
 For the course, we will be using JCreator as the IDE (Integrated Development Environment).
 We strongly advise that you install these to your own computers.
 If you do not have your own computer, the computer labs on campus have the software.

1

 You will have 11 lab assignments which you arerequired to solve individually during the labsessions. The minimum lab grade will be discardedat the end. There will be no make-up for the labassignment you miss.
 At the end of the lab, assistants will check andgrade the assignment.
 TAs will also ask students to explain their solutionin order to ensure that they really have understoodthe concepts involved.

2

 If you have difficulty in understanding course subjects, go to the teaching assistants or ask for office hours and ask them. Be wise and make use of the resources provided to you.

3

4

Object-Oriented Programming
The Java Programming Language
Program Development

 The purpose of writing a program is to solve a problem
 Solving a problem consists of multiple activities:

◦ Understand the problem
◦ Design a solution
◦ Consider alternatives and refine the solution
◦ Implement the solution
◦ Test the solution

 These activities are not purely linear – they overlap and interact
5

 The key to designing a solution is breaking it down into manageable pieces
 When writing software, we design separate pieces that are responsible for certain parts of the solution
 An object-oriented approach lends itself to this kind of solution decomposition
 Object-oriented paradigm focuses on objects, data structures that have attributes (fields) and behaviours (methods).

6

 Java is an object-oriented programming language
 As the term implies, an object is a fundamental entity in a Java program
 Objects can be used effectively to represent real-world entities
 Objects have state (data) and behaviour (methods).
 For instance, an object might represent a particular employee in a company where each employee object handles the processing and data management related to that employee.

7

8

Object-Oriented Programming
Program Development
The Java Programming Language

 The mechanics of developing a program include several activities:
◦ writing the program in a specific programming language (such as Java)
◦ translating the program into a form that the computer can execute
◦ investigating and fixing various types of errors that can occur

 Software tools can be used to help with all parts of this process
9

1
0

errors?
errors?

Edit andsave program

Compile program

Execute program andevaluate results

 The Java compiler translates Java source code into a special representation called bytecode
 Java bytecode is not the machine language for any traditional CPU
 Another software tool, called an interpreter, translates bytecode into machine language and executes it
 Therefore the Java compiler is not tied to any particular machine
 Java is considered to be architecture-neutral

1
1

1
2

Java source
code

Machine
code

Java
bytecode

Bytecode
interpreter

Bytecode
compiler

Java
compiler

 The syntax rules of a language define how we can put together symbols, reserved words, and identifiers to make a valid program
 The semantics of a program statement define what that statement means (its purpose or role in a program)
 A program that is syntactically correct is not necessarily logically (semantically) correct
 A program will always do what we tell it to do, not what we meant to tell it to do

1
3

 A program can have three types of errors
 The compiler will find syntax errors and other basic problems (compile-time errors)

◦ If compile-time errors exist, an executable version of the program is not created
 A problem can occur during program execution, such as trying to divide by zero, which causes a program to terminate abnormally (run-time errors)
 A program may run, but produce incorrect results, perhaps using an incorrect formula (logical errors)

1
4

 There are many programs that support the development of Java software, including:
◦ Java Development Kit (JDK)◦ Eclipse◦ NetBeans◦ BlueJ◦ jGRASP

 Though the details of these environments differ, the basic compilation and execution process is essentially the same

1
5

16

Object-Oriented Programming
Program Development
The Java Programming Language

 The Java programming language was created by Sun Microsystems, Inc.
 It was introduced in 1995 and it's popularity has grown quickly since
 A programming language specifies the words and symbols that we can use to write a program
 A programming language employs a set of rules that dictate how the words and symbols can be put together to form valid program statements

1
7

 In the Java programming language:
◦ A program is made up of one or more classes◦ A class contains one or more methods◦ A method contains program statements

 These terms will be explored in detail throughout the course
 A Java stand-alone application always contains a method called main
 See Lincoln.java

1
8

1
9

//**
// Lincoln.java Author: Lewis/Loftus
//
// Demonstrates the basic structure of a Java application.
//**
public class Lincoln
{

//---
// Prints a presidential quote.
//---
public static void main (String[] args)
{

System.out.println ("A quote by Abraham Lincoln:");
System.out.println ("Whatever you are, be a good one.");

}
}

2
0

//**
// Lincoln.java Author: Lewis/Loftus
//
// Demonstrates the basic structure of a Java application.
//**
public class Lincoln
{

//---
// Prints a presidential quote.
//---
public static void main (String[] args)
{

System.out.println ("A quote by Abraham Lincoln:");
System.out.println ("Whatever you are, be a good one.");

}
}

Output
A quote by Abraham Lincoln:
Whatever you are, be a good one.

2
1

public class MyProgram
{

}

// comments about the class

class header

class body

Comments can be placed almost anywhere

2
2

public class MyProgram
{

}

// comments about the class

public static void main (String[] args)
{

}

// comments about the method

method headermethod body

 Comments should be included to explain the purpose of the program and describe processing steps
 They do not affect how a program works
 Java comments can take three forms:

2
3

// this comment runs to the end of the line
/* this comment runs to the terminating

symbol, even across line breaks */
/** this is a javadoc comment */

 Identifiers are the "words" in a program
 A Java identifier can be made up of letters, digits, the underscore character (_), and the dollar sign
 Identifiers cannot begin with a digit
 Java is case sensitive: Total, total, andTOTAL are different identifiers
 By convention, programmers use different case styles for different types of identifiers, such as

◦ title case for class names - Lincoln
◦ upper case for constants - MAXIMUM

2
4

 Sometimes the programmer chooses the identifer(such as Lincoln)
 Sometimes we are using another programmer's code, so we use the identifiers that he or she chose (such as println)
 Often we use special identifiers called reserved words that already have a predefined meaning in the language
 A reserved word cannot be used in any other way

2
5

 The Java reserved words:

2
6

abstract
assert
boolean
break
byte
case
catch
char
class
const
continue
default
do
double

else
enum
extends
false
final
finally
float
for
goto
if
implements
import
instanceof
int

interface
long
native
new
null
package
private
protected
public
return
short
static
strictfp
super

switch
synchronized
this
throw
throws
transient
true
try
void
volatile
while

2
7

Which of the following are valid Java identifiers?
grade
quizGrade
NetworkConnection
frame2
3rdTestScore
MAXIMUM
MIN_CAPACITY
student#
Shelves1&2

2
8

Which of the following are valid Java identifiers?
grade
quizGrade
NetworkConnection
frame2
3rdTestScore
MAXIMUM
MIN_CAPACITY
student#
Shelves1&2

Valid
Valid
Valid
Valid
Invalid – cannot begin with a digit
Valid
Valid
Invalid – cannot contain the '#' character
Invalid – cannot contain the '&' character

 Spaces, blank lines, and tabs are called white space
 White space is used to separate words and symbols in a program
 Extra white space is ignored
 A valid Java program can be formatted many ways
 Programs should be formatted to enhance readability, using consistent indentation
 See Lincoln2.java and Lincoln3.java

2
9

3
0

Variables and Assignment
Primitive Data Types
Character Strings
Expressions
Data Conversion
Interactive Programs

 A variable is a name for a location in memory that holds a value

 Think of it as a box

3
1

 Think of it as a box
 A variable has three things:

◦ a name : that is how we refer to it
◦ a type : what kind of a thing is stored in the box
◦ a value : what is in the box

3
2

 Before you use a variable, you must declare it. (Not all languages require this, but Java certainly does.)
 Examples:
/* Creates an integer variable */
int number;
/* Creates two double variables */
double price, tax;
/* Creates a character variable */
char letter;

3
3

data type identifier
semi-colon

 A variable declaration specifies the variable's name and the type of information that it will hold:
 Before you use a variable, you must declare it. (Not all languages require this, but Java certainly does.)

3
4

int total;

data type variable name

 A variable declaration specifies the variable's name and the type of information that it will hold:

 Multiple variables can be created in one declaration

3
5

int total;

data type variable name

int count, temp, result;

 Examples:
// Declares an integer variable
int number;
// Declares two double variables
double price, tax;
// Declares a character variable
char letter;

3
6

 Examples:
// Declares an integer variable
int number;
// Declares two double variables
double price, tax;
// Declares a character variable
char letter;

3
7

 A variable can be given an initial value in the declaration. This is called variable initialization.

3
8

int sum = 0;
int base = 32, max = 149;

• When a variable is referenced in a program, its current value is used.

• See PianoKeys.java

//**
// PianoKeys.java Author: Lewis/Loftus
//
// Demonstrates the declaration, initialization, and use of an
// integer variable.
//**
public class PianoKeys
{

//---
// Prints the number of keys on a piano.
//---
public static void main (String[] args)
{

int keys = 88;
System.out.println ("A piano has " + keys + " keys.");

}
}

3
9

//**
// PianoKeys.java Author: Lewis/Loftus
//
// Demonstrates the declaration, initialization, and use of an
// integer variable.
//**
public class PianoKeys
{

//---
// Prints the number of keys on a piano.
//---
public static void main (String[] args)
{

int keys = 88;
System.out.println ("A piano has " + keys + " keys.");

}
}

Output
A piano has 88 keys.

4
0

 An assignment statement changes the value of a variable
 The assignment operator is the = sign

4
1

total = 55;

 An assignment statement changes the value of a variable
 The assignment operator is the = sign

4
2

total = 55;

• The value that was in total is overwritten
• You can only assign a value to a variable that is consistent with the variable's declared type
• See Geometry.java

//**
// Geometry.java Author: Lewis/Loftus
//
// Demonstrates the use of an assignment statement to change the
// value stored in a variable.
//**
public class Geometry
{

//---
// Prints the number of sides of several geometric shapes.
//---
public static void main (String[] args)
{

int sides = 7; // declaration with initialization
System.out.println ("A heptagon has " + sides + " sides.");
sides = 10; // assignment statement
System.out.println ("A decagon has " + sides + " sides.");
sides = 12;
System.out.println ("A dodecagon has " + sides + " sides.");

}
}

4
3

//**
// Geometry.java Author: Lewis/Loftus
//
// Demonstrates the use of an assignment statement to change the
// value stored in a variable.
//**
public class Geometry
{

//---
// Prints the number of sides of several geometric shapes.
//---
public static void main (String[] args)
{

int sides = 7; // declaration with initialization
System.out.println ("A heptagon has " + sides + " sides.");
sides = 10; // assignment statement
System.out.println ("A decagon has " + sides + " sides.");
sides = 12;
System.out.println ("A dodecagon has " + sides + " sides.");

}
}

Output
A heptagon has 7 sides.
A decagon has 10 sides.
a dodecagon has 12 sides.

4
4

 A constant is an identifier that is similar to a variable except that it holds the same value during its entire existence
 As the name implies, it is constant, does not vary (cannot exist in the left hand side of the assignment operator in an assignment statement, because its value is finalized)

4
5

 A constant is an identifier that is similar to a variable except that it holds the same value during its entire existence
 As the name implies, it is constant, does not vary
 The compiler will issue an error if you try to change the value of a constant
 In Java, we use the final modifier to declare a constant

final int MIN_HEIGHT = 69;
4
6

 Constants are useful for three important reasons
◦ They give meaning to otherwise unclear literal values

 Example: MAX_LOAD means more than the literal 250
◦ They facilitate program maintenance

 If a constant is used in multiple places, its value need only be set in one place
◦ They formally establish that a value should not change, avoiding inadvertent errors by other programmers

4
7

4
8

Variables and Assignment
Primitive Data Types
Character Strings
Expressions
Data Conversion
Interactive Programs

 There are 2 basic data types in Java:
◦ Primitive data types:

 byte, short, int, long, float, double, char, boolean
◦ Non-Primitive (Reference) data types

 Examples: String, File, Scanner, ArrayList,..

4
9

 There are eight primitive data types in Java
 Four of them represent integers:

◦ byte, short, int, long
 Two of them represent floating point numbers:

◦ float (8 significant figures)
◦ double (16 significant figures)

 One of them represents characters:
◦ char

 And one of them represents boolean values:
◦ boolean

5
0

 The difference between the numeric primitive types is their size and the values they can store:

5
1

Type
byte
short
int
long
float
double

Storage
8 bits16 bits32 bits64 bits
32 bits64 bits

Min Value
-128-32,768-2,147,483,648< -9 x 1018

+/- 3.4 x 1038 with 7 significant digits+/- 1.7 x 10308 with 15 significant digits

Max Value
12732,7672,147,483,647> 9 x 1018

 A boolean value represents a true or false condition
 The reserved words true and false are the only valid values for a boolean type

boolean done = false;
 A boolean variable can also be used to represent any two states, such as a light bulb being on or off

5
2

 A char variable stores a single character
 Character literals are delimited by single quotes:

'a' 'X' '7' '$' ',' '\n'
 Example declarations:
char topGrade = 'A';
char terminator = ';', separator = ' ';

5
3

 A character set is an ordered list of characters, with each character corresponding to a unique number
 A char variable in Java can store any character from the Unicode character set
 The Unicode character set uses sixteen bits per character, allowing for 65,536 unique characters
 It is an international character set, containing symbols and characters from many world languages

5
4

 The ASCII character set is older and smaller than Unicode, but is still quite popular
 The ASCII characters are a subset of the Unicode character set, including:

5
5

uppercase letterslowercase letterspunctuationdigitsspecial symbolscontrol characters

A, B, C, …a, b, c, …period, semi-colon, …0, 1, 2, …&, |, \, …carriage return, tab, ...

5
6

5
7

Variables and Assignment
Primitive Data Types
Character Strings
Expressions
Data Conversion
Interactive Programs

 A string literal is represented by putting double quotes around the text. Examples:
"This is a string literal."
"X"

 Every character string is an object in Java, defined by the String class
 A String object is an ordered set of characters. The number of characters can be 0. A String of 0 characters is called an empty String, which is expressed as ""
 Note that 'A' has the data type char whereas "A" is a String object

5
8

 In the Lincoln program from Chapter 1, we invoked the println method to print a character string
 The System.out object represents a destination (the monitor screen) to which we can send output

5
9

System.out.println ("Whatever you are, be a good one.");

object methodname information provided to the method(parameters)

 The System.out object provides another service as well
 The print method is similar to the printlnmethod, except that it does not advance to the next line
 Therefore anything printed after a printstatement will appear on the same line
 See Welcome2.java
 See Countdown.java

6
0

//**
// Countdown.java Author: Lewis/Loftus
//
// Demonstrates the difference between print and println.
//**
public class Countdown
{

//---
// Prints two lines of output representing a rocket countdown.
//---
public static void main (String[] args)
{

System.out.print ("Three... ");
System.out.print ("Two... ");
System.out.print ("One... ");
System.out.print ("Zero... ");
System.out.println ("Liftoff!"); // appears on first output line
System.out.println ("Houston, we have a problem.");

}
}

6
1

//**
// Countdown.java Author: Lewis/Loftus
//
// Demonstrates the difference between print and println.
//**
public class Countdown
{

//---
// Prints two lines of output representing a rocket countdown.
//---
public static void main (String[] args)
{

System.out.print ("Three... ");
System.out.print ("Two... ");
System.out.print ("One... ");
System.out.print ("Zero... ");
System.out.println ("Liftoff!"); // appears on first output line
System.out.println ("Houston, we have a problem.");

}
}

Output
Three... Two... One... Zero... Liftoff!
Houston, we have a problem.

6
2

 The string concatenation operator (+) is used to append one string to the end of another
"Peanut butter " + "and jelly"

 It can also be used to append a number to a string
 A string literal cannot be broken across two lines in a program
 See Facts.java

6
3

//**
// Facts.java Author: Lewis/Loftus
//
// Demonstrates the use of the string concatenation operator and the
// automatic conversion of an integer to a string.
//**
public class Facts
{

//---
// Prints various facts.
//---
public static void main (String[] args)
{

// Strings can be concatenated into one long string
System.out.println ("We present the following facts for your "

+ "extracurricular edification:");
System.out.println ();
// A string can contain numeric digits
System.out.println ("Letters in the Hawaiian alphabet: 12");

continue

6
4

continue
// A numeric value can be concatenated to a string
System.out.println ("Dialing code for Antarctica: " + 672);
System.out.println ("Year in which Leonardo da Vinci invented "

+ "the parachute: " + 1515);
System.out.println ("Speed of ketchup: " + 40 + " km per year");

}
}

6
5

//**
// Addition.java Author: Lewis/Loftus
//
// Demonstrates the difference between the addition and string
// concatenation operators.
//**
public class Addition
{

//---
// Concatenates and adds two numbers and prints the results.
//---
public static void main (String[] args)
{

System.out.println ("24 and 45 concatenated: " + 24 + 45);
System.out.println ("24 and 45 added: " + (24 + 45));

}
}

Output
24 and 45 concatenated: 2445
24 and 45 added: 69

6
6

6
7

What output is produced by the following?
System.out.println ("X: " + 25);
System.out.println ("Y: " + (15 + 50));
System.out.println ("Z: " + 300 + 50);

6
8

What output is produced by the following?
System.out.println ("X: " + 25);
System.out.println ("Y: " + (15 + 50));
System.out.println ("Z: " + 300 + 50);

X: 25
Y: 65
Z: 30050

 What if we wanted to print the quote character?
 The following line would confuse the compiler because it would interpret the second quote as the end of the string

System.out.println ("I said "Hello" to you.");
 An escape sequence is a series of characters that represents a special character
 An escape sequence begins with a backslash character (\)

System.out.println ("I said \"Hello\" to you.");

6
9

 Some Java escape sequences:

7
0

Escape Sequence
\b
\t
\n
\r
\"
\'
\\

Meaning
backspacetabnewlinecarriage returndouble quotesingle quotebackslash

• Note: One must use disable the "Capture output" check box in the
default run application tool in Jcreator to be able to see the affects of
\b \r

• See Welcome3.java and Roses.java

//**
// Roses.java Author: Lewis/Loftus
//
// Demonstrates the use of escape sequences.
//**
public class Roses
{

//---
// Prints a poem (of sorts) on multiple lines.
//---
public static void main (String[] args)
{

System.out.println ("Roses are red,\n\tViolets are blue,\n" +
"Sugar is sweet,\n\tBut I have \"commitment issues\",\n\t" +
"So I'd rather just be friends\n\tAt this point in our " +
"relationship.");

}
}

7
1

//**
// Roses.java Author: Lewis/Loftus
//
// Demonstrates the use of escape sequences.
//**
public class Roses
{

//---
// Prints a poem (of sorts) on multiple lines.
//---
public static void main (String[] args)
{

System.out.println ("Roses are red,\n\tViolets are blue,\n" +
"Sugar is sweet,\n\tBut I have \"commitment issues\",\n\t" +
"So I'd rather just be friends\n\tAt this point in our " +
"relationship.");

}
}

Output
Roses are red,

Violets are blue,
Sugar is sweet,

But I have "commitment issues",
So I'd rather just be friends
At this point in our relationship.

7
2

7
3

Write a single println statement that produces the
following output:

"Thank you all for coming to my home
tonight," he said mysteriously.

7
4

Write a single println statement that produces the
following output:

"Thank you all for coming to my home
tonight," he said mysteriously.

System.out.println ("\"Thank you all for " +
"coming to my home\ntonight,\" he said " +
"mysteriously.");

7
5

Character Strings
Variables and Assignment
Primitive Data Types
Expressions
Data Conversion
Interactive Programs

 An expression is a combination of one or more operators and operands
 Arithmetic expressions compute numeric results and make use of the arithmetic operators:

7
6

AdditionSubtractionMultiplicationDivisionRemainder

+-*/%
• If either or both operands are floating point values, then the result is a floating point value

•See TempConverter.java

 If both operands to the division operator (/) are integers, the result is an integer (the fractional part is discarded)

7
7

14 / 3 equals 4
8 / 12 equals 0

7
8

• The remainder operator (%) returns the remainder after dividing the first operand by the second
14 % 3 equals 2
8 % 12 equals 8

7
9

What are the results of the following expressions?
12 / 2

12.0 / 2.0
10 / 4

10 / 4.0
4 / 10

4.0 / 10
12 % 3
10 % 3
3 % 10

8
0

What are the results of the following expressions?
12 / 2

12.0 / 2.0
10 / 4

10 / 4.0
4 / 10

4.0 / 10
12 % 3
10 % 3
3 % 10

= 6
= 6.0
= 2
= 2.5
= 0
= 0.4
= 0
= 1
= 3

 Operators can be combined into larger expressions
result = total + count / max - offset;

 Operators have a well-defined precedence which determines the order in which they are evaluated
 Multiplication, division, and remainder are evaluated before addition, subtraction, and string concatenation
 Arithmetic operators with the same precedence are evaluated from left to right, but parentheses can be used to force the evaluation order

8
1

