
Outline

Writing Classes

Copyright © 2012 Pearson Education, Inc.

Writing Classes

• We've been using predefined classes from the
Java API. Now we will learn to write our own
classes.

• The class that contains the main method is just the
starting point of a program

• True object-oriented programming is based on
defining classes that represent objects with well-
defined characteristics and functionality

Copyright © 2012 Pearson Education, Inc.

Object-Oriented Programming

• An object represents an entity in the real world that

can be distinctly identified.

• A student, a desk, a circle, a button, a loan can all

be viewed as objects.

Copyright © 2012 Pearson Education, Inc.

The State of an Object

• The state of an object (also known as its properties

or attributes) is represented by data fields with their

current values.

• For example:

– A circle object has a data field radius, which is the

property that characterizes a circle.

– A rectangle object has data fields width and height,

which are the properties that characterize a rectangle.

Copyright © 2012 Pearson Education, Inc.

The Behavior of an Object
• The behavior of an object (also known as its actions) is

defined by methods.

• To invoke a method on an object is to ask the object to

perform an action.

• You may define a method named getArea() for circle

objects. A circle object may invoke getArea() to return its

area.

Copyright © 2012 Pearson Education, Inc.

Class
• Objects of the same type are defined using a common

class.

• A class is a template, blueprint, or contract that defines what

an object’s data fields and methods will be.

• An object is an instance of a class.

• You can create many instances of a class.

• Creating an instance is referred to as instantiation.

Copyright © 2012 Pearson Education, Inc.

Examples of Classes

Copyright © 2012 Pearson Education, Inc.

State and Behavior

• Consider a six-sided die

– It’s state can be defined as which face is showing

– It’s primary behavior is that it can be rolled

• We represent a die by designing a class called
Die that models this state and behavior

– The class serves as the blueprint for a die object

• We can then instantiate as many die objects as we
need for any particular program

Copyright © 2012 Pearson Education, Inc.

Anatomy of a Class

• A class can contain data declarations and method

declarations

int size, weight;

char category;
Data declarations

Method declarations

Copyright © 2012 Pearson Education, Inc.

Example

A class that represents a circle object

with radius 1

SimpleCircle.java

TestSimpleCircle.java

Copyright © 2012 Pearson Education, Inc.

SimpleCircle.java
SimpleCircle.java
SimpleCircle.java
TestSimpleCircle.java

Accessing Members of a Class
• Within a class you can access a member of the class the

same way you would any other variable or method.

• Outside the class, a class member is accessed by using

the syntax:

– Referencing variables:

 objectName.varName example: arr.length

– Calling non-static methods on objects:

 objectName.methodName(params)

 example: str.charAt(0);

Constructors

• Constructors are special methods

• A constructor is used to set up an object when it is
initially created (instantiated)

• A constructor has the same name as the class

Copyright © 2012 Pearson Education, Inc.

Constructors
• A constructor is invoked with the new operator.

– Scanner scan = new Scanner(System.in)

– Random randgen = new Random();

• A constructor should initialize the class variables.

• If the variables are not initialized, default values are

• used.

• A constructor does not have a return type.

• A constructor’s identifier (name) is the same as the
class it constructs.

Constructors

• Note that a constructor has no return type specified
in the method header, not even void

• A common error is to put a return type on a
constructor

• Each class has a default constructor that accepts
no parameters

Copyright © 2012 Pearson Education, Inc.

Accessors and Mutators

• Because instance data is private, a class usually

provides services to access and modify data values

• An accessor method returns the current value of a

variable

• A mutator method changes the value of a variable

• The names of accessor and mutator methods take
the form getX and setX, respectively, where X is

the name of the value

• They are sometimes called “getters” and “setters”

Copyright © 2012 Pearson Education, Inc.

Example

 CircleWithConstructors.java

 TestCircleWithConstructors.java

Copyright © 2012 Pearson Education, Inc.

CircleWithConstructors.java
TestCircleWithConstructors.java

Examples

See

 MyCircle.java

 MyCircleTest.java

Copyright © 2012 Pearson Education, Inc.

MyCircle.java
MyCircleTest.java

Examples

Storing MyCircle objects in an
ArrayList:

 TestMyCircleArrayList.java

Storing MyCircle objects in an array:

 TotalArea.java

Copyright © 2012 Pearson Education, Inc.

TestMyCircleArrayList.java
TotalArea.java

The toString Method

• It's good practice to define a toString method for

a class

• The toString method returns a string that

represents the object in some way

• It is called automatically when an object is

concatenated to a string or when it is passed to the
println method

Copyright © 2012 Pearson Education, Inc.

Example
 //Demonstrates use of toString and the use

 of objects with arraylist

 Point.java

 TestPoint.java

Copyright © 2012 Pearson Education, Inc.

Point.java
TestPoint.java
Points.java

Example: The Die Class

• Die class, we might declare an integer called
faceValue that represents the current value
showing on the face

• One of the methods would “roll” the die by setting
faceValue to a random number between one
and six

• The Die constructor is used to set the initial face
value of each new die object to 1

Copyright © 2012 Pearson Education, Inc.

The Die Class

• We’ll want to design the Die class so that it is
versatile and reusable

• Any given program will probably not use all
operations of a given class

 Die.java

 RollingDice.java

Copyright © 2012 Pearson Education, Inc.

Die.java
RollingDice.java

The Die Class

• The Die class contains two data values

– a constant MAX that represents the maximum face value

– an integer faceValue that represents the current face
value

• The roll method uses the random method of the
Math class to determine a new face value

• There are also methods to explicitly set and
retrieve the current face value at any time

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

//**

// RollingDice.java Author: Lewis/Loftus

//

// Demonstrates the creation and use of a user-defined class.

//**

public class RollingDice

{

 //---

 // Creates two Die objects and rolls them several times.

 //---

 public static void main (String[] args)

 {

 Die die1, die2;

 int sum;

 die1 = new Die();

 die2 = new Die();

 die1.roll();

 die2.roll();

 System.out.println ("Die One: " + die1 + ", Die Two: " + die2);

continue

Copyright © 2012 Pearson Education, Inc.

continue

 die1.roll();

 die2.setFaceValue(4);

 System.out.println ("Die One: " + die1 + ", Die Two: " + die2);

 sum = die1.getFaceValue() + die2.getFaceValue();

 System.out.println ("Sum: " + sum);

 sum = die1.roll() + die2.roll();

 System.out.println ("Die One: " + die1 + ", Die Two: " + die2);

 System.out.println ("New sum: " + sum);

 }

}

Copyright © 2012 Pearson Education, Inc.

continue

 die1.roll();

 die2.setFaceValue(4);

 System.out.println ("Die One: " + die1 + ", Die Two: " + die2);

 sum = die1.getFaceValue() + die2.getFaceValue();

 System.out.println ("Sum: " + sum);

 sum = die1.roll() + die2.roll();

 System.out.println ("Die One: " + die1 + ", Die Two: " + die2);

 System.out.println ("New sum: " + sum);

 }

}

Sample Run

Die One: 5, Die Two: 2

Die One: 1, Die Two: 4

Sum: 5

Die One: 4, Die Two: 2

New sum: 6

Copyright © 2012 Pearson Education, Inc.

//**

// Die.java Author: Lewis/Loftus

//

// Represents one die (singular of dice) with faces showing values

// between 1 and 6.

//**

public class Die

{

 private final int MAX = 6; // maximum face value

 private int faceValue; // current value showing on the die

 //---

 // Constructor: Sets the initial face value.

 //---

 public Die()

 {

 faceValue = 1;

 }

continue

Copyright © 2012 Pearson Education, Inc.

continue

 //---

 // Rolls the die and returns the result.

 //---

 public int roll()

 {

 faceValue = (int)(Math.random() * MAX) + 1;

 return faceValue;

 }

 //---

 // Face value mutator.

 //---

 public void setFaceValue (int value)

 {

 faceValue = value;

 }

 //---

 // Face value accessor.

 //---

 public int getFaceValue()

 {

 return faceValue;

 }

continue

Copyright © 2012 Pearson Education, Inc.

continue

 //---

 // Returns a string representation of this die.

 //---

 public String toString()

 {

 String result = Integer.toString(faceValue);

 return result;

 }

}

Instance Data

• We can depict the two Die objects from the
RollingDice program as follows:

die1 5 faceValue

die2 2 faceValue

Each object maintains its own faceValue

variable, and thus its own state

Copyright © 2012 Pearson Education, Inc.

Instance Data
• A variable declared at the class level (such as
faceValue) is called instance data

• Each instance (object) has its own instance variable

• A class declares the type of the data, but it does not
reserve memory space for it

• Each time a Die object is created, a new
faceValue variable is created as well

• The objects of a class share the method definitions,
but each object has its own data space

• That's the only way two objects can have different
states

Copyright © 2012 Pearson Education, Inc.

