The this Reference

e The this reference, used inside a method, refers to

the object through which the method is being
executed

« Suppose the this reference is used inside a
method called tryMe, which is invoked as follows:

objl. tryMe() ;
obj2.tryMe() ;

* |n the first iInvocation, the this reference refers to
ob7j1;In the second it refers to obj2

Copyright © 2012 Pearson Education, Inc.

The this reference

 The this reference can be used to distinguish the
Instance variables of a class from corresponding
method parameters with the same names

public Account (String name, long acctNumber,
double balance)
{
this.name = name;
this.acctNumber = acctNumber;
this.balance = balance;

Copyright © 2012 Pearson Education, Inc.

Dependency

* The following example defines a class called
RationalNumber

A rational number is a value that can be
represented as the ratio of two integers

« Several methods of the RationalNumber class
accept another RationalNumber object as a
parameter

e See RationalTester.java

e See RationalNumber.java

Copyright © 2012 Pearson Education, Inc.

RationalTester.java
RationalNumber.java

//**
// RationalTester.java Author: Lewis/Loftus
//
// Driver to exercise the use of multiple Rational objects.
//**
public class RationalTester
{
/[=== = e
// Creates some rational number objects and performs various
// operations on them.
e
public static void main (String[] args)
{
RationalNumber rl = new RationalNumber (6, 8);
RationalNumber r2 = new RationalNumber (1, 3);
RationalNumber r3, r4, r5, r6, r7;
System.out.println ("First rational number: " + rl);
System.out.println ("Second rational number: " + r2);
continue

Copyright © 2012 Pearson Education, Inc.

continue

if (rl.

System.out.println ("rl and r2 are equal.");

else

System.out.println ("rl and r2 are NOT equal.");

isLike (r2))

r3 = rl.reciprocal();

System.out.println ("The reciprocal of rl is: " + r3);
r4d = rl.add(r2);

r5 = rl.subtract(r2);

r6 = rl.multiply(r2);

r7 = rl.divide(r2) ;

System.out.println ("rl r2: " + r4);
System.out.println ("rl r2: " + r5);
System.out.println ("rl r2: " + r6);
System.out.println ("rl r2: " + r7);

Copyright © 2012 Pearson Education, Inc.

continue Output
if (rl.isLike First rational number: 3/4
System.out gecond rational number: 1/3
else rl and r2 are NOT equal.
System. out] i) ;
The reciprocal of rl is: 4/3
r3 = rl.recip rl + r2: 13/12
System.out. pn rl - r2: 5/12 r r3);
rl * r2: 1/4
rd = rl.add(q r1 / r2: 9/4
r5 = rl.subtr
r6 = rl.multiply(r2);
r7 = rl.divide(r2) ;
System.out.println ("rl + r2: " + r4);
System.out.println ("rl r2: " + r5);
System.out.println ("rl r2: " + r6);
System.out.println ("rl r2: " + r7);

Copyright © 2012 Pearson Education, Inc.

//**
// RationalNumber.java Author: Lewis/Loftus

//

// Represents one rational number with a numerator and denominator.

P
//**
public class RationalNumber
{

private int numerator, denominator;
/=== e
// Constructor: Sets up the rational number by ensuring a nonzero
// denominator and making only the numerator signed.
/=== e
public RationalNumber (int numer, int denom)
{

if (denom == 0)

denom = 1;

// Make the numerator "store" the sign

if (denom < 0)

{

numer = numer * -1;
denom = denom * -1;

}

continue

Copyright © 2012 Pearson Education, Inc.

continue

numerator = numer;
denominator = denom;

reduce () ;

public int getNumerator ()

{

return numerator;

public int getDenominator ()

{

return denominator;

continue

Copyright © 2012 Pearson Education, Inc.

continue

public RationalNumber reciprocal ()
{

return new RationalNumber (denominator, numerator);

// Adds this rational number to the one passed as a parameter.
// A common denominator is found by multiplying the individual
// denominators.

public RationalNumber add (RationalNumber op2)
{

int commonDenominator = denominator * op2.getDenominator() ;
int numeratorl = numerator * op2.getDenominator() ;

int numerator2 = op2.getNumerator() * denominator;

int sum = numeratorl + numerator2;

return new RationalNumber (sum, commonDenominator) ;

continue

Copyright © 2012 Pearson Education, Inc.

continue

// Subtracts the rational number passed as a parameter from this
// rational number.

public RationalNumber subtract (RationalNumber op2)
{

int commonDenominator = denominator * op2.getDenominator() ;
int numeratorl = numerator * op2.getDenominator() ;

int numerator2 = op2.getNumerator() * denominator;

int difference = numeratorl - numerator2;

return new RationalNumber (difference, commonDenominator);

// Multiplies this rational number by the one passed as a
// parameter.

public RationalNumber multiply (RationalNumber op2)
{

int numer = numerator * op2.getNumerator();
int denom = denominator * op2.getDenominator () ;

return new RationalNumber (numer, denom) ;

continue

Inc.

continue

// Divides this rational number by the one passed as a parameter
// by multiplying by the reciprocal of the second rational.

public RationalNumber divide (RationalNumber op2)
{

return multiply (op2.reciprocal())

// Determines if this rational number is equal to the one passed
// as a parameter. Assumes they are both reduced.

/== e e
public boolean isLike (RationalNumber op2)
{
return (numerator == op2.getNumerator() &&
denominator == op2.getDenominator ());
}
continue

Copyright © 2012 Pearson Education, Inc.

continue

public String toString ()
{
String result;
if (numerator == 0)
result = "0";
else
if (denominator == 1)
result = numerator + "";
else
result = numerator + "/" + denominator;
return result;

continue

Copyright © 2012 Pearson Education, Inc.

continue

// Reduces this rational number by dividing both the numerator
// and the denominator by their greatest common divisor.

private void reduce ()

{
if (numerator !'= 0)
{
int common = gcd (Math.abs (numerator), denominator);
numerator = numerator / common;
denominator = denominator / common;
}
}
continue

Copyright © 2012 Pearson Education, Inc.

continue

// Computes and returns the greatest common divisor of the two
// positive parameters. Uses Euclid's algorithm.

/=== e
private int ged (int numl, int num2)
{

while (numl '= num?2)

if (numl > num2)

numl = numl - num2;
else

num2 = num2 - numl;

return numl;

Copyright © 2012 Pearson Education, Inc.

Aggregation

* In the following example, a Student object is
composed, in part, of Address objects

« A student has an address (in fact each student has
two addresses)

e See Address.java

e See Student.java
e See StudentBody.java

Copyright © 2012 Pearson Education, Inc.

Address.java
Student.java
StudentBody.java

AR L e e T e Ty
// StudentBody.java Author: Lewis/Loftus
//
// Demonstrates the use of an aggregate class.
AR e e Ty
public class StudentBody
{
/=== e
// Creates some Address and Student objects and prints them.
/=== o
public static void main (String[] args)
{
Address school = new Address ("800 Lancaster Ave.", "Villanova'",
"PA", 19085);
Address jHome = new Address ("21 Jump Street", "Lynchburg",
"VA", 24551);
Student john = new Student ("John", "Smith", jHome, school);
Address mHome = new Address ("123 Main Street", "Euclid", "OH",
44132) ;
Student marsha = new Student ("Marsha", "Jones", mHome, school);
System.out.println (john)
System.out.println () ;
System.out.println (marsha) ;
}
}

CUOPYIIZII & ZUTZ T'TAlSUIl CUUUdatIvll, Il’lC.

//*******************

//
//

// Demonstrates the
//*******************

StudentBody. java

public class StudentB
{

public static wvoid

{

Output

John Smith

Home Address:

21 Jump Street
Lynchburg, VA 24551
School Address:

800 Lancaster Ave.
Villanova, PA 19085

Marsha Jones
Home Address:

Address school]

123 Main Street
Address jHome = EUClid, OH 44132

School Address:
Student john = | 800 Lancaster Ave.

Villanova, PA 19085
Address mHome =

44132) ;

Student marsha = new Student ("Marsha",

System.out.println (john);
System.out.println ();
System.out.println (marsha);

"Jones", mHome,

hkhkkkkkhkkkkkkhkkkkkhkkkkkkkx*kx

khkkkkkhkkkkkkhkkkkkhkkkkkkkx*kx

er Ave.", "Villanova'",

et", "Lynchburg",

", jHome, school);

eet", "Euclid", "OH",

school) ;

CUOPYIIZII & ZUTZ T'TAlSUIl CUUUdatIvll, Il’lC.

//**

// Student.java Author: Lewis/Loftus
//

// Represents a college student.
//**

public class Student

{
private String firstName, lastName;
private Address homeAddress, schoolAddress;

// Constructor: Sets up this student with the specified values.

public Student (String first, String last, Address home,
Address school)

firstName = first;
lastName = last;
homeAddress = home;
schoolAddress = school;

continue

Copyright © 2012 Pearson Education, Inc.

continue

public String toString()

{
String result;
result = firstName + " " + lastName + "\n";
result += "Home Address:\n" + homeAddress + "\n'";
result += "School Address:\n" + schoolAddress;
return result;

}

Copyright © 2012 Pearson Education, Inc.

//**

// Address.java Author: Lewis/Loftus
//

// Represents a street address.
//**

public class Address

{
private String streetAddress, city, state;
private long zipCode;

// Constructor: Sets up this address with the specified data.

public Address (String street, String town, String st, long zip)
{

streetAddress = street;

city = town;

state = st;

zipCode = zip;

continue

Copyright © 2012 Pearson Education, Inc.

continue

[] == e
// Returns a description of this Address object.

[/== e e e e e e e
public String toString()

{

String result;

result = streetAddress + "\n";
result += city + ", " + state + " " + zipCode;

return result;

Copyright © 2012 Pearson Education, Inc.

Examples

e See Client.java

e See Bus.java

e See BusApp.java

Copyright © 2012 Pearson Education, Inc.

Client.java
Bus.java
BusApp.java

Examples

e See Book.java
e See BookTest.java

e See Library.java

e See TestlLibrary. java

Copyright © 2012 Pearson Education, Inc.

Book.java
BookTest.java
Library.java
TestLibrary.java

ldentifying Classes and Objects

A partial requirements document:

The|user/must be allowed to specify each|product|by
Its primary characteristics, including its [name and
product number. If the |bar code|does not match the
product,/then an|error|should be generated to the
message window| and entered into the|error log} The
summary report]|of all{transactions must be structured
as specified in section 7.A.

* Of course, not all nouns will correspond to a class
or object in the final solution

Copyright © 2012 Pearson Education, Inc.

ldentifying Classes and Objects

« Sometimes it Is challenging to decide whether
something should be represented as a class

* For example, should an employee's address be
represented as a set of instance variables or as an
Address object

* The more you examine the problem and its details
the more clear these issues become

 When a class becomes too complex, it often should
be decomposed into multiple smaller classes to
distribute the responsibilities

Copyright © 2012 Pearson Education, Inc.

ldentifying Classes and Objects

« Part of identifying the classes we need is the
process of assigning responsibilities to each class

* Every activity that a program must accomplish must
be represented by one or more methods in one or
more classes

* We generally use verbs for the names of methods

* |n early stages it Is not necessary to determine
every method of every class — begin with primary
responsiblilities and evolve the design

Copyright © 2012 Pearson Education, Inc.

UML Diagrams
« UML stands for the Unified Modeling Language

 UML diagrams show relationships among classes
and objects

A UML class diagram consists of one or more
classes, each with sections for the class name,
attributes (data), and operations (methods)

* Lines between classes represent associations

A dotted arrow shows that one class uses the other
(calls its methods)

Copyright © 2012 Pearson Education, Inc.

UML Class Diagrams

A UML class diagram for the RollingDice

program:

RollingDice

Die

+main (args : String[]) : void

-faceValue : int

+roll() : int

+setFaceValue (int value) : void
+getFaceValue() : int
+toString() : String

Static Variables

 Normally, each object has its own data space, but if
a variable Is declared as static, only one copy of the
variable exists

private static float price;

 Memory space for a static variable is created when
the class is first referenced

 All objects instantiated from the class share Its
static variables

« Changing the value of a static variable in one object
changes it for all others

Copyright © 2012 Pearson Education, Inc.

Static Class Members

* The following example keeps track of how many
Slogan Objects have been created using a static

variable, and makes that information available
using a static method

e See SloganCounter.java

e See Slogan.java

Copyright © 2012 Pearson Education, Inc.

SloganCounter.java
Slogan.java

//**
// SloganCounter.java Author: Lewis/Loftus
//
// Demonstrates the use of the static modifier.
//**
public class SloganCounter
{
/[=== = e
// Creates several Slogan objects and prints the number of
// objects that were created.
/=== m
public static void main (String[] args)
{
Slogan obj;
obj = new Slogan ("Remember the Alamo.") ;
System.out.println (obj);
obj = new Slogan ("Don't Worry. Be Happy."):;
System.out.println (obj);
continue

Copyright © 2012 Pearson Education, Inc.

continue

obj = new Slogan ("Live Free or Die.");
System.out.println (obj);

obj = new Slogan ("Talk is Cheap.");
System.out.println (obj);

obj = new Slogan ("Write Once, Run Anywhere.");

System.out.println (obj);

System.out.println() ;

System.out.println ("Slogans created: " + Slogan.getCount()) ;

Copyright © 2012 Pearson Education, Inc.

continue

obj = new Sld
System.out. px

obj = new Slg
System.out.pr

obj = new Slg
System.out.pr

Output

Remember the Alamo.

Don't Worry. Be Happy.
Live Free or Die.

Talk is Cheap.

Write Once, Run Anywhere.

Slogans created: 5

System.out.println() ;

System.out.println ("Slogans created:

"o+ slogan.getcount()) ’

Copyright © 2012 Pearson Education, Inc.

//**

// Slogan.java Author: Lewis/Loftus
//

// Represents a single slogan string.
//**

public class Slogan

{
private String phrase;
private static int count = 0;

// Constructor: Sets up the slogan and counts the number of
// instances created.

public Slogan (String str)
{

phrase = str;

count++;

continue

Copyright © 2012 Pearson Education, Inc.

continue

public String toString()
{

return phrase;

// Returns the number of instances of this class that have been
// created.

public static int getCount ()
{

return count;

Copyright © 2012 Pearson Education, Inc.

Examples

e See(Circle.java

e See TestCircle.java

Copyright © 2012 Pearson Education, Inc.

Circle.java
TestCircle.java

