rules that are learned via unsupervised learning from
a training corpus, and additional statistical information
from the corpus to be morphologically disambiguated. Our
morphological disambiguator is a rule-based system, and its
rules are similar to the rules of the system presented in
[7,8].

3. Morphological Disambiguator
Our main aim was the development of an easy to use, mod-
ern, portable and publicly available effective morphological
disambiguator for Turkish. Our morphological disambigua-
tor is purely rule-based currently, but we plan to extend it
with automatic rule learning capability in the near future
when the reliable morphologically tagged Turkish corpus is
available. In fact, we are planning to use the developed
morphological disambiguator as an annotation tool in the
creation of this kind of corpus.

The developed rule-based morphological disambiguator
is implemented in Java programming language, and it
communicates with Turkish morphological analyzer that is
developed in PCKIMO environment [1]. Our morphologi-
cal disambiguator has an easy to use graphical user inter-
face but can also be used as a command line tool. The main
architecture of the morphological disambiguator is given in
Figure 1. It takes an input Turkish text and produces the
morphologically tagged text.

Our morphological disambiguator takes an input text, and
the input text is first divided into its tokens by the token-
izer. In this way, the text is represented as a sequence of
tokens. Then the morphological analyzer is run on each
token and a list of morphological parses is associated with
each word. Then the unknown word recognizer is run for
those tokens for which the morphological analyzer has re-
turned an empty list. The unknown token recognizer asso-
ciates each unknown word with a set of morphological
parses. Then collocation recognizer detects the word se-
quences that constitute some special meaning when they
are used together, and packs them into composite tokens.
Lastly the morphological disambiguator is run on the token
sequence, which detects and eliminates improper morpho-
logical parses using context sensitive rules.

In our system, we have used a morphologic analyzer for
Turkish that is developed using PC-KIMMO environment.
The morphological level description of Turkish that was

previously used in the Xerox INFL system that is devel-
oped at Bilkent University [9] has been recently ported to
PC-KIMMO environment. The re-implemented system has
more root words, and can handle some extra constructs
such as different number constructs. The total number of
the root words is more than 30,000.

 After the tokenization of an input text, the tokens created
by the tokenizer are sent to the morphological analyzer.
After the morphological analysis, each token is assigned
one or more morphological parses. For example, the results
of the morphological analyzer for the token “yarışmada”
are as follows.

1. yarış+Verb+Pos^DB+Noun+Inf2+A3sg+Pnon+Loc
2. yarış+Verb+Pos+ASPECT*PR-CONT+A3sg

After the morphological analysis there may be some
tokens that are not assigned any parses such as some for-
eign proper nouns. These tokens are currently handled by
the unknown token recognizer module. The unknown token
recognizer also uses PC-KIMMO as a backend. In order to
find suitable morphological parses for unknown tokens, it
applies some root substitution methods that use phonetic
rules of Turkish. As a simple example we can give the to-
ken “talkshowu” (his talkshow). The foreign word “talk-
show” is not included in the lexicon of the morphological
analyzer, so it is an unknown token. After the morphologi-
cal analyzer and the unknown token recognizer, all of the
tokens of the input text are associated with a set of parses.

3.1 Collocation Recognizer
The collocation recognizer takes the morphologically ana-
lyzed text and tries to detect and combine certain lexical-
ized and non-lexicalized collocations. The need for such a
processing arises from the fact that a group of words, when
appeared subsequently in a sentence, may behave as a mul-
tiword construct with a totally or partially different function
compared to its individual members in that sentence. A
typical example is the construct “gelir gelmez”:

• gelir. (He comes.)
• gelmez. (He does not come.)
• gelir gelmez ayrıldık. (We left as soon as he comes.)

Here words “gelir gelmez”, when used together, function
in that sentence as an adverb whereas the words are in-
flected verbs when considered individually. There are a
number of other non-lexicalized forms which are in general
in the form w+x w+y, where w is the duplicated string of a
root and certain suffixes, and x and y are possibly different
sequences of other suffixes.

The collocation recognition is performed according to
the rules given in the collocation rules file, which contains
334 rules currently. A collocation rule is sequence of token
constraints and an action statement. If the sequence of to-
ken constraints matches a sequence of tokens in the text
that is analyzed, the action in the action statement is ap-
plied. An action statement provides a template using which

the collocation recognizer can combine the tokens in the
matched sequence into a single composite token. For ex-
ample, the rule that handles the collocation “gelir gelmez”
is follows:

<collocationRule> <costraint> <parse>
_R+Verb+Pos+Aor+A3sg </parse> </constraint>
<costraint> <parse> _R+Verb+Neg+Aor+A3sg
</parse> </constraint> <action>
%1 %2+Adverb+When </action> </collocationRule>

A constraint does not always have to declare a parse to
be matched, but also token readings can be matched. This
kind of rules is especially used for detecting lexicalized
collocations. It is also possible use regular expressions
when writing token constraints. Token matching by regular
expressions is case sensitive while the ordinary token
matching is case insensitive.

3.2 Morphological Disambiguator
Morphological analysis of a Turkish word usually results in
more than one morphological parse. This ambiguity is due
to the agglutinative nature of the language. The morpho-
logical disambiguator module, using a set of context sensi-
tive and handcrafted rules, aims to reduce the number of
parses associated with each word.

Disambiguation is performed using two types of disam-
biguation rules, namely choose and delete rules. These
rules are applied only if a word is in the specified context
of the rule. By being in the context, we mean that the sur-
rounding words match the constraints of the rule. A disam-
biguation rule must target a token, i.e. the token that this
rule aims to disambiguate. A rule can also specify
neighboring tokens, each described by an offset value, i.e.
the relative position of the neighbor according to the target.

A high percentage of disambiguation rules in our system
are similar to the rules in [7,8]. Our morphological disam-
biguator uses more capable and descriptive formatting for
disambiguation rules, and the number of disambiguation
rules in our system is higher when compared to that of the
previous work [7,8]. Currently, the total number of the dis-
ambiguation rules is 342. 289 of them are choose-rules,
and 53 of them are delete-rules.

Most of the choose rules in this file are motivated by the
grammatical constraints of Turkish; so they are independ-
ent from the text category. When choose rules are applied
to a certain word, if the constraints of the rule are satisfied,
then the target token and its ambiguous neighbors are dis-
ambiguated at once. For the noun phrase “çocuğun kitabı”
(the child’s book), the morphological analyzer returns us
the following parses:

çocuğun
1. çocuk+Noun+A3sg+Pnon+Gen (correct parse)
2. çocuk+Noun+A3sg+P2sg+Nom

kitabı
1. kitap+Noun+A3sg+Pnon+Acc
2. kitap+Noun+A3sg+P3sg+Nom (correct parse)

The tokens of this noun phrase can be disambiguated by the
following choose-rule:

<chooseRule> <neighbour offset="-1">
<parse>A3sg+Gen</parse> </neighbour>
<target> <parse stemAllowed="false"> Noun+P3sg

 </parse> </target> </chooseRule>

After applying the rule given above on this noun phrase,
not only the word “kitabı” is disambiguated, but also the
appropriate parse for its neighbor “çocuğun” is chosen.

Another set of rules, called delete-rules, are also used in
the disambiguation process. Delete rules are mainly used to
remove very rare parses of some common words. Delete
rules only affect the word that is being disambiguated, and
they work only in a non-ambiguous context. An example
delete rule is given below:

<deleteRule> <target>
<token>biz</token> <parse>Noun</parse>

</target> </deleteRule>

The rule above drops the very infrequent noun parse of the
word “biz” in favor of the remaining pronoun parse.

The rules in the disambiguation rules file are grouped ac-
cording to their function. They are also ordered according
to their generality; the more a rule is stricter (specific), the
higher in the file it would appear. The order of the rules is
very important, because if the ordering is wrong, then the
disambiguation will produce more wrong results.

4. Evaluation
In order to evaluate the performance of our morphological
disambiguator, we created a test set. The test set consists of
15 randomly selected Turkish newspaper articles from
online newspapers. First, the selected articles are hand
tagged so that the results of the morphological disambigua-
tor can be compared with these hand tagged articles in or-
der to evaluate its results. Initially there were 2454 tokens
in the test set. The human expert detected 77 collocations in
the test set, and there were 2370 tokens (single or compos-
ite) after all collocations are hand tagged. 329 of these 2370
tokens are punctuation tokens, and 2041 of them were non-
punctuation tokens. Each of 2370 tokens is correctly tagged
with a single correct parse by the human expert. The human
expert also selected a correct parse for the tokens that are
unhandled by the morphological analyzer (unknown to-
kens).

Each token is assigned a set of morphological parses by
the morphological disambiguator. We expect that one of
these parses to be the correct one. A token is fully disam-
biguated if the disambiguator has dropped all parses except
the correct one. We call the token correctly disambiguated
if its multiple parses contain its correct parse.

We used the common precision and recall metrics in or-
der to evaluate our morphological disambiguator. Precision
measures the ratio of appropriate parses received from the
morphological disambiguator to the total number of parses,

while the recall measures the ratio of correctly disambigu-
ated tokens to the total number of tokens.

Table 5. The results after the morphological analyzer and
unknown token recognizer

of
1 2 3 4 5 6 7 parses 8 9 10 11 12

of
tokens 1340 701 190 157 29 16 1 10 1 1 0 8

Table 6. The results after the collocation recognizer

of
parses 1 2 3 4 5 6

After the morphological analyzer and the unknown token
recognizer steps of the disambiguator, there were 2454 to-

7 8 9 10 11 12
of

tokens 1304 674 172 155 28 16 1 10 1 1 0 8
of corr.
dis. toks. 1304 674 172 155 28 16 1 10 1 1 0 8

Number of Collocations 77
Total Number of Tokens 2370
Total Number of Parses 4226
Number of Corr. Disamg. Tokens 2370
Precision 56.1%
Recall 100%

Table 7. The results after applying choose-rules

of
parses 1 2 3 4 5 6 7 8 9 10 11 12
of

tokens 1820 382 70 72 7 5 1 6 1 0 0 6
of corr.
dis. toks. 1796 380 67 71 6 5 1 6 1 0 0 6

Total Number of Parses 3283
Number of Corr. Disamg. Tokens 2339
Precision 71.2%
Recall 98.7%

Table 8. The results after applying delete rules

of
parses 1 2 3 4 5 6 7 8 9 10 11 12
of

tokens 2010 271 56 22 3 7 0 1 0 0 0 0
of corr.
dis. toks. 1984 266 53 21 2 7 0 1 0 0 0 0

Total Number of Parses 2873
Number of Corr. Disamg. Tokens 2334
Precision 81.2%
Recall 98.5%

kens and there were 4383 parses for those tokens. The dis-
tribution of the tokens into the number of parses can be
seen in Table 5.

Then, the collocation recognizer is executed and its re-
sults are given in Table 6. The collocation recognizer cor-
rectly found all of the 77 collocations. So, we can say that
our collocation recognizer worked with 100% accuracy for
this set. Although our collocation recognizer worked with
100% accuracy for this set, it can miss some collocations in
a larger test set. We believe that our collocation recognizer
may not be complete, but it is coverage is very high. Ac-
cording to the results given in Table 6, the parses of each
token contain its correct parse (100% recall), and 56.1% of
the all parses in the result set are correct (56.1% precision).
The results in Table 6 also indicate that the average number
of parses per token is 1.78 (=2370/4226), and a token can
have maximum 12 parses. These measurements are the
values before the disambiguation process.

We measured the precision and recall levels after apply-
ing choose and delete rules. The results after applying
choose and delete rules are given in Tables 7 and 8. The
precision increases from 56.1% to 71.2% by applying the
choose rules by only sacrificing a small recall amount of
1.3%. The average number of parses per token also drops to
1.39 after the application of choose rules.

Finally, we apply delete rules in order to drop rare parses
of tokens and achieve a precision of 81.2% and the recall
becomes 98.5%. The average number of parses per token
also drops to 1.21 after the application of delete rules. This
is the overall performance of our morphological disam-
biguator. As a result, our disambiguator reduces the level of
ambiguity from 1.78 parses per token to 1.21 parses per
token with 81.2% precision and 98.5% recall values.

In general, precision and recall are inversely proportional
to each other, i.e. it is usual to sacrifice from recall in order
to improve precision. As it can be seen from the results, the
decrease in recall is small when compared to the much sig-
nificant increase in the precision.

5. Conclusion
In this paper, we introduced our effective rule-based mor-
phological disambiguator for Turkish. Part-of-speech tag-
ging is one of the low level disambiguation problems of
NLP domain and although many highly accurate algorithms
are available today, it still remains as an open research area
especially for languages such as Turkish. Turkish, because
of its agglutinative structure, has a higher ambiguity in the
morphological level when compared to English. The mor-
phological disambiguation of Turkish texts will reduce the
burden in higher level NLP applications such as machine
translation [4,5].

An advantage of our morphological disambiguator is that
it uses a very flexible rule format for both the collocation
recognition and the morphological disambiguation proc-
esses. This enables us to easily develop more rules when

need arises and fine tune the behavior of the morphological
disambiguator. But manually maintaining the rule files may
become cumbersome as the number of rules gets large. This
is due to the fact that the order of rules affects the effec-
tiveness of the morphological disambiguator. Today, many
successful algorithms are neither purely rule-based nor sta-
tistical but follow a hybrid approach that combines the best
properties of the two with some machine learning ap-
proaches. These taggers can usually learn new rules by ana-
lyzing relatively small sized training corpuses and can
achieve great accuracy values. Although, the morphological
disambiguator developed during this project is a pure rule-
based tagger with no learning capabilities, it follows a very
modular approach that can easily be extended with other
capabilities such as automatic rule learning in the future.

As a future work, we are planning to morphologically tag
a huge Turkish corpus using our annotator tool. The re-
searchers can use this corpus for different applications. In
fact, we are planning to extend our morphological disam-
biguator with the statistical and automatic rule learning
capabilities using this corpus.

6. References
[1] E. L. Antworth. PC-KIMMO: A Two-level Processor for

Morphological Analysis. Summer Institute of Linguistics,
Dallas, Texas, 1990.

[2] Eric Brill, A simple rule-based part of speech tagger, Pro-
ceedings of the third conference on Applied natural language
processing, March 31-April 03, 1992, Trento, Italy

[3] Kenneth Ward Church, A stochastic parts program and noun
phrase parser for unrestricted text, Proceedings of the second
conference on Applied natural language processing, Febru-
ary 09-12, 1988, Austin, Texas

[4] Ilyas Cicekli, Learning Translation Templates with Type
Constraints, in: Proceedings of Example-Based Machine
Translation Workshop, MT Summit X, Phuket, Thailand,
September 2005, pp:27-34.

[5] Ilyas Cicekli, and H. Altay Güvenir, Learning Translation
Templates from Bilingual Translation Examples, in: Recent
Advances in Example-Based Machine Translation, Carl, M.,
and Way, A. (eds), The Kluwer Academic Publishers, Bos-
ton, 2003, pp:247-278.

[6] Doug Cutting , Julian Kupiec , Jan Pedersen , Penelope
Sibun, A practical part-of-speech tagger, Proceedings of the
third conference on Applied natural language processing,
March 31-April 03, 1992, Trento, Italy

[7] Kemal Oflazer, İlker Kuruöz, Tagging and morphological
disambiguation of Turkish text, Proceedings of the fourth
conference on Applied natural language processing, October
13-15, 1994, Stuttgart, Germany

[8] Kemal Oflazer, Gökhan Tür, Combining Hand-crafted Rules
and Unsupervised Learning in Constraint-based Morphologi-
cal Disambiguation. Proceedings of the ACL-SIGDAT Con-
ference on Empirical Methods in Natural Language Process-
ing, May 1996, Philadelphia, PA, USA.

[9] Kemal Oflazer, Two-level Description of Turkish Morphol-
ogy, Literary and Linguistic Computing, Vol. 9, No:2, 1994.

